Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Plant J ; 104(6): 1472-1490, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33031578

RESUMO

Benzoic acid-derived compounds, such as polyprenylated benzophenones and xanthones, attract the interest of scientists due to challenging chemical structures and diverse biological activities. The genus Hypericum is of high medicinal value, as exemplified by H. perforatum. It is rich in benzophenone and xanthone derivatives, the biosynthesis of which requires the catalytic activity of benzoate-coenzyme A (benzoate-CoA) ligase (BZL), which activates benzoic acid to benzoyl-CoA. Despite remarkable research so far done on benzoic acid biosynthesis in planta, all previous structural studies of BZL genes and proteins are exclusively related to benzoate-degrading microorganisms. Here, a transcript for a plant acyl-activating enzyme (AAE) was cloned from xanthone-producing Hypericum calycinum cell cultures using transcriptomic resources. An increase in the HcAAE1 transcript level preceded xanthone accumulation after elicitor treatment, as previously observed with other pathway-related genes. Subcellular localization of reporter fusions revealed the dual localization of HcAAE1 to cytosol and peroxisomes owing to a type 2 peroxisomal targeting signal. This result suggests the generation of benzoyl-CoA in Hypericum by the CoA-dependent non-ß-oxidative route. A luciferase-based substrate specificity assay and the kinetic characterization indicated that HcAAE1 exhibits promiscuous substrate preference, with benzoic acid being the sole aromatic substrate accepted. Unlike 4-coumarate-CoA ligase and cinnamate-CoA ligase enzymes, HcAAE1 did not accept 4-coumaric and cinnamic acids, respectively. The substrate preference was corroborated by in silico modeling, which indicated valid docking of both benzoic acid and its adenosine monophosphate intermediate in the HcAAE1/BZL active site cavity.


Assuntos
Acil Coenzima A/metabolismo , Coenzima A Ligases/metabolismo , Hypericum/metabolismo , Proteínas de Plantas/metabolismo , Xantonas/metabolismo , Clonagem Molecular , Coenzima A Ligases/genética , Citosol/enzimologia , Hypericum/enzimologia , Redes e Vias Metabólicas , Simulação de Acoplamento Molecular , Peroxissomos/enzimologia , Filogenia , Proteínas de Plantas/genética
2.
Biol Pharm Bull ; 43(9): 1382-1392, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32879213

RESUMO

The effects of different dietary fats on hepatic fatty acid oxidation were compared in male ICR mice and Sprague-Dawley rats. Animals were fed diets containing 100 g/kg of either palm oil (saturated fat), safflower oil (rich in linoleic acid), an oil of evening primrose origin (γ-linolenic acid, GLA oil), perilla oil (α-linolenic acid) or fish oil (eicosapentaenoic and doxosahexaenoic acids) for 21 d. GLA, perilla and fish oils, compared with palm and safflower oils, increased the activity of fatty acid oxidation enzymes in both mice and rats, with some exceptions. In mice, GLA and fish oils greatly increased the peroxisomal palmitoyl-CoA oxidation rate, and the activity of acyl-CoA oxidase and enoyl-CoA hydratase to the same degree. The effects were much smaller with perilla oil. In rats, enhancing effects were more notable with fish oil than with GLA and perilla oils, excluding the activity of enoyl-CoA hydratase, and were comparable between GLA and perilla oils. In mice, strong enhancing effects of GLA oil, which were greater than with perilla oil and comparable to those of fish oil, were confirmed on mRNA levels of peroxisomal but not mitochondrial fatty acid oxidation enzymes. In rats, the effects of GLA and perilla oils on mRNA levels of peroxisomal and mitochondrial enzymes were indistinguishable, and lower than those observed with fish oil. Therefore, considerable diversity in the response to dietary polyunsaturated fats, especially the oil rich in γ-linolenic acid and fish oil, of hepatic fatty acid oxidation pathway exists between mice and rats.


Assuntos
Gorduras na Dieta/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Ácido gama-Linolênico/administração & dosagem , Acil-CoA Oxidase/metabolismo , Ração Animal , Animais , Enoil-CoA Hidratase/metabolismo , Óleos de Peixe/administração & dosagem , Óleos de Peixe/química , Fígado/citologia , Fígado/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Oxirredução/efeitos dos fármacos , Peroxissomos/efeitos dos fármacos , Peroxissomos/enzimologia , Óleos de Plantas/administração & dosagem , Óleos de Plantas/química , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie
3.
J Nutr Biochem ; 41: 42-55, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28040580

RESUMO

Interrelated effects of γ-linolenic acid (GLA) and sesamin, a sesame lignan, on hepatic fatty acid synthesis and oxidation were examined. Rats were fed experimental diets supplemented with 0 or 2 g/kg sesamin (1:1 mixture of sesamin and episesamin) and containing 100 g/kg of palm oil (saturated fat), safflower oil rich in linoleic acid, or oil of evening primrose origin containing 43% GLA (GLA oil) for 18 days. In rats fed sesamin-free diets, GLA oil, compared with other oils, increased the activity and mRNA levels of various enzymes involved in fatty acid oxidation, except for some instances. Sesamin greatly increased these parameters, and the enhancing effects of sesamin on peroxisomal fatty acid oxidation rate and acyl-CoA oxidase, enoyl-CoA hydratase and acyl-CoA thioesterase activities were more exaggerated in rats fed GLA oil than in the animals fed other oils. The combination of sesamin and GLA oil also synergistically increased the mRNA levels of some peroxisomal fatty acid oxidation enzymes and of several enzymes involved in fatty acid metabolism located in other cell organelles. In the groups fed sesamin-free diets, GLA oil, compared with other oils, markedly reduced the activity and mRNA levels of various lipogenic enzymes. Sesamin reduced all these parameters, except for malic enzyme, in rats fed palm and safflower oils, but the effects were attenuated in the animals fed GLA oil. These changes by sesamin and fat type accompanied profound alterations in serum lipid levels. This may be ascribable to the changes in apolipoprotein-B-containing lipoproteins.


Assuntos
Gorduras Insaturadas na Dieta/uso terapêutico , Suplementos Nutricionais , Dioxóis/uso terapêutico , Hiperlipidemias/prevenção & controle , Hipolipemiantes/uso terapêutico , Lignanas/uso terapêutico , Fígado/metabolismo , Ácido gama-Linolênico/uso terapêutico , Acil-CoA Oxidase/antagonistas & inibidores , Acil-CoA Oxidase/química , Acil-CoA Oxidase/genética , Acil-CoA Oxidase/metabolismo , Animais , Gorduras Insaturadas na Dieta/efeitos adversos , Sacarose Alimentar/efeitos adversos , Enoil-CoA Hidratase/antagonistas & inibidores , Enoil-CoA Hidratase/química , Enoil-CoA Hidratase/genética , Enoil-CoA Hidratase/metabolismo , Ácidos Graxos/biossíntese , Ácidos Graxos/sangue , Ácidos Graxos/metabolismo , Regulação Enzimológica da Expressão Gênica , Hiperlipidemias/sangue , Hiperlipidemias/etiologia , Hiperlipidemias/metabolismo , Ácidos Linoleicos/uso terapêutico , Lipídeos/sangue , Fígado/enzimologia , Masculino , Oenothera biennis , Oxirredução , Óleo de Palmeira/efeitos adversos , Peroxissomos/enzimologia , Peroxissomos/metabolismo , Óleos de Plantas/uso terapêutico , Ratos Sprague-Dawley , Óleo de Cártamo/efeitos adversos , Tioléster Hidrolases/antagonistas & inibidores , Tioléster Hidrolases/química , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo
4.
Mol Nutr Food Res ; 59(8): 1573-83, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25913736

RESUMO

SCOPE: Omega-3 polyunsaturated fatty acids (n-3 PUFA) found in fish oil activate PPAR-α, stimulate peroxisomal fatty acid (FA) ß-oxidation and prevent impairments on glucose homeostasis. METHODS AND RESULTS: Glucose metabolism and FA oxidation were studied in C57/Bl6 mice fed with diets containing either 3.6 and 31.5% fish oil or lard. To assess the effects of peroxisomal proliferation on FA oxidation independent of n-3 PUFA intake, mice were treated with the PPAR-α agonist WY-14643. n-3 PUFA-fed mice were protected from glucose intolerance and dyslipidemia compared to animals fed a lard-based high-fat diet. Most importantly, mice fed on the hyperlipidic diet based on fish oil as well as the WY-14643 treated mice showed twofold increase of odd, medium-chain, dicarboxylic acylcarnitines in the liver suggesting that not only ß-oxidation, but also α- and ω-oxidation of FA were increased. Finally, an oxidation assay using liver homogenates and palmitic acid as substrate revealed an over tenfold increased production of similar acylcarnitines, indicating that FA are their precursors. CONCLUSION: This study shows at the metabolite level that peroxisome proliferation induced either by fish oil or WY-14643 is associated with increased α- and ω-oxidation of FA producing specific acylcarnitines that can be utilized as biomarkers of peroxisomal FA oxidation.


Assuntos
Carnitina/análogos & derivados , Dieta Hiperlipídica/efeitos adversos , Gorduras Insaturadas na Dieta/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Fígado/metabolismo , Sobrepeso/metabolismo , Peroxissomos/metabolismo , Animais , Biomarcadores/química , Biomarcadores/metabolismo , Carnitina/química , Carnitina/metabolismo , Gorduras na Dieta/efeitos adversos , Gorduras Insaturadas na Dieta/efeitos adversos , Gorduras Insaturadas na Dieta/uso terapêutico , Ácidos Graxos Ômega-3/uso terapêutico , Óleos de Peixe/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Intolerância à Glucose/etiologia , Intolerância à Glucose/prevenção & controle , Hiperlipidemias/etiologia , Hiperlipidemias/prevenção & controle , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Camundongos Endogâmicos C57BL , Peso Molecular , Sobrepeso/etiologia , Sobrepeso/fisiopatologia , Sobrepeso/prevenção & controle , Oxirredução , Proliferadores de Peroxissomos/farmacologia , Peroxissomos/efeitos dos fármacos , Peroxissomos/enzimologia , Pirimidinas/farmacologia
5.
Plant Cell Physiol ; 56(1): 137-47, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25378687

RESUMO

4-Aminobutyrate (GABA) accumulates in apple fruit during controlled atmosphere storage. A potential source of GABA is the polyamine putrescine, which can be oxidized via copper-containing amine oxidase (CuAO), resulting in the production 4-aminobutanal/Δ(1)-pyrroline, with the consumption of O2 and release of H2O2 and ammonia. Five putative CuAO genes (MdAO genes) were cloned from apple (Malus domestica Borkh. cv. Empire) fruit, and the deduced amino acid sequences found to contain the active sites typically conserved in CuAOs. Genes encoding two of these enzymes, MdAO1 and MdAO2, were highly expressed in apple fruit and selected for further analysis. Amino acid sequence analysis predicted the presence of a C-terminal peroxisomal targeting signal 1 tripeptide in MdAO1 and an N-terminal signal peptide and N-glycosylation site in MdAO2. Transient expression of green fluorescent fusion proteins in Arabidopsis protoplasts or onion epidermal cells revealed a peroxisomal localization for MdAO1 and an extracellular localization for MdAO2. The enzymatic activities of purified recombinant MdAO1 and MdAO2 were measured continuously as H2O2 production using a coupled reaction. MdAO1 did not use monoamines or polyamines and displayed high catalytic efficiency for 1,3-diaminopropane, putrescine and cadaverine, whereas MdAO2 exclusively utilized aliphatic and aromatic monoamines, including 2-phenylethylamine and tyramine. Together, these results indicate that MdAO1 may contribute to GABA production via putrescine oxidation in the peroxisome of apple fruit under controlled atmosphere conditions. MdAO2 seems to be involved in deamination of 2-phenylethylamine, which is a step in the biosynthesis of 2-phenylethanol, a contributor to fruit flavor and flower fragrance.


Assuntos
Amina Oxidase (contendo Cobre)/metabolismo , Monoaminas Biogênicas/metabolismo , Diaminas/metabolismo , Frutas/enzimologia , Malus/enzimologia , Amina Oxidase (contendo Cobre)/genética , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/enzimologia , Arabidopsis/genética , Vias Biossintéticas , Espaço Extracelular/enzimologia , Frutas/citologia , Frutas/genética , Regulação da Expressão Gênica de Plantas , Isoenzimas , Malus/genética , Dados de Sequência Molecular , Cebolas/citologia , Cebolas/enzimologia , Cebolas/genética , Especificidade de Órgãos , Oxirredução , Peroxissomos/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poliaminas/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Ácido gama-Aminobutírico/metabolismo
6.
Br J Nutr ; 111(10): 1782-90, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24513138

RESUMO

The present study was carried out to evaluate the effects of virgin coconut oil (VCO) compared with copra oil, olive oil and sunflower-seed oil on the synthesis and oxidation of fatty acids and the molecular regulation of fatty acid metabolism in normal rats. Male Sprague-Dawley rats were fed the test oils at 8 % for 45 d along with a synthetic diet. Dietary supplementation of VCO decreased tissue lipid levels and reduced the activity of the enzymes involved in lipogenesis, namely acyl CoA carboxylase and fatty acid synthase (FAS) (P< 0·05). Moreover, VCO significantly (P< 0·05) reduced the de novo synthesis of fatty acids by down-regulating the mRNA expression of FAS and its transcription factor, sterol regulatory element-binding protein-1c, compared with the other oils. VCO significantly (P< 0·05) increased the mitochondrial and peroxisomal ß-oxidation of fatty acids, which was evident from the increased activities of carnitine palmitoyl transferase I, acyl CoA oxidase and the enzymes involved in mitochondrial ß-oxidation; this was accomplished by up-regulating the mRNA expression of PPARα and its target genes involved in fatty acid oxidation. In conclusion, the present results confirmed that supplementation of VCO has beneficial effects on lipid parameters by reducing lipogenesis and enhancing the rate of fatty acid catabolism; this effect was mediated at least in part via PPARα-dependent pathways. Thus, dietary VCO reduces the risk for CHD by beneficially modulating the synthesis and degradation of fatty acids.


Assuntos
Gorduras Insaturadas na Dieta/metabolismo , Ácidos Graxos/biossíntese , Metabolismo dos Lipídeos/fisiologia , Lipogênese/fisiologia , Fígado/metabolismo , Óleos de Plantas/metabolismo , Acetil-CoA Carboxilase/metabolismo , Ração Animal , Animais , Óleo de Coco , Ácido Graxo Sintases/metabolismo , Alimentos Fortificados , Regulação da Expressão Gênica , Masculino , Mitocôndrias Hepáticas/metabolismo , Oxirredução , PPAR alfa/metabolismo , Peroxissomos/enzimologia , Óleos de Plantas/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
7.
Eur Rev Med Pharmacol Sci ; 17(1): 75-83, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23329526

RESUMO

BACKGROUND: Obesity is a disease involving body weight gain. Several synthetic drugs of better efficacy are being introduced in the modern system of medicine. Orlistat is a pharmacological agent promoting weight loss in obese subjects via inhibiting of gastric and pancreatic lipase. Ginger (Zingiber officinale Roscoe, Zingiberacae) is one of the most commonly used spices around the world; it has long been used in traditional medicine as a cure for some diseases. OBJECTIVE: To evaluate the effect of ginger and orlistat on rats fed high fat diet. MATERIALS AND METHODS: Forty male Albino rats were either not treated (control), or fed high fat diet, or fed high fat diet with dietary orlistat supplementation (200 mg/kg diet), or fed high fat diet supplemented with 5% ginger powder. After four weeks of treatment, final body weight and food intake were determined. Blood samples were collected, lipid parameters, total bilirubin, pancreatic lipase were determined. Liver peroxisomes were isolated from rat livers and peroxisomal catalase activity was determined. RESULTS: Treatment with both ginger and orlistat had significant effect in reducing body weight, besides, supplementing diet with orlistat increase food intake. Both ginger and orlistat had the ability to reduce lipid profile, ginger had great effect in increasing HDL-cholesterol than orlistat. When compared to the control group, ginger treatment did not alter either total bilirubin or pancreatic lipase activity while orlistat clearly reduced their concentration. Orlistat supplementation induced a significant reduction in peroxisomal catalase level, while ginger has been reported to interfere with enzyme activity increasing its level. CONCLUSIONS: Ginger has a great ability to reduce body weight without inhibiting pancreatic lipase level, or affecting bilirubin concentration, with positive effect on increasing peroxisomal catalase level and HDL-cholesterol.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Catalase/metabolismo , Lactonas/uso terapêutico , Lipase/metabolismo , Fígado/enzimologia , Obesidade/tratamento farmacológico , Pâncreas/enzimologia , Peroxissomos/enzimologia , Zingiber officinale , Animais , Bilirrubina/sangue , Lipídeos/sangue , Masculino , Obesidade/enzimologia , Orlistate , Ratos , Ratos Wistar , Aumento de Peso
8.
Plant Physiol ; 160(1): 215-25, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22760209

RESUMO

Triacylglycerol (TAG) levels and oil bodies persist in sucrose (Suc)-rescued Arabidopsis (Arabidopsis thaliana) seedlings disrupted in seed oil catabolism. This study set out to establish if TAG levels persist as a metabolically inert pool when downstream catabolism is disrupted, or if other mechanisms, such as fatty acid (FA) recycling into TAG are operating. We show that TAG composition changes significantly in Suc-rescued seedlings compared with that found in dry seeds, with 18:2 and 18:3 accumulating. However, 20:1 FA is not efficiently recycled back into TAG in young seedlings, instead partitioning into the membrane lipid fraction and diacylglycerol. In the lipolysis mutant sugar dependent1and the ß-oxidation double mutant acx1acx2 (for acyl-Coenzyme A oxidase), levels of TAG actually increased in seedlings growing on Suc. We performed a transcriptomic study and identified up-regulation of an acyltransferase gene, DIACYLGLYCEROL ACYLTRANSFERASE3 (DGAT3), with homology to a peanut (Arachis hypogaea) cytosolic acyltransferase. The acyl-Coenzyme A substrate for this acyltransferase accumulates in mutants that are blocked in oil breakdown postlipolysis. Transient expression in Nicotiana benthamiana confirmed involvement in TAG synthesis and specificity toward 18:3 and 18:2 FAs. Double-mutant analysis with the peroxisomal ATP-binding cassette transporter mutant peroxisomal ABC transporter1 indicated involvement of DGAT3 in the partitioning of 18:3 into TAG in mutant seedlings growing on Suc. Fusion of the DGAT3 protein with green fluorescent protein confirmed localization to the cytosol of N. benthamiana. This work has demonstrated active recycling of 18:2 and 18:3 FAs into TAG when seed oil breakdown is blocked in a process involving a soluble cytosolic acyltransferase.


Assuntos
Arabidopsis/enzimologia , Diacilglicerol O-Aciltransferase/metabolismo , Metabolismo dos Lipídeos , Óleos de Plantas/metabolismo , Sementes/metabolismo , Triglicerídeos/biossíntese , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arachis/enzimologia , Arachis/genética , Citosol/enzimologia , Diacilglicerol O-Aciltransferase/genética , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Germinação , Peroxissomos/enzimologia , Plântula/metabolismo , Sementes/genética , Homologia de Sequência de Aminoácidos , Sacarose/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
9.
Free Radic Biol Med ; 53(4): 680-9, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22684021

RESUMO

The aim of this work was to evaluate the effects of therapeutic doses of Cimicifuga racemosa on cardiovascular parameters and on liver lipid metabolism and redox status in an animal model of estrogen deficiency associated with hypertension, a condition that could make the liver more vulnerable to drug-induced injuries. Female Wistar rats were subjected to the surgical procedures of bilateral ovariectomy (OVX) and induction of renovascular hypertension (two-kidneys, one-clip; 2K1C). These animals (OVX + 2K1C) were treated with daily doses of a C. racemosa extract, using a dose that is similar to that recommended to postmenopausal women (0.6 mg/kg), over a period of 15 days. The results were compared to those of untreated OVX + 2K1C, OVX, and control rats. The treatment with C. racemosa caused a significant reduction in blood pressure. In the liver, treatment did not prevent the development of steatosis, and it reduced the mitochondrial and peroxisomal capacity to oxidize octanoyl-CoA compared to the untreated animals. In addition, C. racemosa caused numerous undesirable effects on the liver redox status: it increased the mitochondrial reactive oxygen species generation, an event that was not accompanied by an increase in the activity of superoxide dismutase, and it induced a decrease in peroxisomal catalase activity. Although the reduced glutathione content had not been affected, a phenomenon that probably reflected the restoration of glucose-6-phosphate dehydrogenase activity by C. racemosa, oxidative damage was evidenced by the elevated level of thiobarbituric acid-reactive substances found in the liver of treated animals.


Assuntos
Anti-Hipertensivos/farmacologia , Cimicifuga/química , Ácidos Graxos/metabolismo , Hipertensão Renovascular/metabolismo , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Acil-CoA Oxidase/metabolismo , Animais , Catalase/metabolismo , Estrogênios/deficiência , Fígado Gorduroso/sangue , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Feminino , Hipertensão Renovascular/sangue , Hipertensão Renovascular/tratamento farmacológico , Metabolismo dos Lipídeos , Lipídeos/sangue , Fígado/enzimologia , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Ovariectomia , Oxirredução , Consumo de Oxigênio , Peroxissomos/enzimologia , Peroxissomos/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
10.
Br J Nutr ; 108(11): 1980-93, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22370182

RESUMO

Interrelated effects of dihomo-γ-linolenic acid (DGLA) and arachidonic acid (ARA), and sesamin, a sesame lignan, on hepatic fatty acid synthesis and oxidation were examined in rats. Rats were fed experimental diets supplemented with 0 or 2 g/kg sesamin (1:1 mixture of sesamin and episesamin), containing 100 g/kg of maize oil or fungal oil rich in DGLA or ARA for 16 d. Among the groups fed sesamin-free diets, oils rich in DGLA or ARA, especially the latter, compared with maize oil strongly reduced the activity and mRNA levels of various lipogenic enzymes. Sesamin, irrespective of the type of fat, reduced the parameters of lipogenic enzymes except for malic enzyme. The type of dietary fat was rather irrelevant in affecting hepatic fatty acid oxidation among rats fed the sesamin-free diets. Sesamin increased the activities of enzymes involved in fatty acid oxidation in all groups of rats given different fats. The extent of the increase depended on the dietary fat type, and the values became much higher with a diet containing sesamin and oil rich in ARA in combination than with a diet containing lignan and maize oil. Analyses of mRNA levels revealed that the combination of sesamin and oil rich in ARA compared with the combination of lignan and maize oil markedly increased the gene expression of various peroxisomal fatty acid oxidation enzymes but not mitochondrial enzymes. The enhancement of sesamin action on hepatic fatty acid oxidation was also confirmed with oil rich in DGLA but to a lesser extent.


Assuntos
Ácido 8,11,14-Eicosatrienoico/metabolismo , Ácido Araquidônico/metabolismo , Dioxóis/metabolismo , Ácidos Graxos/metabolismo , Lignanas/metabolismo , Lipogênese , Lipólise , Fígado/metabolismo , Ácido 8,11,14-Eicosatrienoico/administração & dosagem , Ácido 8,11,14-Eicosatrienoico/sangue , Animais , Ácido Araquidônico/administração & dosagem , Ácido Araquidônico/sangue , Extratos Celulares/administração & dosagem , Extratos Celulares/química , Óleo de Milho/administração & dosagem , Óleo de Milho/química , Dioxóis/administração & dosagem , Dioxóis/sangue , Ácidos Graxos/biossíntese , Ácidos Graxos/sangue , Fungos/química , Regulação Enzimológica da Expressão Gênica , Hipolipemiantes/administração & dosagem , Hipolipemiantes/metabolismo , Lignanas/administração & dosagem , Lignanas/sangue , Lipídeos/sangue , Fígado/enzimologia , Masculino , Oxirredução , Peroxissomos/enzimologia , Peroxissomos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
11.
J Exp Bot ; 63(5): 2089-103, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22213812

RESUMO

Peroxisomes, single-membrane-bounded organelles with essentially oxidative metabolism, are key in plant responses to abiotic and biotic stresses. Recently, the presence of nitric oxide (NO) described in peroxisomes opened the possibility of new cellular functions, as NO regulates diverse biological processes by directly modifying proteins. However, this mechanism has not yet been analysed in peroxisomes. This study assessed the presence of S-nitrosylation in pea-leaf peroxisomes, purified S-nitrosylated peroxisome proteins by immunoprecipitation, and identified the purified proteins by two different mass-spectrometry techniques (matrix-assisted laser desorption/ionization tandem time-of-flight and two-dimensional nano-liquid chromatography coupled to ion-trap tandem mass spectrometry). Six peroxisomal proteins were identified as putative targets of S-nitrosylation involved in photorespiration, ß-oxidation, and reactive oxygen species detoxification. The activity of three of these proteins (catalase, glycolate oxidase, and malate dehydrogenase) is inhibited by NO donors. NO metabolism/S-nitrosylation and peroxisomes were analysed under two different types of abiotic stress, i.e. cadmium and 2,4-dichlorophenoxy acetic acid (2,4-D). Both types of stress reduced NO production in pea plants, and an increase in S-nitrosylation was observed in pea extracts under 2,4-D treatment while no total changes were observed in peroxisomes. However, the S-nitrosylation levels of catalase and glycolate oxidase changed under cadmium and 2,4-D treatments, suggesting that this post-translational modification could be involved in the regulation of H(2)O(2) level under abiotic stress.


Assuntos
Aldeído Oxirredutases/metabolismo , Óxido Nítrico/metabolismo , Peroxissomos/metabolismo , Pisum sativum/fisiologia , Processamento de Proteína Pós-Traducional , Estresse Fisiológico/fisiologia , Ácido 2,4-Diclorofenoxiacético/farmacologia , Oxirredutases do Álcool/metabolismo , Aldeído Oxirredutases/antagonistas & inibidores , Cádmio/farmacologia , Catalase/metabolismo , Malato Desidrogenase/metabolismo , Doadores de Óxido Nítrico/farmacologia , Pisum sativum/enzimologia , Pisum sativum/metabolismo , Peroxissomos/enzimologia , Extratos Vegetais/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Proteômica , Espécies Reativas de Oxigênio/metabolismo , S-Nitrosoglutationa/farmacologia
12.
Planta ; 234(6): 1215-26, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21769646

RESUMO

Glycine betaine (GB) is a compatible solute accumulated by many plants under various abiotic stresses. GB is synthesized in two steps, choline â†’ betaine aldehyde â†’ GB, where a functional choline-oxidizing enzyme has only been reported in Amaranthaceae (a chloroplastic ferredoxin-dependent choline monooxygenase) thus far. Here, we have cloned a cDNA encoding a choline monooxygenase (CMO) from barley (Hordeum vulgare) plants, HvCMO. In barley plants under non-stress condition, GB had accumulated in all the determined organs (leaves, internodes, awn and floret proper), mostly in the leaves. The expression of HvCMO protein was abundant in the leaves, whereas the expression of betaine aldehyde dehydrogenase (BADH) protein was abundant in the awn, floret proper and the youngest internode than in the leaves. The accumulation of HvCMO mRNA was increased by high osmotic and low-temperature environments. Also, the expression of HvCMO protein was increased by the presence of high NaCl. Immunofluorescent labeling of HvCMO protein and subcellular fractionation analysis showed that HvCMO protein was localized to peroxisomes. [(14)C]choline was oxidized to betaine aldehyde and GB in spinach (Spinacia oleracea) chloroplasts but not in barley, which indicates that the subcellular localization of choline-oxidizing enzyme is different between two plant species. We investigated the choline-oxidizing reaction using recombinant HvCMO protein expressed in yeast (Saccharomyces cerevisiae). The crude extract of HvCMO-expressing yeast coupled with recombinant BBD2 protein converted [(14)C]choline to GB when NADPH was added as a cofactor. These results suggest that choline oxidation in GB synthesis is mediated by a peroxisomal NADPH-dependent choline monooxygenase in barley plants.


Assuntos
Betaína/metabolismo , Regulação Enzimológica da Expressão Gênica/genética , Hordeum/enzimologia , Oxigenases/metabolismo , Peroxissomos/enzimologia , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Betaína-Aldeído Desidrogenase/genética , Betaína-Aldeído Desidrogenase/metabolismo , Colina/metabolismo , Temperatura Baixa , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas/genética , Hordeum/genética , Dados de Sequência Molecular , Pressão Osmótica , Oxirredução , Oxigenases/genética , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA de Plantas/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Spinacia oleracea/genética , Spinacia oleracea/metabolismo
13.
Prikl Biokhim Mikrobiol ; 45(2): 156-62, 2009.
Artigo em Russo | MEDLINE | ID: mdl-19382701

RESUMO

Two independent mutant strains of methylotrophic yeast Pichia methanolica (mth1 arg1 and mth2 arg4) from the initial line 616 (ade1 ade5) were investigated. The mutant strains possessed defects in genes MTH1 and MTH2 which resulted in the inability to assimilate methanol as a sole carbon source and the increased activity of alcohol oxidase (AO). The function of the AUG2 gene encoding one of the subunits of AO and CTA1, a probable homolog of peroxisomal catalase of Saccharomyces cereviseae, was investigated by analyses of the molecular forms of isoenzymes. It was shown that optimal conditions for the expression of the AUG2 gene on a medium supplemented with 3% of methanol leads to an increasing synthesis of peroxisomal catalase. The mutant mth1 possessed a dominant formation of AO isoform with electrophoretic mobility which is typical for isogenic form 9, the product of the AUG2 gene, and a decreased level of peroxisomal catalase. The restoration of growth of four spontaneous revertants of the mutant mth1 (Rmth1) on the methanol containing medium was accompanied by an increase in activity of AO isogenic form 9 and peroxisomal catalase. The obtained results confirmed the functional continuity of the structural gene AUG2 in mutant mth1. The correlation of activity of peroxisomal catalase and AO isogenic form 1 in different conditions evidenced the existence of common regulatory elements for genes AUG2 and CTA1 in methilotrophic yeast Pichia methanolica.


Assuntos
Oxirredutases do Álcool/biossíntese , Catalase/biossíntese , Proteínas Fúngicas/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Pichia/enzimologia , Oxirredutases do Álcool/genética , Catalase/genética , Domínio Catalítico/fisiologia , Proteínas Fúngicas/genética , Genes Fúngicos/fisiologia , Isoenzimas/biossíntese , Isoenzimas/genética , Mutação , Peroxissomos/enzimologia , Peroxissomos/genética , Pichia/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
14.
Plant Physiol Biochem ; 46(8-9): 794-804, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18614374

RESUMO

APX (EC, 1.11.1.11) has a key role in scavenging ROS and in protecting cells against their toxic effects in algae and higher plants. A cDNA encoding a peroxisomal ascorbate peroxidase, Am-pAPX1, was isolated from salt stressed leaves of Avicennia marina (Forsk.) Vierh. by EST library screening and its expression in the context of various environmental stresses was investigated. Am-pAPX1 contains an ORF of 286 amino acids coding for a 31.4 kDa protein. The C-terminal region of the Am-pAPX1 ORF has a putative transmembrane domain and a peroxisomal targeting signal (RKKMK), suggesting peroxisomal localization. The peroxisomal localization of Am-pAPX1 was confirmed by stable transformation of the GFP-(Ala)(10)-Am-pAPX1 fusion in tobacco. RNA blot analysis revealed that Am-pAPX1 is expressed in response to salinity (NaCl) and oxidative stress (high intensity light, hydrogen peroxide application and excess iron). The isolated genomic clone of Am-pAPX1 was found to contain nine exons. A fragment of 1616bp corresponding to the 5' upstream region of Am-pAPX1 was isolated by TAIL-PCR. In silico analysis of this sequence reveals the presence of putative light and abiotic stress regulatory elements.


Assuntos
Avicennia/enzimologia , Estresse Oxidativo , Peroxidases/genética , Proteínas de Plantas/genética , Salinidade , Sequência de Aminoácidos , Ascorbato Peroxidases , Avicennia/efeitos dos fármacos , Avicennia/genética , Sequência de Bases , DNA Complementar/genética , Etiquetas de Sequências Expressas , Peróxido de Hidrogênio/farmacologia , Ferro/farmacologia , Luz , Dados de Sequência Molecular , Peroxissomos/enzimologia , Peroxissomos/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , RNA de Plantas/genética , Alinhamento de Sequência , Nicotiana/efeitos dos fármacos , Nicotiana/enzimologia , Nicotiana/genética
15.
Biol Pharm Bull ; 30(9): 1787-91, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17827741

RESUMO

Dog liver contains an oligomeric NADPH-dependent carbonyl reductase (CR) with substrate specificity for alkyl phenyl ketones, but its endogenous substrate and primary structure remain unknown. In this study, we examined the molecular weight and substrate specificity of the enzyme purified from dog liver. The enzyme is a ca. 100-kDa tetramer composing of 27-kDa subunit, and reduces all-trans-retinal and alpha-dicarbonyl compounds including isatin, which are substrates for pig peroxisomal tetrameric carbonyl reductase (PTCR). In addition, the dog enzyme resembles pig PTCR in inhibitor sensitivity to flavonoids, myristic acid, lithocholic acid, bromosulfophthalein and flufenamic acid. Furthermore, the amino acid sequence of dog CR determined by protein sequencing and cDNA cloning was 84% identical to that of pig PTCR and had a C-terminal peroxisomal targeting signal type 1, Ser-His-Leu. The immunoprecipitation using the anti-pig PTCR antibody shows that the dog enzyme is a major form of soluble NADPH-dependent all-trans-retinal reductase in dog liver. Thus, dog oligomeric CR is PTCR, and may play a role in retinoid metabolism as a retinal reductase.


Assuntos
Oxirredutases do Álcool/metabolismo , Fígado/enzimologia , Peroxissomos/enzimologia , Oxirredutases do Álcool/genética , Sequência de Aminoácidos , Animais , Western Blotting , Primers do DNA , DNA Complementar/biossíntese , DNA Complementar/isolamento & purificação , Cães , Masculino , Dados de Sequência Molecular , Proteínas Recombinantes/biossíntese , Retinoides/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Suínos , Distribuição Tecidual
16.
Biochem Cell Biol ; 85(2): 209-17, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17534402

RESUMO

We obtained a full-length cDNA based on a sequence deposited in GenBank (accession No. AB045133), annotated as rabbit peroxisomal NADP(H)-dependent retinol dehydrogenase-reductase (NDRD). The rabbit NDRD gene, like its mouse and human homologs, harbors 2 initiation sites, one of which theoretically encodes a 29.6 kDa protein with 279 amino acids, and the other encodes a 27.4 kDa protein with 260 amino acids. The purification of a rabbit cytosolic retinol oxidoreductase with a subunit molecular mass of 34 kDa and an N terminus that is not completely identical to that of NDRD, has been reported. An enzyme responsible for the all-trans retinal reductase activity in the liver cytosol of New Zealand white rabbit was purified to homogeneity using differential centrifugation and successive chromatographic analyses. The subunit molecular mass of the purified enzyme, revealed by SDS-PAGE, was approximately 27 kDa. The intact molecular mass, measured by MALDI-TOF mass spectrometry, was 27.368 kDa. The 60 kDa relative mobility observed in size-exclusion chromatography indicates that the native protein probably exists as a dimer. The purified enzyme was positively confirmed to be the product of NDRD by peptide mass fingerprinting, tandem mass spectrometry, and N-terminal sequencing. Taken together, the results suggested that the native protein is truncated at the N terminus.


Assuntos
Oxirredutases do Álcool/genética , Oxirredutases do Álcool/isolamento & purificação , Fígado/enzimologia , Peroxissomos/enzimologia , Oxirredutases do Álcool/química , Animais , Sequência de Bases , DNA Complementar/genética , Dados de Sequência Molecular , Peroxissomos/genética , Coelhos
17.
Mol Plant Microbe Interact ; 20(5): 475-91, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17506326

RESUMO

The rice blast fungus Magnaporthe grisea infects plants by means of specialized infection structures known as appressoria. Turgor generated in the appressorium provides the invasive force that allows the fungus to breach the leaf cuticle with a narrow-penetration hypha gaining entry to the underlying epidermal cell. Appressorium maturation in M. grisea involves mass transfer of lipid bodies to the developing appressorium, coupled to autophagic cell death in the conidium and rapid lipolysis at the onset of appressorial turgor generation. Here, we report identification of the principal components of lipid metabolism in M. grisea based on genome sequence analysis. We show that deletion of any of the eight putative intracellular triacylglycerol lipase-encoding genes from the fungus is insufficient to prevent plant infection, highlighting the complexity and redundancy associated with appressorial lipolysis. In contrast, we demonstrate that a peroxisomally located multifunctional, fatty acid beta-oxidation enzyme is critical to appressorium physiology, and blocking peroxisomal biogenesis prevents plant infection. Taken together, our results indicate that, although triacylglycerol breakdown in the appressorium involves the concerted action of several lipases, fatty acid metabolism and consequent generation of acetyl CoA are necessary for M. grisea to complete its prepenetration phase of development and enter the host plant.


Assuntos
Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Magnaporthe/metabolismo , Peroxissomos/metabolismo , Plantas/microbiologia , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Lipase/genética , Lipase/metabolismo , Magnaporthe/genética , Magnaporthe/crescimento & desenvolvimento , Microscopia Eletrônica , Microscopia de Fluorescência , Mutação , Cebolas/microbiologia , Oryza/microbiologia , Oxirredução , Peroxissomos/enzimologia , Doenças das Plantas/microbiologia
18.
J Biol Chem ; 281(47): 35894-903, 2006 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-16982622

RESUMO

A gene, named AtECH2, has been identified in Arabidopsis thaliana to encode a monofunctional peroxisomal enoyl-CoA hydratase 2. Homologues of AtECH2 are present in several angiosperms belonging to the Monocotyledon and Dicotyledon classes, as well as in a gymnosperm. In vitro enzyme assays demonstrated that AtECH2 catalyzed the reversible conversion of 2E-enoyl-CoA to 3R-hydroxyacyl-CoA. AtECH2 was also demonstrated to have enoyl-CoA hydratase 2 activity in an in vivo assay relying on the synthesis of polyhydroxyalkanoate from the polymerization of 3R-hydroxyacyl-CoA in the peroxisomes of Saccharomyces cerevisiae. AtECH2 contained a peroxisome targeting signal at the C-terminal end, was addressed to the peroxisome in S. cerevisiae, and a fusion protein between AtECH2 and a fluorescent protein was targeted to peroxisomes in onion cells. AtECH2 gene expression was strongest in tissues with high beta-oxidation activity, such as germinating seedlings and senescing leaves. The contribution of AtECH2 to the degradation of unsaturated fatty acids was assessed by analyzing the carbon flux through the beta-oxidation cycle in plants that synthesize peroxisomal polyhydroxyalkanoate and that were over- or underexpressing the AtECH2 gene. These studies revealed that AtECH2 participates in vivo to the conversion of the intermediate 3R-hydroxyacyl-CoA, generated by the metabolism of fatty acids with a cis (Z)-unsaturated bond on an even-numbered carbon, to the 2E-enoyl-CoA for further degradation through the core beta-oxidation cycle.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Enoil-CoA Hidratase/química , Ácidos Graxos Insaturados/química , Peroxissomos/enzimologia , Sequência de Aminoácidos , Arabidopsis/genética , Carbono/química , Catálise , Enoil-CoA Hidratase/genética , Ácidos Graxos/química , Dados de Sequência Molecular , Cebolas , Oxigênio/química , Peroxissomos/química , Proteínas de Plantas/química , Proteínas Recombinantes de Fusão/química , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
19.
Protoplasma ; 226(3-4): 223-30, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16333579

RESUMO

Ascorbate peroxidase (EC 1.11.1.11), a heme-containing homodimeric protein, is a hydrogen peroxide-scavenging enzyme, playing an important role in plants in order to protect them from oxidative stress, thus adverting cellular damage. Several ascorbate peroxidase isoenzymes have been reported but the understanding of their physiological role still depends on a better knowledge of their precise localisation within plant organs. Immunocytochemistry techniques were performed in order to elucidate the peroxisomal and cytosolic ascorbate peroxidase distribution within tissues of leaves and sprouts of potato plants. The peroxisomal isoenzyme was found to have a broad distribution in sprouts, but a differential one in leaves, being restricted to the spongy parenchyma. This differential expression may be associated to the mesophyll asymmetry and the diverse physiological processes that occur in it. The cytosolic isoenzyme was not detected in leaves under the used conditions, probably because it is present in low amounts in these tissues. The results obtained in sprouts were at least curious: cytosolic ascorbate was found to be adjacent to the amyloplasts. Given these results, it is possible to state that apart from their similarity, these two isoenzymes reside in different organelles and seem to take part in different physiological processes as suggested by their organ- and tissue-specific distribution.


Assuntos
Peroxidases/metabolismo , Solanum tuberosum/enzimologia , Ascorbato Peroxidases , Western Blotting , Citosol/enzimologia , Isoenzimas/metabolismo , Microscopia de Fluorescência , Peroxissomos/enzimologia , Folhas de Planta/enzimologia , Folhas de Planta/crescimento & desenvolvimento , Solanum tuberosum/crescimento & desenvolvimento
20.
Plant Cell ; 16(6): 1564-74, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15155882

RESUMO

The Woronin body is a peroxisome-derived dense-core vesicle that is specific to several genera of filamentous ascomycetes, where it has been shown to seal septal pores in response to cellular damage. The Hexagonal peroxisome (Hex1) protein was recently identified as a major constituent of the Woronin body and shown to be responsible for self-assembly of the dense core of this organelle. Using a mutation in the Magnaporthe grisea HEX1 ortholog, we define a dual and essential function for Woronin bodies during the pathogenic phase of the rice blast fungus. We show that the Woronin body is initially required for proper development and function of appressoria (infection structures) and subsequently necessary for survival of infectious fungal hyphae during invasive growth and host colonization. Fungal mycelia lacking HEX1 function were unable to survive nitrogen starvation in vitro, suggesting that in planta growth defects are a consequence of the mutant's inability to cope with nutritional stress. Thus, Woronin body function provides the blast fungus with an important defense against the antagonistic and nutrient-limiting environment encountered within the host plant.


Assuntos
Magnaporthe/fisiologia , Magnaporthe/patogenicidade , Nitrogênio/farmacologia , Peroxissomos/fisiologia , Doenças das Plantas/microbiologia , Plantas/microbiologia , Sequência de Bases , Clonagem Molecular , DNA Bacteriano/genética , Exodesoxirribonucleases/deficiência , Exodesoxirribonucleases/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hordeum/microbiologia , Hifas/citologia , Hifas/enzimologia , Hifas/genética , Hifas/fisiologia , Magnaporthe/efeitos dos fármacos , Magnaporthe/genética , Dados de Sequência Molecular , Mutação/genética , Cebolas/microbiologia , Oryza/microbiologia , Peroxissomos/enzimologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA