Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Parasitol ; 215: 107919, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32442440

RESUMO

Rhipicephalus microplus, the cattle tick, is a major cause of economic losses in bovine production. Due to the widespread acaricidal resistance to commercially available products, as well as their toxicity and environmental impact, alternative control methods are required. Nanoformulations produced from plant extracts as bioactive substances are very promising as innovative acaricidal agents. Thus, the aim of this study was to evaluate the in vitro repellent activity of Pilocarpus spicatus essential oil and its nanoemulsion against R. microplus, using larval repellent test (RT). The essential oil was extracted by hydrodistillation, using a Clevenger-type apparatus. The nanoemulsion was prepared with 5% essential oil, 5% tween 80, and 90% water, using the phase inversion method (50 mg/mL). Limonene was the major component (46.8%) of the essential oil, as determined by gas chromatography-mass spectrometry (GC/MS) and confirmed by flame ionization detection (GC/FID). According to the RT results, the essential oil had a repellent activity greater than 69%, from concentrations of 3.12 mg/mL (69.81 ± 10%) to 50 mg/mL (98.10 ± 0.6%), whereas the nanoemulsion at 50 mg/mL presented repellent activities of 97.14 ± 1.37% and 97.89 ± 0.52% 6 and 10 h after treatment, respectively. These values regarding to total repellency were very close to those calculated for mortality corrected by Abbott's formula. The phase inversion method preserved the chemical and physical characteristics of the essential oil since both reached an equal repellent effect at the same concentration. Therefore, P. spicatus essential oil and nanoemulsion had excellent repellent activities against R. microplus larvae, demonstrating its potential for future use as an alternative for tick control.


Assuntos
Óleos Voláteis/farmacologia , Pilocarpus/química , Óleos de Plantas/farmacologia , Rhipicephalus/efeitos dos fármacos , Animais , Bovinos , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/prevenção & controle , Emulsões/farmacologia , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Larva/efeitos dos fármacos , Limoneno/análise , Modelos Lineares , Óleos Voláteis/isolamento & purificação , Folhas de Planta/química , Óleos de Plantas/isolamento & purificação , Distribuição Aleatória , Controle de Ácaros e Carrapatos/métodos , Infestações por Carrapato/parasitologia , Infestações por Carrapato/prevenção & controle , Infestações por Carrapato/veterinária
2.
Fitoterapia ; 131: 1-8, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30240843

RESUMO

The investigation of the crude extract of leaves and bark of Pilocarpus pennatifolius Lemaire allowed isolated of a not yet described coumarin, together with three known coumarins (bergapten, xanthotoxin and dimethyl allyl xanthyletin), and a not yet described imidazole alkaloid. All structures were established by means of spectral analysis, including extensive 2D NMR studies. In addition, the alkaloid had its absolute stereochemistry determined by X-ray diffraction. Meanwhile, extracts and pure compounds were tested against various strains of bacteria and fungi, showing promising antimicrobial activities. We highlight the activities of crude bark methanol extract (CBME), of the leaf basic acetate fraction (LBAcF), and of compound 2 against the Gram negative bacteria Shigella flexneri (MICs = 7.8, 7.8 and 3.12 µg·mL-1, respectively), of compound 5 against the Gram positive Enterococcus fecalis (MIC = 1.56 µg·mL-1), and against two Gram negative bacteria Salmonella enteritidis (MIC = 1.56 µg·mL-1), and Pseudomonas aeruginosa (MIC = 6.25 µg·ml-1). On the other hand, CBME and compounds 3-5 showed excellent activity against the fungus Candida krusei with MICs of 15.6, 1.56, and 3.12 µg·mL-1 respectively, as actives or better than the antifungal standard fluconazole (MIC = 3.12 µg·mL-1).


Assuntos
Anti-Infecciosos/isolamento & purificação , Compostos Fitoquímicos/isolamento & purificação , Pilocarpus/química , Extratos Vegetais/química , Anti-Infecciosos/farmacologia , Brasil , Cumarínicos/isolamento & purificação , Cumarínicos/farmacologia , Estrutura Molecular , Compostos Fitoquímicos/farmacologia , Casca de Planta/química , Folhas de Planta/química
3.
PLoS One ; 13(6): e0198476, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29944674

RESUMO

Schistosomiasis affects million people and its control is widely dependent on a single drug, praziquantel. Computational chemistry has led to the development of new tools that predict molecular properties related to pharmacological potential. We conducted a theoretical study of the imizadole alkaloids of Pilocarpus microphyllus (Rutaceae) with schistosomicidal properties. The molecules of epiisopiloturine, epiisopilosine, isopilosine, pilosine, and macaubine were evaluated using theory models (B3lyp/SDD, B3lyp/6-31+G(d,p), B3lyp/6-311++G(d,p)). Absorption, distribution, metabolization, excretion, and toxicity (ADMET) predictions were used to determine the pharmacokinetic and pharmacodynamic properties of the alkaloids. After optimization, the molecules were submitted to molecular docking calculations with the purine nucleoside phosphorylase, thioredoxin glutathione reductase, methylthioadenosine phosphorylase, arginase, uridine phosphorylase, Cathepsin B1 and histone deacetylase 8 enzymes, which are possible targets of Schistosoma mansoni. The results showed that B3lyp/6-311++G(d,p) was the optimal model to describe the properties studied. Thermodynamic analysis showed that epiisopiloturine and epiisopilosine were the most stable isomers; however, the epiisopilosine ligand achieved a superior interaction with the enzymes studied in the molecular docking experiments, which corroborated the results of previous experimental studies on schistosomiasis.


Assuntos
Alcaloides/farmacologia , Anti-Helmínticos/farmacologia , Imidazóis/farmacologia , Pilocarpus/química , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , 4-Butirolactona/farmacologia , Alcaloides/química , Animais , Anti-Helmínticos/química , Imidazóis/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Teoria Quântica , Schistosoma mansoni/efeitos dos fármacos , Termodinâmica
4.
J R Coll Physicians Edinb ; 48(1): 85-91, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29741535

RESUMO

The mushroom Amanita muscaria (fly agaric) is widely distributed throughout continental Europe and the UK. Its common name suggests that it had been used to kill flies, until superseded by arsenic. The bioactive compounds occurring in the mushroom remained a mystery for long periods of time, but eventually four hallucinogens were isolated from the fungus: muscarine, muscimol, muscazone and ibotenic acid. The shamans of Eastern Siberia used the mushroom as an inebriant and a hallucinogen. In 1912, Henry Dale suggested that muscarine (or a closely related substance) was the transmitter at the parasympathetic nerve endings, where it would produce lacrimation, salivation, sweating, bronchoconstriction and increased intestinal motility. He and Otto Loewi eventually isolated the transmitter and showed that it was not muscarine but acetylcholine. The receptor is now known variously as cholinergic or muscarinic. From this basic knowledge, drugs such as pilocarpine (cholinergic) and ipratropium (anticholinergic) have been shown to be of value in glaucoma and diseases of the lungs, respectively.


Assuntos
Acetilcolina/história , Amanita/química , Muscarina/história , Acetilcolina/fisiologia , Asma/tratamento farmacológico , Asma/história , Antagonistas Colinérgicos/história , Antagonistas Colinérgicos/uso terapêutico , História do Século XVI , História do Século XVII , História do Século XIX , História do Século XX , História Antiga , Muscarina/isolamento & purificação , Pilocarpina/história , Pilocarpina/isolamento & purificação , Pilocarpina/uso terapêutico , Pilocarpus/química , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/história , Receptores Colinérgicos/história , Receptores Colinérgicos/fisiologia , Xamanismo/história
5.
PLoS One ; 12(2): e0170281, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28151972

RESUMO

Pilocarpus microphyllus Stapf ex Wardleworth (jaborandi, Rutaceae) is one of the most important Brazilian medicinal species owing to its content of pilocarpine (PIL), an alkaloid used for treating glaucoma and xerostomia. This species contains another alkaloid, epiisopiloturine (EPI), which has demonstrated effectiveness against schistosomiasis. The aim of this work was to assess seasonal changes of PIL and EPI in three populations of cultivated P. microphyllus from northeastern Brazil over one year, including the dry and rainy seasons. Alkaloid profiles were correlated to phenotypic and genetic patterns in the morphological and molecular characterizations. PIL was the primary alkaloid and its levels differed among populations in all months except September. The S01 population (green line) showed an especially high PIL content compared to populations S02 and S03 (traditional line), which had similar alkaloid contents. PIL content gradually decreased in the three populations in the rainy season.EPI content was significantly different between the green line (S01) and the traditional line (S02 and S03).S01 had a significantly lower EPI content in all months, demonstrating that it was not the best source for EPI extraction. Inter simple sequence repeat (ISSR) markers and morphological analyses clearly separated S01 from S02 and S03, in agreement with the alkaloid results. This study shows the first correlation between the chemical, morphological, and molecular markers of P. microphyllus and highlights the potential benefits of a multidisciplinary research approach aimed at supporting both industry and conservation of natural resources.


Assuntos
Alcaloides/análise , Pilocarpus/química , Plantas Medicinais/química , 4-Butirolactona/análogos & derivados , 4-Butirolactona/análise , Brasil , DNA de Plantas/genética , Genética Populacional , Imidazóis/análise , Repetições de Microssatélites , Pilocarpina/análise , Pilocarpus/anatomia & histologia , Pilocarpus/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Folhas de Planta/genética , Plantas Medicinais/anatomia & histologia , Plantas Medicinais/genética , Estações do Ano
6.
Phytother Res ; 31(4): 624-630, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28111828

RESUMO

Pilocarpus microphyllus Stapf ex Wardlew (Rutaceae), popularly known as jaborandi, is a plant native to the northern and northeastern macroregions of Brazil. Several alkaloids from this species have been isolated. There are few reports of antibacterial and anthelmintic activities for these compounds. In this work, we report the antibacterial and anthelmintic activity of five alkaloids found in P. microphyllus leaves, namely, pilosine, epiisopilosine, isopilosine, epiisopiloturine and macaubine. Of these, only anthelmintic activity of one of the compounds has been previously reported. Nuclear magnetic resonance, HPLC and mass spectrometry were combined and used to identify and confirm the structure of the five compounds. As regards the anthelmintic activity, the alkaloids were studied using in vitro assays to evaluate survival time and damaged teguments for Schistosoma mansoni adult worms. We found epiisopilosine to have anthelmintic activity at very low concentrations (3.125 µg mL-1 ); at this concentration, it prevented mating, oviposition, reducing motor activity and altered the tegument of these worms. In contrast, none of the alkaloids showed antibacterial activity. Additionally, alkaloids displayed no cytotoxic effect on vero cells. The potent anthelmintic activity of epiisopilosine indicates the potential of this natural compound as an antiparasitic agent. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Alcaloides/química , Anti-Helmínticos/química , Antibacterianos/química , Imidazóis/química , Pilocarpus/química , Extratos Vegetais/química , Folhas de Planta/química , 4-Butirolactona/análogos & derivados , Animais , Imidazóis/farmacologia , Células Vero
7.
Biomed Pharmacother ; 87: 188-195, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28056423

RESUMO

OBJECTIVE: This study aimed to investigate the protective effect of epiisopiloturine hydrochloride (EPI), an imidazole alkaloid, on NAP-induced gastrointestinal damage in rats. METHODS: Initially, rats were pretreated with 0.5% carboxymethylcellulose (vehicle) or EPI (3, 10 and 30mg/kg, p.o. or i.p., groups 3-5, respectively) twice daily, for 2days. After 1h, NAP (80mg/kg, p.o.) was given. The control group received only vehicle (group 1) or vehicle+naproxen (group 2). Rats were euthanized on 2nd day, 4h after NAP treatment. Stomachs lesions were measured. Samples were collected for histological evaluation and glutathione (GSH), malonyldialdehyde (MDA), myeloperoxidase (MPO), and cytokines levels. Moreover, gastric mucosal blood flow (GMBF) was evaluated. RESULTS: EPI pretreatment prevented NAP-induced macro and microscopic gastric damage with a maximal effect at 10mg/kg. Histological analysis revealed that EPI decreased scores of damage caused by NAP. EPI reduced MPO (3.4±0.3U/mg of gastric tissue) and inhibited changes in MDA (70.4±8.3mg/g of gastric tissue) and GSH (246.2±26.4mg/g of gastric tissue). NAP increased TNF-α levels, and this effect was reduced by EPI pretreatment. Furthermore, EPI increased GMBF by 15% compared with the control group. CONCLUSION: Our data show that EPI protects against NAP-induced gastric and intestinal damage by reducing pro-inflammatory cytokines, reducing oxidative stress, and increasing GMBF.


Assuntos
4-Butirolactona/análogos & derivados , Alcaloides/uso terapêutico , Gastroenteropatias/prevenção & controle , Imidazóis/uso terapêutico , Naproxeno/toxicidade , Pilocarpus , Extratos Vegetais/farmacologia , 4-Butirolactona/isolamento & purificação , 4-Butirolactona/farmacologia , 4-Butirolactona/uso terapêutico , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Animais , Relação Dose-Resposta a Droga , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/patologia , Gastroenteropatias/induzido quimicamente , Gastroenteropatias/patologia , Imidazóis/isolamento & purificação , Imidazóis/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Masculino , Extratos Vegetais/isolamento & purificação , Folhas de Planta , Substâncias Protetoras/isolamento & purificação , Substâncias Protetoras/farmacologia , Ratos , Ratos Wistar
8.
Rev Bras Parasitol Vet ; 25(2): 248-53, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27334829

RESUMO

The aim of this study was to assess the activity of aqueous (AE) and ethanolic extracts (EE) and pilocarpine hydrochloride, which were extracted and isolated from Pilocarpus microphyllus (Jaborandi), respectively, on Rhipicephalus (Boophilus) microplus. High performance liquid chromatography (HPLC) was performed to quantify these compounds. Larval packet and adult immersion tests were conducted with different concentrations. Five AE and EE concentrations, ranging from 6.2 to 100.0 mg mL-1, and six concentrations of pilocarpine hydrochloride, ranging from 0.7 to 24.0 mg mL-1, were tested. The lethal concentration (LC50) of each extract for larvae and engorged females was calculated through Probit analysis. The concentration of pilocarpine hydrochloride obtained from the EE and the AE was 1.3 and 0.3% (m/m), respectively. Pilocarpine hydrochloride presented the highest acaricidal activity on larvae (LC50 2.6 mg mL-1) and engorged females (LC50 11.8 mg mL-1) of R.(B.) microplus, followed by the EE which presented LC50 of 56.4 and 15.9 mg mL-1, for larvae and engorged females, respectively. Such results indicate that pilocarpine hydrochloride has acaricidal activity, and may be the primary compound responsible for this activity by P. microphyllus EE.


Assuntos
Acaricidas/farmacologia , Pilocarpina/farmacologia , Pilocarpus/química , Extratos Vegetais/farmacologia , Rhipicephalus/efeitos dos fármacos , Animais , Feminino , Larva/efeitos dos fármacos , Dose Letal Mediana
9.
Rev. bras. parasitol. vet ; 25(2): 248-253, tab
Artigo em Inglês | LILACS | ID: lil-785159

RESUMO

Abstract The aim of this study was to assess the activity of aqueous (AE) and ethanolic extracts (EE) and pilocarpine hydrochloride, which were extracted and isolated from Pilocarpus microphyllus (Jaborandi), respectively, on Rhipicephalus (Boophilus) microplus. High performance liquid chromatography (HPLC) was performed to quantify these compounds. Larval packet and adult immersion tests were conducted with different concentrations. Five AE and EE concentrations, ranging from 6.2 to 100.0 mg mL–1, and six concentrations of pilocarpine hydrochloride, ranging from 0.7 to 24.0 mg mL–1, were tested. The lethal concentration (LC50) of each extract for larvae and engorged females was calculated through Probit analysis. The concentration of pilocarpine hydrochloride obtained from the EE and the AE was 1.3 and 0.3% (m/m), respectively. Pilocarpine hydrochloride presented the highest acaricidal activity on larvae (LC50 2.6 mg mL–1) and engorged females (LC50 11.8 mg mL–1) of R.(B.) microplus, followed by the EE which presented LC50 of 56.4 and 15.9 mg mL–1, for larvae and engorged females, respectively. Such results indicate that pilocarpine hydrochloride has acaricidal activity, and may be the primary compound responsible for this activity by P. microphyllus EE.


Resumo O objetivo desse estudo foi avaliar a atividade dos extratos aquoso (AE) e etanólico (EE) e do cloridrato de pilocarpina, que foram, respectivamente, extraídos e isolado de Pilocarpus microphyllus (Jaborandi), sobre Rhipicephalus (Boophilus) microplus. Cromatografia líquida de alta eficiência foi realizada para quantificação dos compostos. Testes de pacote de larvas e de imersão de adultos foram realizados com diferentes concentrações. Cinco concentrações do AE e EE variando de 6,2 a 100,0 mg mL–1 e seis concentrações do cloridrato de pilocarpina variando de 0,7 a 24,0 mg mL–1 foram testadas. A concentração letal (CL50) de cada extrato para larvas e fêmeas ingurgitadas foi estimada por meio da análise Probit. A concentração de cloridrato de pilocarpina obtida do EE e AE foi de 1,3 e 0,3% (m/m), respectivamente. O cloridrato de pilocarpina apresentou a maior atividade carrapaticida sobre larvas (CL50 2,6 mg mL–1) e fêmeas ingurgitadas (CL50 11,8 mg mL–1) de R. (B.) microplus, seguido do EE que apresentou CL50 de 56,4 e 15,9 mg mL–1, para larvas e fêmeas ingurgitadas, respectivamente. Tais resultados indicam que o cloridrato de pilocarpina apresenta atividade carrapaticida e pode ser o principal responsável pela atividade acaricida do EE de P. microphyllus.


Assuntos
Animais , Feminino , Pilocarpina/farmacologia , Extratos Vegetais/farmacologia , Pilocarpus/química , Rhipicephalus/efeitos dos fármacos , Acaricidas/farmacologia , Larva/efeitos dos fármacos , Dose Letal Mediana
10.
Nat Prod Commun ; 10(5): 721-4, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26058143

RESUMO

Pilocarpine is found exclusively in species of Pilocarpus and the presence of other imidazole alkaloids has been reported in several species of the genus. Pilocarpine has several important pharmaceutical applications. Although several imidazole alkaloids related to pilocarpine have been reported in the previous years, little is still known about its biosynthetic route. At most, histidine has been reported as the precursor of pilocarpine. Based on our own previous reports and in an experiment where pilocarpine and related alkaloids (pilosine, trachyllophiline and anhydropilosine) were supplied to P. microphyllus leaves and the alkaloid profile analyzed by UPLC-MS, we suggest a biosynthesis pathway for pilocarpine. Further experiments using labeled precursors associated with transcriptome data may allow us to understand the whole biosynthesis pathway and its genetic control.


Assuntos
Pilocarpina/biossíntese , Pilocarpus/metabolismo , Vias Biossintéticas , Estrutura Molecular , Pilocarpina/química , Pilocarpus/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Espectrometria de Massas por Ionização por Electrospray
11.
Rev. bras. plantas med ; 16(4): 812-818, oct.-dic. 2014. ilus, graf, tab
Artigo em Português | LILACS | ID: lil-729888

RESUMO

A investigação química da espécie Pilocarpus spicatus, popularmente conhecida como jaborandi e usada na medicina tradicional para doenças como estomatite, febre, bronquite e psoríase, teve por objetivo o isolamento e/ou identificação de substâncias ativas e a avaliação da atividade antiparasitária dos extratos frente às formas epimastigotas de Trypanosoma cruzi. O estudo resultou na identificação de nove substâncias, tais como: tridecanona, 2-heptadecanona, espatulenol, aromadendreno, β-cariofileno, ácido 3α-hidroxitirucala-7,24-dien-21-óico, (+)-isoangenomalina, episesamina e sesamina. As estr uturas dos compostos foram elucidadas por análises espectroscópicas e comparação com dados da literatura. Os extratos hexânico e metanólico de folhas e raízes foram testados in vitro contra o Trypanosoma cruzi cepa Y e apresentaram atividade tripanomicida.


The chemical investigation of the species Pilocarpus spicatus - popularly known as jaborandi and used in traditional medicine for diseases, such as stomatitis, fever, bronchitis and psoriasis - aimed to isolate and / or identify the active substances and evaluate the antiparasitic activity of the extracts against the Trypanosoma cruzi epimastigote forms. The study resulted in the identification of nine substances, such as tridecanone, 2-heptadecanone, spathulenol, aromadendrene, β-caryophyllene, 3α-hydroxytirucalla-7,24-dien-21-oic acid, (+)-isoangenomaline, episesamin and sesamin. The structures were elucidated by spectroscopic analysis and comparison with literature data. The hexane and methanol extracts from leaves and roots were tested in vitro against Trypanosoma cruzi Y strain and showed trypanocidal activity.


Assuntos
Trypanosoma cruzi/isolamento & purificação , Jaborandi/farmacologia , Pilocarpus/química , Extratos Vegetais/síntese química , Rutaceae/classificação , Antiparasitários/farmacologia
12.
PLoS One ; 8(6): e66702, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840522

RESUMO

This paper presents an industrial scale process for extraction, purification, and isolation of epiisopiloturine (EPI) (2(3H)-Furanone,dihydro-3-(hydroxyphenylmethyl)-4-[(1-methyl-1H-imidazol-4-yl)methyl]-, [3S-[3a(R*),4b]]), which is an alkaloid from jaborandi leaves (Pilocarpus microphyllus Stapf). Additionally for the first time a set of structural and spectroscopic techniques were used to characterize this alkaloid. EPI has shown schistomicidal activity against adults and young forms, as well as the reduction of the egg laying adult worms and low toxicity to mammalian cells (in vitro). At first, the extraction of EPI was done with toluene and methylene chloride to obtain a solution that was alkalinized with ammonium carbonate. The remaining solution was treated in sequence by acidification, filtration and alkalinization. These industrial procedures are necessary in order to remove impurities and subsequent application of the high performance liquid chromatography (HPLC). The HPLC was employed also to remove other alkaloids, to obtain EPI purity higher than 98%. The viability of the method was confirmed through HPLC and electrospray mass spectrometry, that yielded a pseudo molecular ion of m/z equal to 287.1 Da. EPI structure was characterized by single crystal X-ray diffraction (XRD), (1)H and (13)C nuclear magnetic resonance (NMR) in deuterated methanol/chloroform solution, vibrational spectroscopy and mass coupled thermal analyses. EPI molecule presents a parallel alignment of the benzene and the methyl imidazol ring separated by an interplanar spacing of 3.758 Å indicating a π-π bond interaction. The imidazole alkaloid melts at 225°C and decomposes above 230°C under air. EPI structure was used in theoretical Density Functional Theory calculations, considering the single crystal XRD data in order to simulate the NMR, infrared and Raman spectra of the molecule, and performs the signals attribution.


Assuntos
4-Butirolactona/análogos & derivados , Imidazóis/isolamento & purificação , Pilocarpus/química , Folhas de Planta/química , Esquistossomicidas/isolamento & purificação , 4-Butirolactona/química , 4-Butirolactona/isolamento & purificação , Cristalografia por Raios X , Imidazóis/química , Extratos Vegetais/química
13.
J Ethnopharmacol ; 142(3): 762-8, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22683904

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Like many traditional medical systems found at Latin America, the very existence of a Brazilian traditional medical system is debated. Despite the absence of written material and organized knowledge, there is little doubt that Brazilians from all regions and all social classes recognize and access an estimated 4000 plant species with alleged therapeutic purposes as well as medicinal practices ranging from bone setting to spiritual healing. This "Brazilian folk medicine" is usually described as a rich mixture of African, European, and Indigenous medical traditions. AIM OF THE STUDY: This study questions this view, and argues it is both simplistic and Eurocentric. MATERIALS AND METHODS: By scrutinizing the origins of the medical uses of Zingiberis officinale, Curcuma longa, Ruta officinalis, Cephaelis ipecacuanha, Pilocarpus pinnatifolius, and curare (Chondrodendron, Abuta and Curarea), we illustrate the intense circulation of materials during imperial times. We further discuss how these practices articulated with local medical knowledge, and exemplify some of the ways by which knowledge was produced, transformed, incorporated, and resignified over time. DISCUSSION: Though not a systematic or comprehensive analysis of Brazilian folk medicine development, these selected examples show that, in opposition to usual simplistic descriptions, complex and convoluted manners of medicinal plant development occurred over time to compound both the Brazilian and European pharmaceutical armamentarium.


Assuntos
Disseminação de Informação , Medicina Tradicional , Plantas Medicinais , Brasil , Cephaelis , Curare , Curcuma , Etnofarmacologia , Zingiber officinale , Humanos , Pilocarpus , Portugal , Ruta
14.
Planta Med ; 77(3): 293-300, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20845264

RESUMO

Pilocarpine is an imidazole alkaloid that has been used for more than a century in glaucoma treatment. It is present in several species of the Pilocarpus genus (jaborandi), with its highest concentrations in P. microphyllus. In addition to pilocarpine, pilosine--an imidazole alkaloid without pharmacological use--is produced in high concentrations in mature plants. A metabolomic study was carried out on juvenile and mature plants to obtain information about pilocarpine metabolism at different developmental stages. Methanol-water and alkaloid extracts were analyzed by ¹H NMR and ESI-MS. Metabolic profiles from both techniques showed clear differences between various developmental stages. Intense signals in the aromatic region of the ¹H NMR spectrum and ions from pilosine and related alkaloids by ESI/MS were found only in extracts from mature plant. Two new imidazole alkaloids were identified by MS(n). Our results suggest that pilosine is produced exclusively in mature developmental stage, and juvenile plant material seems to be appropriate for further studies on pilocarpine biosynthesis.


Assuntos
Imidazóis/metabolismo , Pilocarpina/biossíntese , Pilocarpus/metabolismo , Metaboloma , Espectrometria de Massas por Ionização por Electrospray
15.
Molecules ; 13(7): 1518-29, 2008 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-18719522

RESUMO

Pilocarpine, an important imidazole alkaloid, is extracted from the leaves of Pilocarpus microphyllus (Rutaceae), known in Brazil as jaborandi and used mainly for the treatment of glaucoma. Jaborandi leaves also contain other imidazole alkaloids, whose pharmacological and physiological properties are unknown, and whose biosynthetic pathways are under investigation. In the present study, a HPLC method coupled with ESI-MS(n) was developed for their qualitative and quantitative analysis. This method permits the chromatographic separation of the imidazole alkaloids found in extracts of jaborandi, as well as the MS/MS analysis of the individual compounds. Thus two samples: leaves of P. microphyllus and a paste that is left over after the industrial extraction of pilocarpine; were compared. The paste was found to contain significant amounts of pilocarpine and other imidazole alkaloids, but had a slightly different alkaloid profile than the leaf extract. The method is suitable for the routine analysis of samples containing these alkaloids, as well as for the separation and identification of known and novel alkaloids from this family, and may be applied to further studies of the biosynthetic pathway of pilocarpine in P. microphyllus.


Assuntos
Alcaloides/química , Imidazóis/química , Pilocarpus/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Alcaloides/análise , Cromatografia Líquida de Alta Pressão , Imidazóis/análise , Pilocarpina/química , Extratos Vegetais/análise , Extratos Vegetais/química
16.
Plant Biol (Stuttg) ; 9(6): 793-9, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17682964

RESUMO

Jaborandi (Pilocarpus microphyllus) is a species that naturally occurs in the North and Northeast of Brazil, whose leaves produce pilocarpine (an imidazole alkaloid that has been used to treat glaucoma and xerostomy), the biosynthesis of which is still uncertain. The aim of this work was to establish cell lineages and select them according to an alkaloid profile similar to the one from Jaborandi leaves. The induction of callus was done in different culture media and growth regulators. Calluses from primary cultures or those subcultured several times were used as explants for the obtainment of six cell lineages. Alkaloids content analyses and growth curves showed that lines obtained from primary cultures produced more alkaloids and a better development. Cell lines from 12 subcultures presented a decrease in pilocarpine and pilosine production. After 24 subcultures, the production of alkaloids remained constant. ESI-MS analysis showed that cell culture extracts have the same alkaloid composition as extracts made from leaves. The results indicate that cell suspensions can be used as a model to study the biosynthesis of the imidazole alkaloid in P. microphyllus.


Assuntos
Pilocarpina/biossíntese , Pilocarpus/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Meios de Cultura , Pilocarpina/química , Pilocarpus/citologia , Extratos Vegetais/química , Folhas de Planta/metabolismo , Espectrometria de Massas por Ionização por Electrospray
17.
Rapid Commun Mass Spectrom ; 21(7): 1205-13, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17330216

RESUMO

Pilocarpus microphyllus (Rutaceae), popularly known as jaborandi, is the only commercial source of an imidazole alkaloid named pilocarpine. In the present study, the variation in the profile of imidazole alkaloids in different seasons and in different parts of the P. microphyllus plant during the summer was analyzed by electrospray ionization mass spectrometry in the positive ion mode [ESI(+)-MS]. The fingerprints of these extracts repeatedly presented similar ions which were mass-selected and studied by tandem mass spectrometry (ESI-MS/MS and ESI-MS/MS/MS) and high-resolution mass spectrometry, resulting in the characterization of eight imidazole alkaloids. The data from the ESI(+)-MS fingerprints were analyzed by principal component analysis (PCA), showing that pilocarpine was present mainly in the summer, whereas in the autumn mainly pilosine and winter anhydropilosine were found. Three alkaloids, reported for the first time in extracts of P. microphyllus, were found. Analysis of the distribution of alkaloids in different parts of the plant during the summer showed that, although pilocarpine was present throughout the plant, 13-nor-8(11)-dihydropilocarpine was found mainly in the stem, pilosine and anhydropilosine were present mainly in the intermediary leaves, and the three new alkaloids were mainly found in the leaflets and petioles. Based on the dissociation patterns of these alkaloids, we observed that there were three structurally related groups of alkaloids differing in their distribution in the plant tissues and responding differently to seasonal variations. These results also indicate that these three groups of alkaloids could belong to intermediate, parallel or competitive pathways for pilocarpine formation biosynthesis.


Assuntos
Alcaloides/química , Imidazóis/química , Pilocarpus/metabolismo , Extratos Vegetais/química , Estruturas Vegetais/química , Estações do Ano , Espectrometria de Massas por Ionização por Electrospray/métodos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA