Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 16(10): e0258280, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34624036

RESUMO

In two field experiments, performed in 2020 and 2021, potato Nicola plants were sprayed once with three (Exp. 1) or two (Exp. 2) doses of Zorvec Vinabel (oxathiapiprolin+ zoxamide = ZZ), Zorvec Encantia (oxathiapiprolin+ famoxadone = ZF), Zorvec Endavia (oxathiapiprolin+ benthiavalicarb = ZE), Infinito (= INF) or Mefenoxam (= MFX) and thereafter inoculated with genotype 23A1 or 36A2 of Phytophthora infestans. Disease development was recorded at periodic intervals for a month. In both experiments, Zorvec mixtures were significantly more effective in suppressing the disease than INF or MFX. They delayed the onset of the disease and its progress, regardless the genotype used for inoculation. Among the three Zorvec mixtures, ZZ was least effective and ZE most effective. Sensitivity monitoring assays revealed zero mutants of P. infestans resistant to oxathiapiprolin. The data confirmed good efficacy of Zorvec mixtures, especially ZE, in field-grown potato crops as evident by the very effective control of late blight for one month.


Assuntos
Fungicidas Industriais/toxicidade , Hidrocarbonetos Fluorados/toxicidade , Phytophthora infestans/efeitos dos fármacos , Phytophthora infestans/genética , Pirazóis/toxicidade , Área Sob a Curva , Resistência à Doença , Fazendas , Genótipo , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Tempo (Meteorologia)
2.
mSphere ; 6(3): e0042721, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34077259

RESUMO

Phenazine-producing Pseudomonas spp. are effective biocontrol agents that aggressively colonize the rhizosphere and suppress numerous plant diseases. In this study, we compared the ability of 63 plant-beneficial phenazine-producing Pseudomonas strains representative of the worldwide diversity to inhibit the growth of three major potato pathogens: the oomycete Phytophthora infestans, the Gram-positive bacterium Streptomyces scabies, and the ascomycete Verticillium dahliae. The 63 Pseudomonas strains are distributed among four different subgroups within the P. fluorescens species complex and produce different phenazine compounds, namely, phenazine-1-carboxylic acid (PCA), phenazine-1-carboxamide (PCN), 2-hydroxyphenazine-1-carboxylic acid, and 2-hydroxphenazine. Overall, the 63 strains exhibited contrasted levels of pathogen inhibition. Strains from the P. chlororaphis subgroup inhibited the growth of P. infestans more effectively than strains from the P. fluorescens subgroup. Higher inhibition was not associated with differential levels of phenazine production nor with specific phenazine compounds. The presence of additional biocontrol-related traits found in P. chlororaphis was instead associated with higher P. infestans inhibition. Inhibition of S. scabies by the 63 strains was more variable, with no clear taxonomic segregation pattern. Inhibition values did not correlate with phenazine production nor with specific phenazine compounds. No additional synergistic biocontrol-related traits were found. Against V. dahliae, PCN producers from the P. chlororaphis subgroup and PCA producers from the P. fluorescens subgroup exhibited greater inhibition. Additional biocontrol-related traits potentially involved in V. dahliae inhibition were identified. This study represents a first step toward harnessing the vast genomic diversity of phenazine-producing Pseudomonas spp. to achieve better biological control of potato pathogens. IMPORTANCE Plant-beneficial phenazine-producing Pseudomonas spp. are effective biocontrol agents, thanks to the broad-spectrum antibiotic activity of the phenazine antibiotics they produce. These bacteria have received considerable attention over the last 20 years, but most studies have focused only on the ability of a few genotypes to inhibit the growth of a limited number of plant pathogens. In this study, we investigated the ability of 63 phenazine-producing strains, isolated from a wide diversity of host plants on four continents, to inhibit the growth of three major potato pathogens: Phytophthora infestans, Streptomyces scabies, and Verticillium dahliae. We found that the 63 strains differentially inhibited the three potato pathogens. These differences are in part associated with the nature and the quantity of the phenazine compounds being produced but also with the presence of additional biocontrol-related traits. These results will facilitate the selection of versatile biocontrol agents against pathogens.


Assuntos
Bactérias/efeitos dos fármacos , Fenazinas/farmacologia , Pseudomonas/química , Pseudomonas/genética , Solanum tuberosum/microbiologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/patogenicidade , Agentes de Controle Biológico/química , Agentes de Controle Biológico/metabolismo , Variação Genética , Genoma Bacteriano , Fenazinas/química , Fenazinas/metabolismo , Phytophthora infestans/efeitos dos fármacos , Phytophthora infestans/crescimento & desenvolvimento , Pseudomonas/classificação , Streptomyces/efeitos dos fármacos , Streptomyces/crescimento & desenvolvimento
3.
Int J Biol Macromol ; 182: 1670-1680, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34022316

RESUMO

Late blight, caused by the oomycete Phytophthora infestans, is one of the most devastating diseases that results in huge losses of potato crops worldwide. Chitosan as a defence elicitor can induce plant innate immunity against pathogen infection, but the efficiency and specific defence mechanism of chitosan against late blight in potato have not been elaborated. In this study, we demonstrated that the application of chitosan significantly enhanced potato resistance and reduced P. infestans infection in potted potato and in the field. Large-scale transcriptomic analysis suggested that chitosan preferentially activated several important pathways related to the plant defence response. Notably, we revealed that chitosan triggered pattern-triggered immunity responses in potato. Chitosan could trigger pattern recognition receptors to initiate intracellular signalling, and gradually amplify the immune signal. qRT-PCR verification showed that chitosan induced the expression of defence-related genes in potato. Moreover, treatment with chitosan result in Induced Systemic Resistance (ISR) in potato, including an accumulation of plant hormone salicylic acid, increase in the level of phenylalanine ammonia lyase activity and a content decrease of malondialdehyde. These findings help elucidate chitosan-mediated activation of the immune system in potato and provide a potential ecofriendly strategy to control potato late blight in the field.


Assuntos
Quitosana/farmacologia , Phytophthora infestans/efeitos dos fármacos , Solanum tuberosum/microbiologia , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Plant J ; 105(5): 1309-1325, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33617106

RESUMO

Secretions from glandular trichomes potentially protect plants against a variety of aggressors. In the tomato clade of the Solanum genus, glandular trichomes of wild species produce a rich source of chemical diversity at the leaf surface. Previously, 7-epi-zingiberene produced in several accessions of Solanum habrochaites was found to confer resistance to whiteflies (Bemisia tabaci) and other insect pests. Here, we report the identification and characterisation of 9-hydroxy-zingiberene (9HZ) and 9-hydroxy-10,11-epoxyzingiberene (9H10epoZ), two derivatives of 7-epi-zingiberene produced in glandular trichomes of S. habrochaites LA2167. Using a combination of transcriptomics and genetics, we identified a gene coding for a cytochrome P450 oxygenase, ShCYP71D184, that is highly expressed in trichomes and co-segregates with the presence of the zingiberene derivatives. Transient expression assays in Nicotiana benthamiana showed that ShCYP71D184 carries out two successive oxidations to generate 9HZ and 9H10epoZ. Bioactivity assays showed that 9-hydroxy-10,11-epoxyzingiberene in particular exhibits substantial toxicity against B. tabaci and various microorganisms including Phytophthora infestans and Botrytis cinerea. Our work shows that trichome secretions from wild tomato species can provide protection against a wide variety of organisms. In addition, the availability of the genes encoding the enzymes for the pathway of 7-epi-zingiberene derivatives makes it possible to introduce this trait in cultivated tomato by precision breeding.


Assuntos
Hemípteros/metabolismo , Sesquiterpenos Monocíclicos/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Solanum/metabolismo , Animais , Botrytis/efeitos dos fármacos , Botrytis/patogenicidade , Hemípteros/genética , Hemípteros/microbiologia , Sesquiterpenos Monocíclicos/toxicidade , NADPH-Ferri-Hemoproteína Redutase/genética , Phytophthora infestans/efeitos dos fármacos , Phytophthora infestans/patogenicidade , Solanum/genética
5.
Int J Mol Sci ; 21(21)2020 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-33171629

RESUMO

Heavy metal pollution causes many soils to become a toxic environment not only for plants, but also microorganisms; however, little is known how heavy metal contaminated environment affects metabolism of phytopathogens and their capability of infecting host plants. In this study the oomycete Phytophthora infestans (Mont.) de Bary, the most harmful pathogen of potato, growing under moderate cadmium stress (Cd, 5 mg/L) showed nitro-oxidative imbalance associated with an enhanced antioxidant response. Cadmium notably elevated the level of nitric oxide, superoxide and peroxynitrite that stimulated nitrative modifications within the RNA and DNA pools in the phytopathogen structures. In contrast, the protein pool undergoing nitration was diminished confirming that protein tyrosine nitration is a flexible element of the oomycete adaptive strategy to heavy metal stress. Finally, to verify whether Cd is able to modify P. infestans pathogenicity, a disease index and molecular assessment of disease progress were analysed indicating that Cd stress enhanced aggressiveness of vr P. infestans towards various potato cultivars. Taken together, Cd not only affected hyphal growth rate and caused biochemical changes in P. infestans structures, but accelerated the pathogenicity as well. The nitro-oxidative homeostasis imbalance underlies the phytopathogen adaptive strategy and survival in the heavy metal contaminated environment.


Assuntos
Cádmio/toxicidade , Phytophthora infestans/efeitos dos fármacos , Phytophthora infestans/metabolismo , Antioxidantes/metabolismo , Homeostase/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Phytophthora infestans/patogenicidade , Doenças das Plantas/etiologia , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Poluentes do Solo/toxicidade , Solanum tuberosum/microbiologia , Estresse Fisiológico , Virulência/efeitos dos fármacos
6.
Sci Rep ; 10(1): 17574, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067553

RESUMO

Grapevine (Vitis vinifera L.) is a crop of major economic importance. However, grapevine yield is guaranteed by the massive use of pesticides to counteract pathogen infections. Under temperate-humid climate conditions, downy mildew is a primary threat for viticulture. Downy mildew is caused by the biotrophic oomycete Plasmopara viticola Berl. & de Toni, which can attack grapevine green tissues. In lack of treatments and with favourable weather conditions, downy mildew can devastate up to 75% of grape cultivation in one season and weaken newly born shoots, causing serious economic losses. Nevertheless, the repeated and massive use of some fungicides can lead to environmental pollution, negative impact on non-targeted organisms, development of resistance, residual toxicity and can foster human health concerns. In this manuscript, we provide an innovative approach to obtain specific pathogen protection for plants. By using the yeast two-hybrid approach and the P. viticola cellulose synthase 2 (PvCesA2), as target enzyme, we screened a combinatorial 8 amino acid peptide library with the aim to identify interacting peptides, potentially able to inhibit PvCesa2. Here, we demonstrate that the NoPv1 peptide aptamer prevents P. viticola germ tube formation and grapevine leaf infection without affecting the growth of non-target organisms and without being toxic for human cells. Furthermore, NoPv1 is also able to counteract Phytophthora infestans growth, the causal agent of late blight in potato and tomato, possibly as a consequence of the high amino acid sequence similarity between P. viticola and P. infestans cellulose synthase enzymes.


Assuntos
Aptâmeros de Peptídeos/farmacologia , Glucosiltransferases/antagonistas & inibidores , Oomicetos/efeitos dos fármacos , Doenças das Plantas/terapia , Proteínas de Plantas/antagonistas & inibidores , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Sequência de Aminoácidos , Celulose/biossíntese , Glucosiltransferases/química , Oomicetos/enzimologia , Oomicetos/ultraestrutura , Biblioteca de Peptídeos , Fotossíntese , Phytophthora infestans/efeitos dos fármacos , Phytophthora infestans/enzimologia , Phytophthora infestans/ultraestrutura , Doenças das Plantas/parasitologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Proteínas de Plantas/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Solanum tuberosum , Técnicas do Sistema de Duplo-Híbrido , Vitis
7.
PLoS One ; 15(8): e0238148, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32822425

RESUMO

Root treatment with oxathiapiprolin, benthiavalicarb or their mixture Zorvec-Endavia [ZE (3+7, w/w)] was shown to provide prolonged systemic protection against foliar oomycete pathogens attacking cucumber, tomato and basil. Here we report that these fungicides can effectively protect potato plants against late blight when applied to the soil in which such potato plants are grown. In two field experiments, performed in 2019 and 2020, potato plants grown in 64 L containers were treated with a soil drench of oxathiapiprolin, benthiavalicarb or ZE at 12.5, 25 or 50 mg ai/five plants in a container. Artificial inoculations with Phytophthora infestans revealed that such treated plants were protected against late blight in a dose-dependent manner all along the season. Interestingly, oxathiapiprolin persisted in the treated soil for at least 139 days, providing systemic protection against late blight to the following potato crops grown in that treated soils. Potato plants grown in loess soil in the field were either sprayed or drenched with ZE. Plants treated via the soil were significantly better protected against late blight compared to the plants treated by a spray. The data demonstrate a new strategy for season-long protection of potato against late blight by a single soil application of ZE. The systemic nature of oxathiapiprolin and benthiavalicarb composing ZE assures the translocation to the foliage of two fungicides with different modes of action. This shall minimize the risk of developing resistance against either fungicide in the treated crops.


Assuntos
Hidrocarbonetos Fluorados/administração & dosagem , Hidrocarbonetos Fluorados/farmacologia , Doenças das Plantas/prevenção & controle , Pirazóis/administração & dosagem , Pirazóis/farmacologia , Resistência à Doença/genética , Fungicidas Industriais/farmacologia , Phytophthora infestans/efeitos dos fármacos , Phytophthora infestans/patogenicidade , Raízes de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas/efeitos dos fármacos , Solo , Solanum tuberosum/microbiologia
8.
J Agric Food Chem ; 68(31): 8163-8171, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32790355

RESUMO

We tested the ability of 14 strains of Trichoderma to emit volatile compounds that decreased or stopped the growth of Phytophthora infestans. Volatile organic compounds (VOCs) emitted from Trichoderma strains designated T41 and T45 inhibited the mycelial growth of P. infestans grown on a laboratory medium by 80 and 81.4%, respectively, and on potato tubers by 93.1 and 94.1%, respectively. Using the DNA sequence analysis of the translation elongation factor region, both Trichoderma strains were identified as Trichoderma atroviride. VOCs emitted by the strains were analyzed, and 39 compounds were identified. The most abundant compounds were 3-methyl-1-butanol, 6-pentyl-2-pyrone, 2-methyl-1-propanol, and acetoin. Electron microscopy of the hyphae treated with T. atroviride VOCs revealed serious morphological and ultrastructural damages, including cell deformation, collapse, and degradation of cytoplasmic organelles. To our knowledge, this is the first report describing the ability of Trichoderma VOCs to suppress the growth of the late blight potato pathogen.


Assuntos
Fungicidas Industriais/farmacologia , Phytophthora infestans/efeitos dos fármacos , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Trichoderma/química , Compostos Orgânicos Voláteis/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/metabolismo , Phytophthora infestans/crescimento & desenvolvimento , Tubérculos/microbiologia , Trichoderma/metabolismo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo
9.
Plant Dis ; 104(1): 211-221, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31765279

RESUMO

Phytophthora infestans is the causal agent of late blight disease of potatoes and tomatoes. This disease causes devastating economic losses each year, and control is mainly achieved by the use of fungicides. Unfortunately, populations of P. infestans resistant to fungicides have been documented. Furthermore, studies have reported that sensitive isolates to the phenylamide fungicide, mefenoxam, become less sensitive in vitro after a single passage through sublethal concentrations of fungicide-amended medium. The first objective of this study was to investigate if isolates of P. infestans are capable of acquiring resistance to two additional systemic fungicides, fluopicolide (benzamide) and cymoxanil (cyanoacetamide-oxime). In contrast to the situation with mefenoxam, exposure of isolates to sublethal concentrations of fluopicolide and cymoxanil did not induce reduced sensitivity to these two fungicides. The second objective was to assess if reduced sensitivity to mefenoxam could occur in naturally sensitive isolates of other Phytophthora species and of Phytopythium sp., another oomycete plant pathogen. All Phytophthora spp. assessed (P. infestans, P. betacei, and P. pseudocryptogea) as well as Phytopythium sp. acquired resistance to mefenoxam after previous exposure through medium containing 1 µg ml-1 of mefenoxam. Interestingly, isolate 66 of Phytopythium sp. and the isolate of P. pseudocryptogea tested do not seem to be acquiring resistance to mefenoxam after exposure to medium containing 5 µg ml-1 of this fungicide. The tested isolates of P. palmivora and P. cinnamomi were extremely sensitive to mefenoxam, and thus it was not possible to perform a second transfer to access acquisition of resistance to this fungicide.


Assuntos
Alanina/análogos & derivados , Farmacorresistência Fúngica , Phytophthora infestans , Alanina/farmacologia , Fungicidas Industriais/farmacologia , Phytophthora infestans/efeitos dos fármacos , Solanum tuberosum/microbiologia
10.
Nat Prod Res ; 34(11): 1521-1527, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30445866

RESUMO

A new ester (1) and a terpenoid (2) were isolated from the dried whole plant of Disporopsis aspersa (HUA) ENGL. ex DIELS for the first time and their structures were elucidated, as well as their biological activities are described. The two compounds all showed good antifungal activities, especially furanone (2) exhibited better antifungal activity against Pseudoperonospora cubensis and Phytophthora infestans with EC50 value of 22.82, 18.90 µg/mL, respectively. Compound 1 exhibited a significant promotion on the neurite outgrowth in NGF-induced PC-12 cells, and moderate inhibition on the NO production induced by lipopolysaccharide (LPS) in BV-2 microglial cells.


Assuntos
Anti-Inflamatórios/isolamento & purificação , Antifúngicos/isolamento & purificação , Asparagaceae/química , Crescimento Neuronal/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antifúngicos/farmacologia , Ésteres/isolamento & purificação , Ésteres/farmacologia , Microglia/efeitos dos fármacos , Óxido Nítrico/antagonistas & inibidores , Células PC12/efeitos dos fármacos , Células PC12/ultraestrutura , Phytophthora infestans/efeitos dos fármacos , Extratos Vegetais/química , Ratos , Terpenos/isolamento & purificação , Terpenos/farmacologia
11.
Plant Cell Rep ; 38(2): 173-182, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30488097

RESUMO

KEY MESSAGE: Oomycetes MAMP Pep-13 can trigger SERK3/BAK1-independent PTI. Silencing of SERK3/BAK1 in solanaceous plants resulted in reduced expression of brassinosteroid marker genes and enhanced PTI transcriptional responses to Pep-13 treatment. To prevent disease, pattern recognition receptors (PRRs) are responsible for detecting microbe-associated molecular patterns (MAMPs) to switch on plant innate immunity. SOMATIC EMBROYOGENESIS KINASE 3 (SERK3)/BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1) is a well-characterized receptor-like kinase (RLK) that serves as a pivotal co-receptor with PRRs to activate immunity following recognition of MAMPs including flg22, EF-Tu, INF1 and XEG1. However, the requirement for SERK3/BAK1 in many pattern-triggered immune (PTI) signaling pathways is not yet known. Pep-13 is an oomycete MAMP that consists of a highly conserved motif (an oligopeptide of 13 amino acids) shared in Phytophthora transglutaminases. Quantitative RT-PCR analysis reveals that the transcripts of three PTI marker genes (WRKY7, WRKY8 and ACRE31) rapidly accumulate in response to three different MAMPs: flg22, chitin and Pep-13. Whereas silencing of SERK3/BAK1 in Nicotiana benthamiana or potato compromised transcript accumulation in response to flg22, it did not attenuate WRKY7, WRKY8 and ACRE31 up-regulation in response to chitin or Pep-13. This indicates that Pep-13 triggers immunity in a SERK3/BAK1-independent manner, similar to chitin. Surprisingly, silencing of SERK3/BAK1 led to significantly increased accumulation of PTI marker gene transcripts following Pep-13 or chitin treatment, compared to controls. This was accompanied by reduced expression of brassinosteroid (BR) marker genes StSTDH, StEXP8 and StCAB50 and StCHL1, which is a negative regulator of PTI, supporting previous reports that SERK3/BAK1-dependent BR signaling attenuates plant immunity. We provide Pep-13 as an alternative to chitin as a trigger of SERK3/BAK1-independent immunity.


Assuntos
Alarminas/metabolismo , Nicotiana/imunologia , Phytophthora infestans/metabolismo , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Solanum tuberosum/imunologia , Brassinosteroides/farmacologia , Quitina/farmacologia , Flagelina/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peptídeos/farmacologia , Phytophthora infestans/efeitos dos fármacos , Imunidade Vegetal/efeitos dos fármacos , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Solanum tuberosum/genética , Nicotiana/genética , Transcrição Gênica/efeitos dos fármacos
12.
J Agric Food Chem ; 66(24): 6239-6245, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29807429

RESUMO

Synthesis, isomerism, and fungicidal activity against potato diseases of new (5 Z)-[2-(2,4,5-trioxopyrrolidin-3-ylidene)-4-oxo-1,3-thiazolidin-5-ylidene]acetate derivatives with 1,3-thiazolidine-4-one and pyrrolidine-2,3,5-trione moieties linked by an exocyclic C═C bond were described. Their structures were clearly confirmed by spectroscopic and spectrometric data (Fourier transform infrared spectroscopy, 1H and 13C nuclear magnetic resonance, and mass spectrometry), elemental analysis, and X-ray diffraction crystallography. A bioassay for antifungal activity in vitro against Phytophthora infestans, Fusariun solani, Alternaria solani, Rhizoctonia solani, and Colletotrichum coccodes demonstrated that 2,4,5-trioxopyrrolidin-1,3-thiazolidine derivatives exhibited a relatively broad spectrum of antifungal activity. One of the compounds showed considerable activity against all of the strains; in the case of F. solani, P. infestans, and A. solani, it possesses comparable or better fungicidal efficacy than the positive control Consento. Consequently, this compound is a promising fungicidal candidate for plant protection.


Assuntos
Fungicidas Industriais/síntese química , Fungicidas Industriais/farmacologia , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Alternaria/efeitos dos fármacos , Descoberta de Drogas , Fungicidas Industriais/química , Phytophthora infestans/efeitos dos fármacos , Doenças das Plantas/prevenção & controle , Rhizoctonia/efeitos dos fármacos
13.
Chem Biodivers ; 15(7): e1800090, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29772116

RESUMO

Oomycetes are one type of the most highly destructive of the diseases that cause damage to some important crop plants, such as potato late blight, cucumber downy mildew, and grape downy mildew. As main approach of the ongoing search for new botanical fungicide from plant, the secondary metabolites of D. aspersa were investigated. Through efficient bioassay-guided isolation, two new (1 and 2) and 12 known compounds (3 - 14) were isolated, and their structures were determined via extensive NMR, HR-ESI-MS, and IR. They were isolated from this genus for the first time except for compounds 11 and 12. The biological properties of 1 - 14 were evaluated against Pseudoperonospora cubensis and Phytophthora infestans. Compounds 1 - 8 showed potent antifungal activity in vitro. Additionally, compound 3 has preferable control effect on cucumber downy mildew, showing dual effect of protection and treatment in vivo.


Assuntos
Antifúngicos/farmacologia , Liliaceae/química , Oomicetos/efeitos dos fármacos , Phytophthora infestans/efeitos dos fármacos , Extratos Vegetais/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Relação Estrutura-Atividade
14.
Environ Sci Pollut Res Int ; 24(26): 21434-21444, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28744682

RESUMO

Environmental risk assessment of GM crops in Europe proceeds by step-wise estimation of effect, first in the plant, then the field plot (e.g. 10-100 m-2), field (1000-10,000 m-2) and lastly in the environment in which the crop would be grown (100-10,000 km2). Processes that operate at large scales, such as cycling of carbon (C) and nitrogen (N), are difficult to predict from plot scales. Here, a procedure is illustrated in which plot scale data on yield (offtake) and N inputs for blight resistant (both GM and non-GM) and blight-susceptible potato are upscaled by a model of crop resource use to give a set of indicators and metrics defining N uptake and release in realistic crop sequences. The greatest potential damage to environment is due to loss of N from the field after potato harvest, mainly because of the large quantity of mineral and plant matter, high in N, that may die or be left in the field. Blight infection intensifies this loss, since less fertiliser N is taken up by plants and more (as a proportion of plant mass) is returned to the soil. In a simulation based on actual crop sequences, N returns at harvest of potato were raised from 100 kg ha-1 in resistant to 150 kg ha-1 in susceptible varieties subject to a 40% yield loss. Based on estimates that blight-resistant types would require ~20% of the fungicide applied to susceptible types, introduction of resistant types into a realistic 6-year cropping sequence would reduce overall fungicide use to between 72 and 54% depending on the inputs to other crops in the sequence.


Assuntos
Resistência à Doença , Ciclo do Nitrogênio , Nitrogênio/metabolismo , Doenças das Plantas/prevenção & controle , Plantas Geneticamente Modificadas/metabolismo , Solanum tuberosum/metabolismo , Europa (Continente) , Fertilizantes/análise , Fungicidas Industriais/farmacologia , Modelos Teóricos , Nitrogênio/química , Phytophthora infestans/efeitos dos fármacos , Phytophthora infestans/isolamento & purificação , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia , Medição de Risco , Solo/química , Solanum tuberosum/genética , Solanum tuberosum/microbiologia
15.
J Microbiol Biotechnol ; 27(7): 1272-1275, 2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28535608

RESUMO

Two dimeric sesquiterpenes were separated from Chloranthus japonicus Sieb. and identified as shizukaols C and F. They exhibited potent antifungal activities (MICs = 4-16 µg/ml) in vitro against various plant pathogenic fungi (Pythium ultimum, Phytophthora infestans, Botrytis cinerea, Colletotrichum lagenarium, Alternaria kikuchiana, and Magnaporthe grisea). Shizukaol C showed 88% and 91% protective activities in the greenhouse against Puccinia recondita (wheat leaf rust) and Phytophthora infestans (tomato late blight), respectively, at 100 µg/ml; shizukaol F exhibited 93% antifungal activity against Puccinia recondita at the same concentration. Therefore, these compounds might serve as interesting candidates for effective antifungal agents.


Assuntos
Antifúngicos/farmacologia , Fungos/efeitos dos fármacos , Magnoliopsida/química , Sesquiterpenos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Fungicidas Industriais/isolamento & purificação , Fungicidas Industriais/farmacologia , Medicina Tradicional Chinesa , Testes de Sensibilidade Microbiana , Phytophthora infestans/efeitos dos fármacos , Doenças das Plantas/prevenção & controle , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação
16.
Mol Plant Microbe Interact ; 30(7): 531-542, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28510502

RESUMO

Steroidal glycoalkaloids (SGAs) are plant secondary metabolites known to be toxic to animals and humans and that have putative roles in defense against pests. The proposed mechanisms of SGA toxicity are sterol-mediated disruption of membranes and inhibition of cholinesterase activity in neurons. It has been suggested that phytopathogenic microorganisms can overcome SGA toxicity by enzymatic deglycosylation of SGAs. Here, we have explored SGA-mediated toxicity toward the invasive oomycete Phytophthora infestans, the causative agent of the late blight disease in potato and tomato, as well as the potential for SGA deglycosylation by this species. Our growth studies indicate that solanidine, the nonglycosylated precursor of the potato SGAs α-chaconine and α-solanine, has a greater physiological impact than its glycosylated forms. All of these compounds were incorporated into the mycelium, but only solanidine could strongly inhibit the growth of P. infestans in liquid culture. Genes encoding several glycoside hydrolases with potential activity on SGAs were identified in the genome of P. infestans and were shown to be expressed. However, we found no indication that deglycosylation of SGAs takes place. We present additional evidence for apparent host-specific adaptation to potato SGAs and assess all results in terms of future pathogen management strategies.


Assuntos
Micélio/efeitos dos fármacos , Phytophthora infestans/efeitos dos fármacos , Alcaloides de Solanáceas/farmacologia , Esteroides/farmacologia , Sequência de Carboidratos , Diosgenina/química , Diosgenina/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Glicosilação , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Solanum lycopersicum/microbiologia , Estrutura Molecular , Micélio/genética , Micélio/fisiologia , Phytophthora infestans/genética , Phytophthora infestans/fisiologia , Doenças das Plantas/microbiologia , Alcaloides de Solanáceas/química , Solanina/análogos & derivados , Solanina/química , Solanina/farmacologia , Solanum tuberosum/microbiologia , Esteroides/química
17.
Sci Rep ; 6: 20483, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26853908

RESUMO

Knowledge of the evolution of fungicide resistance is important in securing sustainable disease management in agricultural systems. In this study, we analyzed and compared the spatial distribution of genetic variation in azoxystrobin sensitivity and SSR markers in 140 Phytophthora infestans isolates sampled from seven geographic locations in China. Sensitivity to azoxystrobin and its genetic variation in the pathogen populations was measured by the relative growth rate (RGR) at four fungicide concentrations and determination of the effective concentration for 50% inhibition (EC50). We found that all isolates in the current study were sensitive to azoxystrobin and their EC50 was similar to that detected from a European population about 20 years ago, suggesting the risk of developing azoxystrobin resistance in P. infestans populations is low. Further analyses indicate that reduced genetic variation and high fitness cost in resistant mutations are the likely causes for the low evolutionary likelihood of developing azoxystrobin resistance in the pathogen. We also found a negative correlation between azoxystrobin tolerance in P. infestans populations and the mean annual temperature of collection sites, suggesting that global warming may increase the efficiency of using the fungicide to control the late blight.


Assuntos
Fungicidas Industriais/farmacologia , Metacrilatos/farmacologia , Repetições de Microssatélites/genética , Phytophthora infestans/efeitos dos fármacos , Pirimidinas/farmacologia , China , Resistência a Medicamentos/efeitos dos fármacos , Variação Genética , Phytophthora infestans/genética , Phytophthora infestans/crescimento & desenvolvimento , Folhas de Planta/parasitologia , Solanum tuberosum/parasitologia , Estrobilurinas , Temperatura
18.
Pest Manag Sci ; 72(9): 1718-26, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26616740

RESUMO

BACKGROUND: There is growing demand to replace chemical pesticides with alternatives owing to concerns related to impacts on human health and the environment. Plant-derived plant protection products could provide sustainable and environmentally friendly alternatives to chemical products. The aim of this study was to identify plant and fungal extracts with so far unknown activity against important plant pathogens by in vitro screening of a library of more than 3000 extracts. RESULTS: Several plant extracts with promising in vitro fungicidal activity (MIC100 ≤ 50 µg mL(-1) ) towards one or several of the investigated pathogens (Venturia ineaqualis, Phytophthora infestans, Plasmopara viticola) were identified by the screening. One of the hits, an ethyl acetate extract of Juncus effusus L. medulla, was further investigated, and dehydroeffusol (DHEF) was identified as its main active constituent. On susceptible grapevine and apple seedlings, efficacies of up to 100% were reached with the extract (EC50 123 or 156 µg mL(-1) ) and with DHEF (EC50 18 or 21 µg mL(-1) ) against P. viticola and V. inaequalis respectively. CONCLUSIONS: Our results demonstrate that plants can provide promising alternatives for integrated and organic farming. J. effusus shows high efficacy at low concentrations and, as an abundant perennial species, is an interesting candidate for the development of a novel plant protection product. © 2015 Society of Chemical Industry.


Assuntos
Ascomicetos/efeitos dos fármacos , Magnoliopsida/química , Malus/microbiologia , Oomicetos/efeitos dos fármacos , Doenças das Plantas/microbiologia , Vitis/microbiologia , Phytophthora infestans/efeitos dos fármacos , Extratos Vegetais/análise , Extratos Vegetais/química , Extratos Vegetais/farmacologia
19.
Phytopathology ; 105(6): 771-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25738550

RESUMO

As the causal agent of late blight on potato, Phytophthora infestans is one of the most destructive plant pathogens worldwide and widely known as the Irish potato famine pathogen. Understanding the genetic structure of P. infestans populations is important both for breeding and deployment of resistant varieties and for development of disease control strategies. Here, we investigate the population genetic structure of P. infestans in a potato germplasm nursery in northwestern China. In total, 279 isolates were recovered from 63 potato varieties or lines in 2010 and 2011, and were genotyped by mitochondrial DNA haplotypes and a set of nine simple-sequence repeat markers. Selected isolates were further examined for virulence on a set of differential lines containing each resistance (R) gene (R1 to R11). The overall P. infestans population was characterized as having a low level of genetic diversity and resistance to metalaxyl, and containing a high percentage of individuals that virulent to all 11 R genes. Both A1 and A2 mating types as well as self-fertile P. infestans isolates were present but there was no evidence of sexual reproduction. The low level of genetic differentiation in P. infestans populations is probably due to the action of relatively high levels of migration as supported by analysis of molecular variance (P < 0.01). Migration and asexual reproduction were the predominant mechanisms influencing the P. infestans population structure in the germplasm nursery. Therefore, it is important to ensure the production of pathogen-free potato seed tubers to aid sustainable production of potato in northwestern China.


Assuntos
Alanina/análogos & derivados , Phytophthora infestans/genética , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Alanina/farmacologia , China , DNA Mitocondrial/genética , Variação Genética , Genética Populacional , Genótipo , Haplótipos , Repetições de Microssatélites/genética , Phytophthora infestans/efeitos dos fármacos , Tubérculos/microbiologia , Virulência
20.
Plant Cell Physiol ; 56(5): 992-1005, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25681825

RESUMO

Ethylene response factors (ERFs) are unique to the plant kingdom and play crucial roles in plant response to various biotic and abiotic stresses. We show here that a potato StERF3, which contains an ERF-associated amphiphilic repression (EAR) motif in its C-terminal region, negatively regulates resistance to Phytophthora infestans and salt tolerance in potato. The StERF3 promoter responds to induction by salicylic acid, ABA ethylene and NaCl, as well as P. infestans, the causal agent of potato late blight disease. StERF3 could bind to the GCC box element of the HIS3 promoter and activate transcription of HIS3 in yeast cells. Importantly, silencing of StERF3 in potato produced an enhanced foliage resistance to P. infestans and elevated plant tolerance to NaCl stress accompanied by the activation of defense-related genes (PR1, NPR1 and WRKY1). In contrast, StERF3-overexpressing plants showed reduced expression of these defense-related genes and enhanced susceptibility to P. infestans, suggesting that StERF3 functions as a negative regulator of downstream defense- and/or stress-related genes in potato. StERF3 is localized to the nucleus. Interestingly, yeast two-hybrid assay and a bimolecular fluorescence complementation (BiFC) test clarified that StERF3 could interact with other proteins in the cytoplasm which may lead to its re-localization between the nucleus and cytoplasm, revealing a novel means of StERF3 regulation. Taken together, these data provide new insights into the mechanism underlying how StERF3 negatively regulates late blight resistance and abiotic tolerance in potato and may have a potential use in engineering late blight resistance in potato.


Assuntos
Resistência à Doença , Phytophthora infestans/fisiologia , Doenças das Plantas/microbiologia , Tolerância ao Sal , Solanum tuberosum/microbiologia , Fatores de Transcrição/metabolismo , Ácido Abscísico/farmacologia , Sequência de Aminoácidos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sequência Conservada , Resistência à Doença/efeitos dos fármacos , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Genes de Plantas , Dados de Sequência Molecular , Phytophthora infestans/efeitos dos fármacos , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Ácido Salicílico/farmacologia , Tolerância ao Sal/efeitos dos fármacos , Tolerância ao Sal/genética , Cloreto de Sódio/farmacologia , Solanum tuberosum/genética , Solanum tuberosum/imunologia , Solanum tuberosum/fisiologia , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Fatores de Transcrição/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA