RESUMO
KEY MESSAGE: The interaction network and pathway map uncover the potential crosstalk between sugar and hormone metabolisms as a possible reason for leaf senescence in P. ternata. Pinellia ternata, an environmentally sensitive medicinal plant, undergoes leaf senescence twice a year, affecting its development and yield. Understanding the potential mechanism that delays leaf senescence could theoretically decrease yield losses. In this study, a typical senescent population model was constructed, and an integrated analysis of transcriptomic and metabolomic profiles of P. ternata was conducted using two early leaf senescence populations and two stay-green populations. The result showed that two key gene modules were associated with leaf senescence which were mainly enriched in sugar and hormone signaling pathways, respectively. A network constructed by unigenes and metabolisms related to the obtained two pathways revealed that several compounds such as D-arabitol and 2MeScZR have a higher significance ranking. In addition, a total of 130 hub genes in this network were categorized into 3 classes based on connectivity. Among them, 34 hub genes were further analyzed through a pathway map, the potential crosstalk between sugar and hormone metabolisms might be an underlying reason of leaf senescence in P. ternata. These findings address the knowledge gap regarding leaf senescence in P. ternata, providing candidate germplasms for molecular breeding and laying theoretical basis for the realization of finely regulated cultivation in future.
Assuntos
Regulação da Expressão Gênica de Plantas , Metabolômica , Pinellia , Reguladores de Crescimento de Plantas , Folhas de Planta , Transcriptoma , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Pinellia/genética , Pinellia/metabolismo , Pinellia/fisiologia , Pinellia/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma/genética , Senescência Vegetal/genética , Perfilação da Expressão Gênica , Açúcares/metabolismo , Metaboloma/genética , Redes Reguladoras de Genes , Metabolismo dos Carboidratos/genéticaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: The combination of Aconitum carmichaelii Debx (Chuanwu, CW) and Pinellia ternata (Thunb.) Breit (Banxia, BX) forms an herbal pair within the eighteen incompatible medicaments (EIM), indicating that BX and CW are incompatible. However, the scientific understanding of this incompatibility mechanism, especially the corresponding drug-drug interaction (DDI), remains complex and unclear. AIM OF THE STUDY: This study aims to explain the DDI and potential incompatibility mechanism between CW and BX based on pharmacokinetics and cocktail approach. MATERIALS AND METHODS: Ultraperformance liquid chromatography-tandem mass spectrometry methods were established for pharmacokinetics and cocktail studies. To explore the DDI between BX and CW, in the pharmacokinetics study, 10 compounds were determined in rat plasma after administering CW and BX-CW herbal pair extracts. In the cocktail assay, the pharmacokinetic parameters of five probe substrates were utilized to assess the influence of BX on cytochrome P450 (CYP) isoenzyme (dapsone for CYP3A4, phenacetin for CYP1A2, dextromethorphan for CYP2D6, tolbutamide for CYP2C9, and omeprazole for CYP2C19). Finally, the DDI and incompatibility mechanism of CW and BX were integrated to explain the rationality of EIM theory. RESULTS: BX not only enhances the absorption of aconitine and benzoylaconine but also accelerates the metabolism of mesaconitine, benzoylmesaconine, songorine, and fuziline. Moreover, BX affects the activity of CYP enzymes, which regulate the metabolism of toxic compounds. CONCLUSIONS: BX altered the activity of CYP enzymes, consequently affecting the metabolism of toxic compounds from CW. This incompatibility mechanism may be related to the increased absorption of these toxic compounds in vivo.
Assuntos
Aconitum , Interações Ervas-Drogas , Pinellia , Ratos Sprague-Dawley , Aconitum/química , Pinellia/química , Animais , Masculino , Ratos , Sistema Enzimático do Citocromo P-450/metabolismo , Espectrometria de Massas em Tandem , Extratos Vegetais/farmacocinética , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/química , Interações MedicamentosasRESUMO
BACKGROUND: Pinellia pedatisecta Schott extract (PE) is extracted from Pinellia pedatisecta Schott (PPS), a traditional Chinese medicinal plant with the potential for direct anticancer effects or eliciting an anti-tumor response by activating the immune system. PURPOSE: To explore PE's ability and mechanism to reconstruct cisplatin's immunogenicity. METHODS: Cervical cancer cells were treated with cisplatin (CDDP) and/or PE. The exposure of calreticulin (CRT) on cell membrane was investigated by flow cytometry. The extracellular of ATP and HMGB1 was investigated by Western blot analysis, immunofluorescence and ELISA assay. Changes in immune profiles were using flow cytometry in vaccination and anti-tumor assays in vivo. Lastly, the mechanism of PE influenced the ROS/ERS pathway was examined by ROS assay kit, flow cytometry and Western blotting. RESULTS: PE treatment induced translocation of CRT from the endoplasmic reticulum to the cell membrane of tumor cells, concomitantly triggering immunogenic cell death (ICD). In terms of mechanisms, endoplasmic reticulum (ER) stress relievers could impede the ability of PE to induce immunogenicity. This indicates that PE is activated by ER stress, leading to subsequent induction of ICD. Upon analyzing RNA-seq data, it was observed that PE primarily induces programmed cell death in tumors by impeding upstream antioxidant mechanisms. Additionally, it transforms dying tumor cells into vaccines, activating a series of immune responses. CONCLUSIONS: This study observed for the first time that PE-induced CRT exposure on the membrane of cervical cancer cells compensates for the defect of nonimmunogenic cell death inducer CDDP thereby stimulating potent ICD. This ability restores the immunogenicity of CDDP through ER stress induced by the ROS signal. ROS played a role in PE's ability to induce ICD, leading to increased expression of ER stress-related proteins, including ATF3 and IRE-1α. PE exerted anti-cancer effects by increasing the ROS levels, and ROS/ERS signaling may be a potential avenue for cervical cancer treatment. Hence, the synergistic use of PE and CDDP holds potential for enhancing immunochemotherapy in cancer treatment.
Assuntos
Calreticulina , Cisplatino , Estresse do Retículo Endoplasmático , Morte Celular Imunogênica , Pinellia , Espécies Reativas de Oxigênio , Neoplasias do Colo do Útero , Cisplatino/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Feminino , Pinellia/química , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Morte Celular Imunogênica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Extratos Vegetais/farmacologia , Proteína HMGB1/metabolismo , Camundongos , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Células HeLa , Antineoplásicos/farmacologiaRESUMO
Pinellia ternata is an important natural medicinal herb in China. However, it is susceptible to withering when exposed to high temperatures during growth, which limits its tuber production. Mitochondria usually function in stress response. The P . ternata mitochondrial (mt) genome has yet to be explored. Therefore, we integrated PacBio and Illumina sequencing reads to assemble and annotate the mt genome of P . ternata . The circular mt genome of P . ternata is 876 608bp in length and contains 38 protein-coding genes (PCGs), 20 tRNA genes and three rRNA genes. Codon usage, sequence repeats, RNA editing and gene migration from chloroplast (cp) to mt were also examined. Phylogenetic analysis based on the mt genomes of P . ternata and 36 other taxa revealed the taxonomic and evolutionary status of P . ternata . Furthermore, we investigated the mt genome size and GC content by comparing P . ternata with the other 35 species. An evaluation of non-synonymous substitutions and synonymous substitutions indicated that most PCGs in the mt genome underwent negative selection. Our results provide comprehensive information on the P . ternata mt genome, which may facilitate future research on the high-temperature response of P . ternata and provide new molecular insights on the Araceae family.
Assuntos
Genoma Mitocondrial , Pinellia , Plantas Medicinais , Pinellia/genética , Genoma Mitocondrial/genética , Filogenia , Plantas Medicinais/genética , TubérculosRESUMO
Before the Song Dynasty, the main processing method of Pinelliae Rhizoma was soup washing. The "new method" in Taiping Huimin Heji JuFang is a processing method that concocted with Ginger,white alum and starter-making.The "Fa Banxia" in the Yuan Dynasty's Yuyuan Yaofang comes from the Taiping Huimin Heji JuFang, and the Fa Wen Banxia, Fa Bai Banxia, and Fa Hong Banxia are the processing methods of patent medicine with a variety of other herbs.Fa Banxia appeared in the Ming Dynasty, and its auxiliary materials were ginger and white alum, and medical formulary began to include formulas containing Fa Banxia. Bencao Gangmu abbreviates the Yuan Dynasty's Fabai Banxia as "Fa Banxia", and is elaborated under the item attached "prescription" item instead of the "treatment". In the literature of Materia Medica, it is recorded that the preparation of auxiliary materials in Fa Banxia increased, including lime, licorice, soap horn, and simple nitro.After Daoguang in the Qing Dynasty, the Fa Banxia in famous medical cases was more used, and at that time, Fa Banxia was Xian Banxia. There are two recipes for Xian Banxia: one is made with seven processes, and the other is soaked in alum licorice water. During the Republican period, Zhang Cigong also pointed out that Fa Banxia was sliced Xian Banxia after rinsing and boiling, while the preparation method of Xian Banxia was Banxia made of ginger and white alum.Ye Juquan pointed out that the so-called "fa" is neither an ancient method nor a new method, questioning the process of repeated immersion in Banxia. After 1949, the questioning of Fa Banxia continued unceasing.Influenced by this, the 1960 edition Beijing Traditional Chinese Medicine Slice Cutting Experience included the method of soaking alum, licorice ,lime water, and was included in the 1963 edition of the Pharmacopoeia of the People's Republic of China.The 1985 version reduced the soaking time and eliminated the soaking process of alum based on the 1963 version, and this method is still used today.
Assuntos
Medicamentos de Ervas Chinesas , Pinellia , Humanos , Medicina Tradicional Chinesa , China , ÁguaRESUMO
Pinellia ternata, a traditional Chinese medicine, is well-renowned for its effectiveness in treating sickness such as coughs with excessive phlegm, vomiting, and nausea. The nucleoside components of P. ternata have been shown to have antitumor activity. Identifying potential growth areas of high-quality P. ternata based on the content of five nucleoside components and the identification of climatic features suitable for the growth of P. ternata will help to conserve P. ternata resources with targeted bioactive compounds. Using high-performance liquid chromatography (HPLC), we determined five nucleoside components, uridine, guanosine, adenosine, inosine, and thymidine, at 27 sampling points of P. ternata collected from 21 municipalities of 11 provinces in China. We used ecological niche modeling to identify the major environmental factors associated with the high metabolite content of P. ternata, including precipitation of the warmest quarter, annual mean temperature, annual precipitation, and isothermality. Areas with high suitability for the five nucleosides were found in Hebei, Shandong, Shanxi, Gansu, Sichuan, Guizhou, and Hubei Provinces. Under the RCP 2.6, RCP 4.5, and RCP 8.5 scenarios, the areas with a suitable distribution decreased and some areas with high suitability became areas with low suitability. Overall, our findings advance our knowledge of the ecological impacts of climate change and provide a valuable reference for conserving and sustainably developing high-quality P. ternata resources in the future.
Assuntos
Nucleosídeos , Pinellia , Monitoramento Ambiental , Ecossistema , ChinaRESUMO
Pinellia tuber, the dried tuber of Pinellia ternata, causes a very strong acridity sensation in the oral and laryngopharynx mucosa when taken orally in its unprocessed form. In traditional Chinese medicine (TCM), this sensation has been called "toxicity", and Pinellia tuber must be processed using ginger extract, licorice, or alum. In Japanese traditional Kampo medicine, since "toxicity" can be eliminated by decocting, it should not be processed. However, little is known about the mechanism underlying the "detoxification" of Pinellia tubers. In this study, we produced murine antiserum using recombinant P. ternata lectin (PTL), developed an immuno-fluorescence staining method for PTL in the needle-shaped crystals (raphides) that were prepared by petroleum ether extraction (PEX) from Pinellia tuber, and elucidated the mechanism of the processing of Pinellia tuber using heat or ginger extract. After heating the raphides in water, the amount of PTL contained in the raphides was significantly reduced by the immunostaining, although the shape of the raphides was not changed. Incubating raphides with dried ginger extract also significantly reduced the amount of PTL in the raphides in a concentration-dependent manner. By the activity-guided fractionation of ginger extract, the active ingredients in the ginger extract were oxalic acid, tartaric acid, malic acid, and citric acid. Among these four organic acids, oxalic acid mainly contributed to the effect of dried ginger extract by its content in ginger extract and its activity. These results exhibit scientific evidences for the traditional theories of processing to "detoxify" Pinellia tuber in TCM and Kampo medicine.
Assuntos
Pinellia , Camundongos , Animais , Pinellia/química , Calefação , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Lectinas , Ácido OxálicoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Pinellia ternata (Thunb.) Breit. (PT) has been demonstrated to be effective against the allergic airway inflammation (AAI) in clinical practices, especially in cold asthma (CA). Until now, the active ingredients, protective effect, and possible mechanism of PT against CA remain unknown. AIM OF THE STUDY: The aim of this investigation was to examine the therapeutic impact and elucidate the underlying mechanism of PT on the AAI of CA. METHODS: The compositions of PT water extract were determined via the UPLC-Q-TOF-MS/MS. The ovalbumin (OVA) and cold-water baths were used to induce CA in female mice. Morphological characteristic observations, expectorant effect, bronchial hyperreactivity (BHR), excessive mucus secretion, and inflammatory factors were used to uncover the treatment effect of PT water extract. In addition, the mucin 5AC (MUC5AC) mRNA and protein levels and the aquaporin 5 (AQP5) mRNA and protein levels were detected via qRT-PCR, immunohistochemistry (IHC), and western blotting. Moreover, the protein expressions associated with the TLR4, NF-κB, and NLRP3 signaling pathway were monitored by western blot analysis. RESULTS: Thirty-eight compounds were identified from PT water extract. PT showed significant therapeutic effects on mice with cold asthma in terms of expectorant activity, histopathological changes, airway inflammation, mucus secretion, and hyperreactivity. PT exhibited good anti-inflammatory effects in vitro and in vivo. The expression levels of MUC5AC mRNA and protein decreased significantly, while AQP5 expression levels increased significantly in the lung tissues of mice after administration with PT as compared to mice induced by CA. Furthermore, the protein expressions of TLR4, p-iκB, p-p65, IL-1ß, IL-18, NLRP3, cleaved caspase-1, and ASC were markedly reduced following PT treatment. CONCLUSIONS: PT attenuated the AAI of CA by modulating Th1- and Th2-type cytokines. PT could inhibit the TLR4-medicated NF-kB signaling pathway and activate the NLRP3 inflammasome to reduce CA. This study provides an alternative therapeutic agent of the AAI of CA after administration with PT.
Assuntos
Asma , Pinellia , Feminino , Camundongos , Animais , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pinellia/química , Receptor 4 Toll-Like/metabolismo , Expectorantes/uso terapêutico , Espectrometria de Massas em Tandem , Asma/patologia , Transdução de Sinais , Pulmão , Inflamação/patologia , RNA Mensageiro/metabolismo , Ovalbumina/farmacologiaRESUMO
BACKGROUND: and purpose: Banxia-Houpo-Tang (Banha-Hubak-Tang, BHT) is an East Asian traditional herbal medicine used for treating depression. Hence, this review aimed to provide reliable evidence on the efficacy and safety of BHT for depression. METHODS: Overall, 15 electronic databases were searched until July 31, 2022, and randomized controlled trials (RCTs) of BHT for depression were reviewed. The cochrane risk of bias tool version 2.0 was used for quality assessment. A meta-analysis was conducted to evaluate the efficacy and safety of BHT for depression. RESULTS: Fifteen RCTs (1,714 participants) were included. The pooled results suggested that the efficacy of BHT alone (standardized mean difference [SMD], -0.39; 95% confidence interval [CI], -0.79 to 0.00; P = 0.05) was similar to that of antidepressants alone in terms of the Hamilton depression scale (HAMD) scores. Their combination led to a more significant improvement in HAMD scores (SMD, -0.91; 95% CI, -1.21 to 0.60; P < 0.00001). Moreover, compared with antidepressants alone, BHT alone had a lower risk of causing adverse events, but the combination therapy exhibited a similar risk. No severe adverse events were reported. The overall risk of bias was high. The quality of evidence was very low to moderate. CONCLUSION: The study results indicate that BHT may be beneficial for treating depression. However, due to the clinical heterogeneity and low methodological quality of the included studies, the obtained findings should be interpreted with caution. Hence, further studies on this topic are warranted.
Assuntos
Pinellia , Humanos , Depressão/terapia , Antidepressivos/efeitos adversos , Terapia CombinadaRESUMO
Pinellia ternata (Thunb.) Breit. (P. ternata) is a very important plant that is commonly used in traditional Chinese medicine. Its corms can be used as medicine and function to alleviate cough, headache, and phlegm. The epidermis of P. ternata corms is often light yellow to yellow in color; however, within the range of P. ternata found in JingZhou City in Hubei Province, China, there is a form of P. ternata in which the epidermis of the corm is red. We found that the total flavonoid content of red P. ternata corms is significantly higher than that of yellow P. ternata corms. The objective of this study was to understand the molecular mechanisms behind the difference in epidermal color between the two forms of P. ternata. The results showed that a high content of anthocyanidin was responsible for the red epidermal color in P. ternata, and 15 metabolites, including cyanidin-3-O-rutinoside-5-O-glucoside, cyanidin-3-O-glucoside, and cyanidin-3-O-rutinoside, were screened as potential color markers in P. ternata through metabolomic analysis. Based on an analysis of the transcriptome, seven genes, including PtCHS1, PtCHS2, PtCHI1, PtDFR5, PtANS, PtUPD-GT2, and PtUPD-GT3, were found to have important effects on the biosynthesis of anthocyanins in the P. ternata corm epidermis. Furthermore, two transcription factors (TFs), bHLH1 and bHLH2, may have regulatory functions in the biosynthesis of anthocyanins in red P. ternata corms. Using an integrative analysis of the metabolomic and transcriptomic data, we identified five genes, PtCHI, PtDFR2, PtUPD-GT1, PtUPD-GT2, and PtUPD-GT3, that may play important roles in the presence of the red epidermis color in P. ternata corms.
Assuntos
Pinellia , Transcriptoma , Antocianinas/genética , Antocianinas/metabolismo , Pinellia/genética , Perfilação da Expressão Gênica , Glucosídeos/metabolismoRESUMO
BACKGROUND: Pinellia ternata (P. ternata, Banxia)-containing traditional Chinese medicine (TCM) is widely used in China as an adjuvant treatment for chemotherapy-induced nausea and vomiting (CINV). However, evidence of its efficacy and safety remains limited. PURPOSE: To investigate the efficacy and safety of P. ternata-containing TCM combined with 5-hydroxytryptamine-3 receptor antagonists (5-HT3RAs) in the treatment of CINV. STUDY DESIGN: Systematic review and meta-analysis of randomized controlled trials (RCTs). METHODS: All relevant RCTs were systematically retrieved from seven internet databases (up to February 10, 2023). P. ternata-containing TCM combined with 5-HT3RAs to treat CINV was included in all RCTs. The clinical effective rate (CER) was defined as the primary outcome, while appetite, quality of life (QOL), and side effects were secondary outcomes. RESULTS: The meta-analysis included 22 RCTs with 1,787 patients. Our results indicated that P. ternata-containing TCM combined with 5-HT3RAs significantly improved the CER of CINV (RR = 1.46, 95% CI = 1.37-1.57, p < 0.00001), appetite (RR = 1.77, 95% CI = 1.42-2.20, p < 0.00001), QOL (RR = 7.67, 95% CI = 1.56-13.78, p = 0.01), the CER of several 5-HT3RA medications (RR = 1.47, 95% CI = 1.37-1.57, p < 0.00001), and acute and delayed vomiting (RR = 1.23, 95% CI = 1.12-1.36, p < 0.0001) compared with the 5-HT3RAs alone, while the combination therapy decreased the incidence of side effects induced by 5-HT3RAs for CINV (RR = 0.50, 95% CI = 0.42-0.59, p < 0.00001). CONCLUSION: According to the findings of this systematic review and meta-analysis, P. ternata-containing TCM combined with 5-HT3RAs was safer and more effective than 5-HT3RAs alone for CINV patients. However, due to the limitations of the included studies, more high-quality clinical trials are required to further validate our findings.
Assuntos
Antineoplásicos , Pinellia , Humanos , Medicina Tradicional Chinesa/efeitos adversos , Vômito/induzido quimicamente , Vômito/tratamento farmacológico , Náusea/induzido quimicamente , Náusea/tratamento farmacológico , Antineoplásicos/uso terapêuticoRESUMO
The dried tuber of Pinellia ternata (Thunb.) Breit, Pinelliae Rhizoma (PR, also named 'Banxia' in Chinese), is widely used in traditional medicine. This review aims to provide detail summary of active ingredients, pharmacological effects, toxic ingredients, detoxification strategies, and omic researches, etc. Pharmacological ingredients from PR are mainly classified into six categories: alkaloids, amino acids, polysaccharides, phenylpropanoids, essential oils, and glucocerebrosides. Diversity of chemical composition determines the broad-spectrum efficacy and gives a foundation for the comprehensive utilization of P. ternata germplasm resources. The pharmacological compounds are involved in inhibition of cancer cells by targeting various pathways, including activation of immune system, inhibition of proliferation and cycle, induction of apoptosis, and inhibition of angiogenesis. The pharmacological components of PR act on nervous system by targeting neurotransmitters, activating immune system, decreasing apoptosis, and increasing redox system. Lectins, one major class of the toxic ingredients extracted from raw PR, possess significant toxic effects on human cells. Inflammatory factors, cytochrome P450 proteins (CYP) family enzymes, mammalian target of rapamycin (mTOR) signaling factors, transforming growth factor-ß (TGF-ß) signaling factors, and nervous system, are considered to be the target sites of lectins. Recently, omic analysis is widely applied in Pinellia genus studies. Plastome genome-based molecular markers are deeply used for identifying and resolving phylogeny of Pinellia genus plants. Various omic works revealed and functional identified a series of environmental stress responsive factors and active component biosynthesis-related genes. Our review summarizes the recent progress in active and toxic ingredient evaluation, pharmacological effects, detoxification strategies, and functional gene identification and accelerates efficient utilization of this traditional herb.
Assuntos
Alcaloides , Medicamentos de Ervas Chinesas , Pinellia , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Pinellia/química , Multiômica , LectinasRESUMO
Pinellia ternata is an important medicinal plant, and its growth and development are easily threatened by high temperature. In this study, comprehensive research on physiological, cytological and transcriptional responses to different levels of heat stress were conducted on a typical phenotype of P. ternata. First, P. ternata exhibited tolerance to the increased temperature, which was supported by normal growing leaves, as well as decreased and sustained photosynthetic parameters. Severe stress aggravated the damages, and P. ternata displayed an obvious leaf senescence phenotype, with significantly increased SOD and POD activities (46% and 213%). In addition, mesophyll cells were seriously damaged, chloroplast thylakoid was fuzzy, grana lamellae and stroma lamellae were obviously broken, and grana thylakoids were stacked, resulting in a dramatically declined photosynthetic rate (74.6%). Moreover, a total of 16 808 genes were significantly differential expressed during this process, most of which were involved in photosynthesis, transmembrane transporter activity and plastid metabolism. The number of differentially expressed transcription factors in MYB and bHLH families was the largest, indicating that these genes might participate in heat stress response in P. ternata. These findings provide insight into the response to high temperature and facilitate the standardized cultivation of P. ternata.
Assuntos
Pinellia , Plantas Medicinais , Pinellia/genética , Resposta ao Choque Térmico/genética , Fotossíntese/genética , Plantas Medicinais/genética , FenótipoRESUMO
The present study investigated the effect of immersion in the excipient lime water on the toxic component lectin protein and explained the scientific connotation of lime water detoxication during the processing of Pinelliae Rhizoma Praeparatum. Western blot was used to investigate the effects of immersion in lime water with different pH(pH 10, 11, and 12.4), saturated sodium hydroxide, and sodium bicarbonate solution on the content of lectin protein. The protein compositions of the supernatant and the precipitate after immersing lectin protein in lime water of different pH were determined by the SDS-PAGE method combined with the silver staining technique. The MALDI-TOF-MS/MS technique was used to detect the molecular weight distribution of peptide fragments in the supernatant and precipitate after immersing lectin protein in lime water of different pH, and circular dichroism spectroscopy was used to detect the ratio changes in the secondary structure of lectin protein during the immersion. The results showed that immersion in lime water at pH>12 and saturated sodium hydroxide solution could significantly reduce the content of lectin protein, while immersion in lime water at pH<12 and sodium bicarbonate solution had no significant effect on lectin protein content. The corresponding lectin protein bands and molecular ion peaks were not detected at the 12 kDa position in the supernatant and precipitate after immersing the lectin protein in lime water at pH>12, which was attributed to the fact that lime water immersion at pH>12 could significantly change the ratio of the secondary structure of lectin protein, resulting in irreversible denaturation, while lime water immersion at pH<12 did not change the ratio of the secondary structure of lectin protein. Therefore, pH>12 was the key condition for the detoxication of lime water during the processing of Pinelliae Rhizoma Praeparatum. Lime water immersion at pH>12 could cause irreversible denaturation of lectin protein, resulting in a significant decrease in the inflammatory toxicity of Pinelliae Rhizoma Praeparatum, which played a key role in detoxification.
Assuntos
Lectinas , Pinellia , Bicarbonato de Sódio , Hidróxido de Sódio , Espectrometria de Massas em Tandem , ÁguaRESUMO
Pinellia ternata (Thunb.) Breit. is an important traditional Chinese medicinal herb and very sensitive to high temperatures. To gain a better understanding of flavonoid biosynthesis under heat stress in P. ternata, we performed integrated analyses of metabolome and transcriptome data. P. ternata plants were subjected to a temperature of 38 °C, and samples were collected after 10 d of treatment. A total of 502 differential accumulated metabolites and 5040 different expressed transcripts were identified, with flavonoid biosynthesis predominantly enriched. Integrated metabolomics and transcriptome analysis showed that high temperature treatment upregulated the expression of CYP73A and downregulated the expression of other genes (such as HCT, CCoAOMT, DFR1, DFR2), which might inhibit the biosynthesis of the downstream metabolome, including such metabolites as chlorogenic acid, pelargonidin, cyanidin, and (-)-epigallocatechin in the flavonoid biosynthesis pathway. The transcription expression levels of these genes were validated by real-time PCR. Our results provide valuable insights into flavonoid composition and accumulation patterns and the candidate genes participating in the flavonoid biosynthesis pathways under heat stress in P. ternata.
Assuntos
Pinellia , Transcriptoma , Pinellia/genética , Pinellia/metabolismo , Resposta ao Choque Térmico , Metaboloma , Flavonoides/metabolismoRESUMO
To use bioinformatics and network analysis to reveal the mechanism of "Rhizoma Pinelliae-Rhizoma Coptidis" herb pair in the treatment of lung adenocarcinoma. The target and pathway of "Rhizoma Pinelliae-Rhizoma Coptidis" herb pair in the treatment of lung adenocarcinoma were explored by online databases and network analysis tools, and the potential biomarkers of "Rhizoma Pinelliae-Rhizoma Coptidis" herb pair in the treatment of lung adenocarcinoma were predicted in reverse. A total of 59 traditional Chinese medicine compounds and 510 drug targets were screened in this study. A total of 25 micro-RNAs and 15,323 disease targets were obtained through GEO2R software analysis. In the end, 294 therapeutic targets and 47 core targets were obtained. A total of 186 gene ontology enrichment assays were obtained, and core therapeutic targets play multiple roles in biological processes, molecular functions, and cellular composition. Kyoto encyclopedia of genes and genomes pathway enrichment analysis showed that the core targets were mainly enriched in cancer-related pathways, immune-related pathways, endocrine-related pathways, etc, among which the non-small cell lung cancer pathway was the most significant core pathway. Molecular docking shows that the compound and the target have good binding ability. "Rhizoma Pinelliae-Rhizoma Coptidis" herb pair plays a mechanism of action in the treatment of lung adenocarcinoma through multiple targets and pathways. miR-5703, miR-3125, miR-652-5P, and miR-513c-5p may be new biomarkers for the treatment of lung adenocarcinoma.
Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , MicroRNAs , Pinellia , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Pinellia/química , Simulação de Acoplamento Molecular , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genéticaRESUMO
BACKGROUND: Endophytic fungi of medicinal plants, as special microorganisms, are important sources of antibacterial compounds. However, the diversity and antibacterial activity of endophytic fungi from Pinellia Tenore have not been systematically studied. RESULTS: A total of 77 fungi were isolated from roots, stems, leaves, and tubers of Pinellia ternata and P. pedatisecta. All fungi were belonged to five classes and twenty-five different genera. Biological activities tests indicated that 21 extracts of endophytic fungi exhibited antibacterial activities against at least one of the tested bacteria, and 22 fermentation broth of endophytic fungi showed strong phytotoxic activity against Echinochloa crusgalli with the inhibition rate of 100%. Furthermore, four compounds, including alternariol monomethyl ether (1), alternariol (2), dehydroaltenusin (3) and altertoxin II (4), and three compounds, including terreic acid (5), terremutin (6), citrinin (7), were isolated from Alternaria angustiovoidea PT09 of P. ternata and Aspergillus floccosus PP39 of P. pedatisecta, respectively. Compound 5 exhibited strong antibacterial activities against Escherichia coli, Micrococcus tetragenus, Staphylococcus aureus, and Pseudomonas syringae pv. actinidiae with the inhibition zone diameter (IZD) of 36.0, 31.0, 33.7, 40.2 mm and minimum inhibitory concentration (MIC) values of 1.56, 3.13, 1.56, 1.56 µg/mL respectively, which were better than or equal to those of positive gentamicin sulfate. The metabolite 7 also exhibited strong antibacterial activity against P. syringae pv. actinidiae with the IZD of 26.0 mm and MIC value of 6.25 µg/mL. In addition, the compound 7 had potent phytotoxic activity against E. crusgalli with the inhibition rate of 73.4% at the concentration of 100 µg/mL. CONCLUSIONS: Hence, this study showed that endophytic fungi of P. ternata and P. pedatisecta held promise for the development of new antibiotic and herbicide resources.
Assuntos
Alcaloides , Pinellia , Plantas Medicinais , Pinellia/microbiologia , Fungos , Antibacterianos/farmacologiaRESUMO
Soil contamination by cadmium (Cd) is of global concern, threatening not only crop production, but also supply of herbal medicine. Research studies usually grow crops with Sedum alfredii (a Cd-hyperaccumulator). However, intercropping herbal plants with S. alfredii and their interactions with hydro-chemical properties of soil are rarely considered. This study examines the growth of a herbal plant, Pinellia ternata, intercropped with S. alfredii in Cd-contaminated soil. Plant characteristics were assessed, especially biomass and Cd content of bulbil (yield and quality of P. ternata). Soil hydro-chemical properties including water retention, Cd content and organic matter were determined with statistical analyses. At low soil-Cd contamination (0.6 µg/g), bulbil biomass of intercropped P. ternata (PSL) was almost double compared with monoculture of P. ternata (PL), which is barely significant (p ≈ 0.05). The corm biomass of PSL was also significantly greater than that of PL (p < 0.05). Although soil-Cd contamination became more severe by increasing to 3 µg/g, the bulbil biomass in the intercrop was not significantly different from PL (p > 0.05). That said, it is evidenced that the yield of intercropped P. ternata was improved in Cd-contaminated soil. Such improvement was mainly attributed to reduced soil-Cd content and enhanced soil-water retention which was governed by plant roots and soil organic matters. The soil-water retention was first identified as a critical parameter in promoting plant growth under intercropping. More importantly, the bulbil-Cd content of P. ternata in PSL was significantly reduced (p < 0.05). This study demonstrates that the newly proposed intercrop is feasible to improve yield of herbal plants, and at the same time reduce heavy metal absorption and accumulation in medicinal organs, especially for P. ternata. This is anticipated to reduce the human health risk imposed by ingestion of Chinese herbal plants.
Assuntos
Pinellia , Sedum , Poluentes do Solo , Humanos , Cádmio/análise , Solo , Poluentes do Solo/análise , Biodegradação Ambiental , Raízes de Plantas/química , Água/análiseRESUMO
Pinellia ternata is an important medicinal plant, and its growth and development are easily threatened by high temperature. In this study, comprehensive research on physiological, cytological and transcriptional responses to different levels of heat stress were conducted on a typical phenotype of P. ternata. First, P. ternata exhibited tolerance to the increased temperature, which was supported by normal growing leaves, as well as decreased and sustained photosynthetic parameters. Severe stress aggravated the damages, and P. ternata displayed an obvious leaf senescence phenotype, with significantly increased SOD and POD activities (46% and 213%). In addition, mesophyll cells were seriously damaged, chloroplast thylakoid was fuzzy, grana lamellae and stroma lamellae were obviously broken, and grana thylakoids were stacked, resulting in a dramatically declined photosynthetic rate (74.6%). Moreover, a total of 16 808 genes were significantly differential expressed during this process, most of which were involved in photosynthesis, transmembrane transporter activity and plastid metabolism. The number of differentially expressed transcription factors in MYB and bHLH families was the largest, indicating that these genes might participate in heat stress response in P. ternata. These findings provide insight into the response to high temperature and facilitate the standardized cultivation of P. ternata.
Assuntos
Pinellia/genética , Resposta ao Choque Térmico/genética , Fotossíntese/genética , Plantas Medicinais/genética , FenótipoRESUMO
The evaluation of germplasm resources is the prerequisite for the development, utilization, and conservation of Chinese medicinal resources. The selection of excellent germplasm is the key to the breeding and orderly production of Pinellia ternata. In this study, 21 germplasm materials of P. ternata from major production areas in China were collected and analyzed for population diversity after phenotypic preliminary screening. The results have revealed that the P. ternata population has abundant phenotypic variation, and the phenotypic changes could be divided into five phenotypes in terms of organ trait variation. Further analysis of variation in 20 quantitative traits of the population revealed that the coefficient of variation for adenosine content(339.05%) was the largest, while the coefficient of variation for the underground plant height(16.35%) was the smallest. Correlation analysis showed that there was a strong correlation among various traits, with 52 pairs of traits showing highly significant correlation(P<0.01) and 19 pairs of traits showing a significant correlation(P<0.05). The 21 germplasms in the test could be classified into three major clusters by cluster analysis, with Cluster Ⅱ having the highest number and content of nucleosides, making it suitable for the selection and breeding of P. ternata varieties with high content of nucleosides. The yield in Cluster Ⅲ was higher than that in other groups, making it suitable for the selection and breeding of P. ternata varieties with a high yield. All trait indicators could be simplified into five principal component factors through principal component analysis, and the cumulative contribution rate was up to 86.04%. Further, comprehensive analysis using membership function and stepwise regression analysis identified nine traits, such as plant height, main leaf length, and underground plant height as characteristic indicators for the comprehensive evaluation of germplasm resources of P. ternata. BX007, BX008, and BX005 were identified as germplasms with both high yield and high uridine content, with BX007 having the highest uridine content of 479.51 μg·g~(-1). It belonged to the germplasm of P. ternata with double bulbils and could be cultivated as a potential good variety. Based on the phenotypic classification of P. ternata, systematic resource evaluation was carried out in this study, which could lay a foundation for the excavation of genetic resources and the breeding of new varieties of P. ternata.