Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.805
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
J Environ Manage ; 357: 120760, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581891

RESUMO

It is of great significance to solve the environmental problems caused by the unreasonable treatment of coal gasification slag. This study successfully produced Si-Fe-Al-Ca alloy from low-carbon fine slag with petroleum coke as reducing agent in a plasma furnace with an alternating current magnetic field, which solved the problem of the high reactivity requirement of carbon reductant for plasma smelting. The optimum carbon content of the mixed low-carbon fine slag and petroleum coke is 105% of the theoretical value. As the strength of the alternating current magnetic field increased (from 0% to 100% of the maximum power), the yield of the alloy (from 25.46% to 58.19%) and the recovery ratios of each element (Si, Fe, Al, Ca, Ti) increased. In addition, as the magnetic field strength increased, the pores inside the alloy became smaller, the composition of the alloy became more homogeneous, and a better separation of the alloy from the slag was observed. The main composition of the alloy at the strongest alternating current magnetic field is Si: 51.14 wt%, Fe: 28.41 wt%, Al: 9.14 wt%, Ca: 7.15 wt%, Ti: 2.03 wt%. We attribute the enhanced smelting effect of the alternating current magnetic field to the resistive heat and Lorentz force produced by the induced current. In addition, the skin effect concentrated the induced current on the surface of the oxide particles and carbon particles, which increased the temperature of the reaction interface and promoted the carbothermal reduction reaction.


Assuntos
Coque , Petróleo , Carvão Mineral , Ligas , Carbono
2.
Sci Rep ; 14(1): 8406, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600150

RESUMO

The aim of this work was to synthesize a green nanoparticle SnCuO@FeO nanocomposite core-shell to break oily water emulsions during petroleum-enhancing production processes as an alternative to chemical and physical processes. In this study, eight bacterial isolates (MHB1-MHB8) have been isolated from tree leaves, giant reeds, and soil samples. The investigation involved testing bacterial isolates for their ability to make FeO nanoparticles and choosing the best producers. The selected isolate (MHB5) was identified by amplification and sequencing of the 16S rRNA gene as Bacillus paramycoides strain OQ878685. MHB5 produced the FeO nanoparticles with the smallest particle size (78.7 nm) using DLS. XRD, FTIR, and TEM were used to characterize the biosynthesized nanoparticles. The jar experiment used SnCuO@FeO with different ratios of Sn to CuO (1:1, 2:1, and 3:1) to study the effect of oil concentration, retention time, and temperature. The most effective performance was observed with a 1:1 ratio of Sn to CuO, achieving an 85% separation efficiency at a concentration of 5 mg/L, for a duration of 5 min, and at a temperature of 373 K. Analysis using kinetic models indicates that the adsorption process can be accurately described by both the pseudo-first-order and pseudo-second-order models. This suggests that the adsorption mechanism likely involves a combination of film diffusion and intraparticle diffusion. Regarding the adsorption isotherm, the Langmuir model provides a strong fit for the data, while the D-R model indicates that physical interactions primarily govern the adsorption mechanism. Thermodynamic analysis reveals a ∆H value of 18.62 kJ/mol, indicating an exothermic adsorption process. This suggests that the adsorption is a favorable process, as energy is released during the process. Finally, the synthesized green SnCuO@FeO nanocomposite has potential for use in advanced applications in the oil and gas industry to help the industry meet regulatory compliance, lower operation costs, reduce environmental impact, and enhance production efficiency.


Assuntos
Nanocompostos , Petróleo , Poluentes Químicos da Água , Emulsões , RNA Ribossômico 16S , Termodinâmica , Água/química , Adsorção , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
3.
PLoS One ; 19(4): e0302131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662759

RESUMO

This study investigates the impact of oil market uncertainty on the volatility of Chinese sector indexes. We utilize commonly used realized volatility of WTI and Brent oil price along with the CBOE crude oil volatility index (OVX) to embody the oil market uncertainty. Based on the sample span from Mar 16, 2011 to Dec 31, 2019, this study utilizes vector autoregression (VAR) model to derive the impacts of the three different uncertainty indicators on Chinese stock volatilities. The empirical results show, for all sectors, the impact of OVX on sectors volatilities are more economically and statistically significant than that of realized volatility of both WTI and Brent oil prices, especially after the Chinese refined oil pricing reform of March 27, 2013. That implies OVX is more informative than traditional WTI and Brent oil prices with respect to volatility spillover from oil market to Chinese stock market. This study could provide some important implications for the participants in Chinese stock market.


Assuntos
Comércio , Petróleo , China , Petróleo/economia , Comércio/economia , Volatilização , Investimentos em Saúde/economia , Incerteza , Modelos Econômicos , Humanos , População do Leste Asiático
4.
Zhongguo Zhong Yao Za Zhi ; 49(3): 644-652, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621868

RESUMO

This study aims to optimize the matrix formulation for the hot-melt pressure-sensitive adhesive plaster of personalized traditional Chinese medicine(TCM) preparations and verify the applicability of the formulation. The central composite design in JMP Pro 16.1.0 was employed to optimize the dosages of styrene-isoprene-styrene triblock copolymer(SIS), hydrogenated petroleum resin, and lightweight liquid paraffin, with the fine powder of Yipifang as the model drug(drug loading of 10%) and the sensory score and objective evaluation as the comprehensive evaluation indicators. The quality evaluation system of hot-melt pressure-sensitive adhesive plaster of personalized TCM preparations was established. The applicability of the optimized matrix formulation of hot-melt pressure-sensitive adhesive plaster was verified with 16 TCM preparations for external application. Furthermore, the applicability of the matrix formulation was investigated with different drug loadings. The general molding matrix formulation was SIS∶hydrogenated petroleum resin∶lightweight liquid paraffin 3∶3∶5. The optimized matrix formulation showed good molding properties and high quality scores for 16 TCM preparations and were suitable for the plastering of finely powdered decoction pieces with a loading capacity of 10% to 30%. The results suggest that the optimized matrix formulation has good applicability and is suitable for TCM preparations. The findings lay a foundation for the application and promotion of the hot-melt pressure-sensitive adhesive plasters of personalized TCM preparations.


Assuntos
Medicamentos de Ervas Chinesas , Petróleo , Medicina Tradicional Chinesa , Óleo Mineral , Poliestirenos
5.
Environ Microbiol Rep ; 16(2): e13248, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581137

RESUMO

Sulphate-reducing bacteria (SRB) are the main culprits of microbiologically influenced corrosion in water-flooding petroleum reservoirs, but some sulphur-oxidising bacteria (SOB) are stimulated when nitrate and oxygen are injected, which control the growth of SRB. This study aimed to determine the distributions of SRB and SOB communities in injection-production systems and to analyse the responses of these bacteria to different treatments involving nitrate and oxygen. Desulfovibrio, Desulfobacca, Desulfobulbus, Sulfuricurvum and Dechloromonas were commonly detected via 16S rRNA gene sequencing. Still, no significant differences were observed for either the SRB or SOB communities between injection and production wells. Three groups of water samples collected from different sampling sites were incubated. Statistical analysis of functional gene (dsrB and soxB) clone libraries and quantitative polymerase chain reaction showed that the SOB community structures were more strongly affected by the nitrate and oxygen levels than SRB clustered according to the sampling site; moreover, both the SRB and SOB community abundances significantly changed. Additionally, the highest SRB inhibitory effect and the lowest dsrB/soxB ratio were obtained under high concentrations of nitrate and oxygen in the three groups, suggesting that the synergistic effect of nitrate and oxygen level was strong on the inhibition of SRB by potential SOB.


Assuntos
Desulfovibrio , Petróleo , Nitratos , Sulfatos , Água , RNA Ribossômico 16S/genética , Bactérias , Desulfovibrio/genética , Compostos Orgânicos , Enxofre , Oxirredução
6.
J Hazard Mater ; 470: 134125, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565016

RESUMO

The study addressed the challenge of treating petroleum industry wastewater with high concentrations of 1,2-dichloroethane (1,2-DCA) ranging from 384 to 1654 mg/L, which poses a challenge for bacterial biodegradation and algal photodegradation. To overcome this, a collaborative approach using membrane bioreactors (MBRs) that combine algae and bacteria was employed. This synergistic method effectively mitigated the toxicity of 1,2-DCA and curbed MBR fouling. Two types of MBRs were tested: one (B-MBR) used bacterial cultures and the other (AB-MBR) incorporated a mix of algal and bacterial cultures. The AB-MBR significantly contributed to 1,2-DCA removal, with algae accounting for over 20% and bacteria for approximately 49.5% of the dechlorination process. 1,2-DCA metabolites, including 2-chloroethanol, 2-chloro-acetaldehyde, 2-chloroacetic acid, and acetic acid, were partially consumed as carbon sources by algae. Operational efficiency peaked at a 12-hour hydraulic retention time (HRT) in AB-MBR, enhancing enzyme activities crucial for 1,2-DCA degradation such as dehydrogenase (DH), alcohol dehydrogenase (ADH), and acetaldehyde dehydrogenase (ALDH). The microbial diversity in AB-MBR surpassed that in B-MBR, with a notable increase in Proteobacteria, Bacteroidota, Planctomycetota, and Verrucomicrobiota. Furthermore, AB-MBR showed a significant rise in the dominance of 1,2-DCA-degrading genus such as Pseudomonas and Acinetobacter. Additionally, algal-degrading phyla (e.g., Nematoda, Rotifera, and Streptophyta) were more prevalent in AB-MBR, substantially reducing the issue of membrane fouling.


Assuntos
Reatores Biológicos , Dicloretos de Etileno , Membranas Artificiais , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo , Dicloretos de Etileno/metabolismo , Petróleo/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Eliminação de Resíduos Líquidos/métodos
7.
Mol Biol Rep ; 51(1): 511, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622444

RESUMO

BACKGROUND: Lipases play a crucial role in various industrial applications, and microbial lipases, particularly those from bacteria, possess significant properties. With increasing concerns about the environmental and health impacts of hydrocarbons from pipelines and refineries, there is a growing need to mitigate the risks associated with these compounds. METHODS: In this study, 40 bacterial isolates were recovered from contaminated soil samples collected from multiple refineries across Iraq. Using the Vitek system, bacterial isolates were identified up to the species level, revealing that only 12 isolates exhibited lipase-producing capabilities. RESULTS: Among the lipase-producing isolates, Ralstonia mannitolilytica demonstrated the highest extracellular lipase activity, as determined by an olive oil plate assay supplemented with rhodamine B. Confirmation of the species identity was achieved through 16S rRNA gene sequencing, with the obtained sequence deposited under accession number LC772176.1. Further sequence analysis revealed single nucleotide polymorphisms (SNPs) in the genome of Ralstonia mannitolilytica strain H230303-10_N19_7x_R2 (CP011257.1, positions 1,311,102 and 1,311,457). Additionally, the presence of the lipase gene was confirmed through amplification and sequencing using a thermocycler PCR. Sequence analysis of the gene, aligned using Geneious Prime software, identified SNPs (CP010799, CP049132, AY364601, CP011257, and CP023537), and a phylogenetic tree was constructed based on genetic characterization. CONCLUSION: Our findings highlight the potential of Ralstonia mannitolilytica as a promising candidate for lipase production and contribute to our understanding of its genetic diversity and biotechnological applications in hydrocarbon degradation and industrial processes.


Assuntos
Petróleo , Ralstonia , Petróleo/microbiologia , RNA Ribossômico 16S/genética , Filogenia , Iraque , Lipase/genética , Solo
8.
Sheng Wu Gong Cheng Xue Bao ; 40(3): 739-757, 2024 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-38545974

RESUMO

Owing to human activities and industrial production, petroleum pollution has become a serious environmental issue. Microbial remediation technology, characterized by its eco-friendly characteristics, has drawn significant attention in petroleum pollution remediation. The application of molecular biology technology has led to a drastic revolution in microbial remediation technology, providing resources for the development of highly efficient degrading agents. However, limitations such as the lack of precision in species annotation and the limited detection sensitivity still exist. Other microbial remediation technologies also have substantial potential in enhancing the degradation efficiency of petroleum pollutants and reducing their environmental harm, especially biosurfactants and bio-stimulants, which offer relatively shorter remediation periods and lower costs, promising large-scale application in the future. Moreover, the combination of molecular biology and other microbial remediation technologies may become an effective tool for petroleum pollutant degradation. This review summarized the application of molecular biology methods in petroleum polluted environments, reviewed the recent research progress on microbial remediation techniques for petroleum-contaminated sites, discussed the remediation effects of these microbial remediation techniques, and proposed the future development direction of microbial remediation technology.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Poluição por Petróleo , Petróleo , Poluentes do Solo , Humanos , Biodegradação Ambiental , Petróleo/metabolismo , Poluentes do Solo/metabolismo , Microbiologia do Solo
9.
Environ Sci Pollut Res Int ; 31(17): 25706-25720, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38483716

RESUMO

The existing scholarly discourse surrounding the energy transition has long operated on the assumption of perfect displacement of non-renewable energy. However, an evolving set of studies highlights an intricate web of inefficiencies and complexities that prevent the perfect displacement of fossil fuel energy with renewable energy production. Since this could carry serious implications for the environmental targets of several economies, it is crucial to accurately and continuously measure the actual extent of fossil fuel displacement. Within this framework, this study empirically investigates the extent of non-renewable energy displacement by renewable energy for a balanced panel of seven Asia-Pacific (APAC) countries between 1989 and 2015. The outcome function also controls for globalisation, real GDP per capita, and crude oil prices. After implementing the necessary diagnostics, the panel cointegration establishes a significant long-run relationship among the selected variables. The PMG-ARDL estimation indicates that renewable energy production and globalisation significantly reduce the fossil fuel energy production, whereas real GDP per capita and crude oil prices induce it positively. However, the coefficient of renewable energy production is only - 0.39, indicating that more than 2.5 units of renewable electricity are necessary to displace a unit of non-renewable energy. As such, this study concludes that the current energy transition in Asia-Pacific region is not perfect. These results are robust to the usage of the FGLS estimation technique. The study suggests the adoption of a new energy transition that allows greater displacement of fossil fuel energy as well as gradual reduction in overall energy use.


Assuntos
Desenvolvimento Econômico , Petróleo , Dióxido de Carbono/análise , Ásia , Energia Renovável , Combustíveis Fósseis
10.
Arch Microbiol ; 206(4): 183, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502272

RESUMO

This study aimed to reveal that the effect of biosurfactant on the dispersion and degradation of crude oil. Whole genome analysis showed that Pseudomonas aeruginosa GB-3 contained abundant genes involved in biosurfactant synthesis and metabolic processes and had the potential to degrade oil. The biosurfactant produced by strain GB-3 was screened by various methods. The results showed that the surface tension reduction activity was 28.6 mN·m-1 and emulsification stability was exhibited at different pH, salinity and temperature. The biosurfactant was identified as rhamnolipid by LC-MS and FTIR. The fermentation conditions of strain GB-3 were optimized by response surface methodology, finally the optimal system (carbon source: glucose, nitrogen source: ammonium sulfate, C/N ratio:16:1, pH: 7, temperature: 30-35 °C) was determined. Compared with the initial fermentation, the yield of biosurfactant increased by 4.4 times after optimization. In addition, rhamnolipid biosurfactant as a dispersant could make the dispersion of crude oil reach 38% within seven days, which enhanced the bioavailability of crude oil. As a biostimulant, it could also improve the activity of indigenous microorganism and increase the degradation rate of crude oil by 10-15%. This study suggested that rhamnolipid biosurfactant had application prospect in bioremediation of marine oil-spill.


Assuntos
Petróleo , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Tensoativos/química , Glicolipídeos/química , Petróleo/metabolismo
11.
Chemosphere ; 355: 141807, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552803

RESUMO

The present study investigates the potential for biosurfactant production of 19 marine yeast species obtained from zoanthids. Using the emulsification index test to screen the samples produced by the marine yeasts, we verified that five isolates exhibited an emulsification index ≥50%. Additional tests were performed on such isolates, including oil displacement, drop collapse, Parafilm M assay, and surface tension measurement. The tolerance of produced biosurfactants for environmental conditions was also analyzed, especially considering the media's temperature, pH, and salinity. Moreover, the surfactant's ability to emulsify different hydrocarbon sources and to metabolize kerosene as the sole carbon source was evaluated in vitro. Our results demonstrate that yeast biosurfactants can emulsify hydrocarbon sources under different physicochemical conditions and metabolize kerosene as a carbon source. Considering the Yarrowia lipolytica LMS 24B as the yeast model for biosurfactant production from the cell's wall biomass, emulsification indexes of 61.2% were obtained, even at a high temperature of 120 °C. Furthermore, the Fourier-transform middle infrared spectroscopy (FTIR) analysis of the biosurfactant's chemical composition revealed the presence of distinct functional groups assigned to a glycoprotein complex. Considering the status of developing new bioproducts and bioprocesses nowadays, our findings bring a new perspective to biosurfactant production by marine yeasts, especially Y. lipolytica LMS 24B. In particular, the presented results validate the relevance of marine environments as valuable sources of genetic resources, i.e., yeast strains capable of metabolizing and emulsifying petroleum derivatives.


Assuntos
Petróleo , Yarrowia , Yarrowia/metabolismo , Tensoativos/química , Querosene , Petróleo/análise , Hidrocarbonetos/metabolismo , Carbono/metabolismo , Biodegradação Ambiental
12.
AAPS PharmSciTech ; 25(4): 68, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538866

RESUMO

Recently, vast efforts towards sustainability have been made in the pharmaceutical industry. In conventional oil-in-water (O/W) cream formulations, various petroleum-based excipients, namely mineral oil and petrolatum, are commonly used. Natural or synthetic excipients, derived from vegetable sources, were explored as alternatives to petroleum-based excipients in prototype topical creams, with 1% (w/w) lidocaine. A conventional cream comprised of petroleum-derived excipients was compared to creams containing sustainable excipients in terms of key quality and performance attributes, physicochemical properties, and formulation performance. The petrolatum-based control formulation had the highest viscosity of 248.0 Pa·s, a melting point of 42.7°C, a low separation index at 25°C of 0.031, and an IVRT flux of 52.9 µg/cm2/h. Formulation SUS-4 was the least viscous formulation at 86.9 Pa·s, had the lowest melting point of 33.6°C, the highest separation index of 0.120, and the highest IVRT flux of 139.4 µg/cm2/h. Alternatively, SUS-5 had a higher viscosity of 131.3 Pa·s, a melting point of 43.6°C, a low separation index of 0.046, and the lowest IVRT flux of 25.2 µg/cm2/h. The cumulative drug permeation after 12 h from SUS-4, SUS-5, and the control were 126.2 µg/cm2, 113.8 µg/cm2, and 108.1 µg/cm2, respectively. The composition of the oil-in-water creams had influence on physicochemical properties and drug release; however, skin permeation was not impacted. Sustainable natural or synthetic excipients in topical cream formulations were found to be suitable alternatives to petroleum-based excipients with comparable key quality attributes and performance attributes and should be considered during formulation development.


Assuntos
Excipientes , Petróleo , Pele , Vaselina , Água
13.
Environ Sci Pollut Res Int ; 31(17): 25671-25687, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38483715

RESUMO

This study documents the socio-economic baselines in selected oil-impacted communities prior to the commencement of the Ogoni clean-up and restoration project. Adopting mixed approach consisting of semi-structured interviews, focus group discussions (FGDs), key informant interviews (KIIs), and household surveys, we surveyed the pre-remediation socio-economic conditions in the Ogoniland communities between July 2018 and March 2019. Results indicated that almost all respondents (99.6%) agreed that the smell of petroleum products or crude oil was evident in the air they breathed even as there were visible black particles (soot) in the respondents' nostrils, on their clothes, and in water. The respondents described the ambient air as smoky and choked with an offensive smell. The household waters were smelly, brownish, or oily, and most respondents (76%) cannot afford to treat their water. Forty-two percent of the respondents who relied on fishing and farming for a living sought for alternative means of subsistence and acknowledged that oil pollution caused stunted growth and low crop yield. The majority of respondents (91%) reported falling fish catches, while the fish caught smell and taste of oil, lowering their market value and posing a potential health risk to consumers. It is evident that oil pollution has impacted the socio-ecological values and sustainable livelihood in Ogoniland. This study provides baseline data for monitoring post-remediation socio-economic improvements in Ogoniland. It also highlights areas of urgent intervention to improve livelihood, and access to basic amenities (e.g., potable drinking water), waste management infrastructure, and statutory policy changes for sustainable development in Ogoniland.


Assuntos
Poluição por Petróleo , Petróleo , Animais , Nigéria , Níger , Poluição por Petróleo/análise , Fatores Socioeconômicos , Água
14.
J Hazard Mater ; 470: 134137, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38555671

RESUMO

Petroleum hydrocarbons pose a significant threat to human health and the environment. Biochar has increasingly been utilized for soil remediation. This study investigated the potential of biochar immobilization using Serratia sp. F4 OR414381 for the remediation of petroleum-contaminated soil through a pot experiment conducted over 90 days. The treatments in this study, denoted as IMs (maize straw biochar-immobilized Serratia sp. F4), degraded 82.5% of the total petroleum hydrocarbons (TPH), 59.23% of the aromatic, and 90.1% of the saturated hydrocarbon fractions in the loess soils. During remediation, the soil pH values decreased from 8.76 to 7.33, and the oxidation-reduction potential (ORP) increased from 156 to 229 mV. The treatment-maintained soil nutrients of the IMs were 138.94 mg/kg of NO3- -N and 92.47 mg/kg of available phosphorus (AP), as well as 11.29% of moisture content. The activities of soil dehydrogenase (SDHA) and catalase (CAT) respectively increased by 14% and 15 times compared to the CK treatment. Three key petroleum hydrocarbon degradation genes, including CYP450, AJ025, and xylX were upregulated following IMs treatment. Microbial community analysis revealed that a substantial microbial population of 1.01E+ 09 cells/g soil and oil-degrading bacteria such as Salinimicrobium, Saccharibacteria_genera_incertae_sedis, and Brevundimonas were the dominant genera in IMs treatment. This suggests that the biochar immobilized on Serratia sp. F4 OR414381 improves soil physicochemical properties and enhances interactions among microbial populations, presenting a promising and environmentally friendly approach for the stable and efficient remediation of petroleum-contaminated loess soil.


Assuntos
Biodegradação Ambiental , Carvão Vegetal , Hidrocarbonetos , Petróleo , Serratia , Microbiologia do Solo , Poluentes do Solo , Serratia/metabolismo , Serratia/genética , Poluentes do Solo/metabolismo , Carvão Vegetal/química , Petróleo/metabolismo , Hidrocarbonetos/metabolismo , Poluição por Petróleo , Solo/química
15.
Sci Total Environ ; 926: 171746, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38521276

RESUMO

Understanding the diversity and functions of hydrocarbon-degrading microorganisms in marine environments is crucial for both advancing knowledge of biogeochemical processes and improving bioremediation methods. In this study, we leveraged nearly 20,000 metagenome-assembled genomes (MAGs), recovered from a wide array of marine samples across the global oceans, to map the diversity of aerobic hydrocarbon-degrading microorganisms. A broad bacterial diversity was uncovered, with a notable preference for degrading aliphatic hydrocarbons over aromatic ones, primarily within Proteobacteria and Actinobacteriota. Three types of broad-spectrum hydrocarbon-degrading bacteria were identified for their ability to degrade various hydrocarbons and possession of multiple copies of hydrocarbon biodegradation genes. These bacteria demonstrate extensive metabolic versatility, aiding their survival and adaptability in diverse environmental conditions. Evidence of gene duplication and horizontal gene transfer in these microbes suggested a potential enhancement in the diversity of hydrocarbon-degrading bacteria. Positive correlations were observed between the abundances of hydrocarbon-degrading genes and environmental parameters such as temperature (-5 to 35 °C) and salinity (20 to 42 PSU). Overall, our findings offer valuable insights into marine hydrocarbon-degrading microorganisms and suggest considerations for selecting microbial strains for oil pollution remediation.


Assuntos
Metagenoma , Petróleo , Hidrocarbonetos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Oceanos e Mares , Petróleo/metabolismo
16.
Mar Pollut Bull ; 201: 116224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38457880

RESUMO

In this study, multiple molecular markers [polycyclic aromatic hydrocarbons (PAHs), linear and branched alkanes, unresolved complex mixture (UCM), hopanes, and steranes] were applied to explore petroleum-related inputs in complex coastal systems influenced by various human-induced pressures. To investigate anthropogenic impacts related to petrogenic emissions, we analysed surface sediments from coastal areas of southern Baltic, including harbour/shipyard channels, offshore dumping sites, shipping routes, and major sinks for particulate matter discharged by large rivers. This study indicates a large spatial variability in the contamination degree of examined sites by petroleum-derived chemicals. Hopanes and steranes along with UCM appeared to have the highest potential to identify petroleum sources in studied locations, whereas investigations based on alkanes and PAHs seemed to be considerably affected by inputs of modern biogenic and combustion-derived materials, respectively. However, the combined use of all these markers provides deeper insight into the complexity of sedimentary organic matter in human-impacted environments.


Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Humanos , Efeitos Antropogênicos , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Monitoramento Ambiental , Alcanos/análise , Petróleo/análise , Biomarcadores , Hidrocarbonetos Policíclicos Aromáticos/análise , Triterpenos Pentacíclicos
17.
Environ Sci Pollut Res Int ; 31(16): 23462-23481, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38466385

RESUMO

Over the past two decades, oil spills have been one of the most serious ecological disasters, causing massive damage to the aquatic and terrestrial ecosystems as well as the socio-economy. In view of this situation, several methods have been developed and utilized to analyze oil samples. Among these methods, laser-induced fluorescence (LIF) technology has been widely used in oil spill detection due to its classification method, which is based on the fluorescence characteristics of chemical material in oil. This review systematically summarized the LIF technology from the perspective of excitation wavelength selection and the application of traditional and novel machine learning algorithms to fluorescence spectrum processing, both of which are critical for qualitative and quantitative analysis of oil spills. It can be seen that an appropriate excitation wavelength is indispensable for spectral discrimination due to different kinds of polycyclic aromatic hydrocarbons' (PAHs) compounds in petroleum products. By summarizing some articles related to LIF technology, we discuss the influence of the excitation wavelength on the accuracy of the oil spill detection model and proposed several suggestions on the selection of excitation wavelength. In addition, we introduced some traditional and novel machine learning (ML) algorithms and discussed the strengths and weaknesses of these algorithms and their applicable scenarios. With an appropriate excitation wavelength and data processing algorithm, it is believed that laser-induced fluorescence technology will become an efficient technique for real-time detection and analysis of oil spills.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Poluição por Petróleo/análise , Fluorescência , Ecossistema , Poluentes Químicos da Água/análise , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Lasers , Monitoramento Ambiental/métodos
18.
J Environ Manage ; 356: 120640, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503226

RESUMO

As climate change intensifies, attention to the issue of carbon emission reduction has gradually increased. This research constructs a complete set of indicators of carbon reduction attention and financial market stress and applies the quantile VAR method to calculate the volatility spillover between carbon reduction attention and financial market stress. We conclude with the following. Firstly, a relatively close volatility spillover association exists between carbon reduction attention and financial market stress. In the research system, carbon reduction attention mainly assumes the role of information receiver. Additionally, when examining the spillover status in different quantiles, the total spillover level shows an irregular "bowl" structure, while the net spillover level of each variable has different shapes. Secondly, the dynamic spillover level in the extreme quantile condition maintains a connectivity range of 60-80%, significantly higher than that of the median condition. Finally, this study finds two sets of significant complementary spillovers within the system, namely, "carbon reduction attention - crude oil market stress" and "stock market stress - real estate market stress", which provide investors with an opportunity to explore the potential of the carbon reduction attention and real estate market stress in the future.


Assuntos
Carbono , Petróleo , Mudança Climática
19.
Mar Pollut Bull ; 201: 116235, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508122

RESUMO

Marine oil pollution is one of the major global environmental pollution problems. Marine microalgae are the foundation of the marine food chain, providing the main primary productivity of the ocean. They not only maintain the energy flow and material cycle of the entire marine ecosystem, but also play an important role in regulating global climate change. Exploring the impact of petroleum pollutants on marine microalgae is extremely important for studying marine environmental pollution. This review first introduced the sources, compositions, and forms of petroleum pollutants and their migration and transformation processes in the ocean. Then, the toxic effects of petroleum pollutants on marine microalgae were summarized. The growth of marine microalgae showed low-concentration promotion and high-concentration inhibition. The population growth and interspecific relationships of marine microalga was changed and the photosynthesis of marine microalgae was influenced. Finally, potential research directions and suggestions for marine microalgae in the future were proposed.


Assuntos
Poluentes Ambientais , Microalgas , Petróleo , Poluentes Químicos da Água , Petróleo/toxicidade , Ecossistema , Poluentes Químicos da Água/toxicidade
20.
Mar Pollut Bull ; 201: 116280, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518574

RESUMO

The utilization of chemical dispersants as a way of mitigating of oil spills in marine eco-system has been extensively documented worldwide. Hence, in this research we have successfully synthesized two amphiphilic asymmetric Dicaionic Ionic Liquids (DILs). The efficacy of these synthesized DILs as dispersants was assessed using the baffled flask test (BFT). The results indicated a dispersant effectiveness ranging from 47.98 % to 79.76 % for the dispersion of heavy crude oil across various temperature ranges (10-30 °C). These dispersant-to-oil ratios (DOR) were maintained at 3: 100 (V%), showcasing promising dispersant capabilities for mitigating heavy crude oil spills. Additionally, acute toxicity tests conducted on Nile tilapia and Oreochromis niloticus have demonstrated the relatively low toxicity of the IL-dispersants, with Lethal Concentration 50 (LC50) values exceeding 100 ppm after 96 h. This suggests a practically slight toxic effect on the tested fish. In summary, the newly developed IL-dispersants are considered to be conducive to environmentally benign oil spill remediation.


Assuntos
Antracenos , Líquidos Iônicos , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Animais , Líquidos Iônicos/toxicidade , Tensoativos/toxicidade , Poluição por Petróleo/análise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Petróleo/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA