Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 651(Pt 1): 381-398, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30240921

RESUMO

Accurate estimation of ecosystem-scale land surface energy and water balance has great importance in weather and climate studies. This paper summarizes seasonal and interannual fluctuations of energy and water balance components in two distinctive semiarid ecosystems, sagebrush (SB) and lodgepole pine (LP) in the Snake River basin of Idaho. This study includes 6 years (2011-2016) of eddy covariance (EC) along with modeled estimates. An analysis of the energy balance indicated a higher energy balance ratio (0.88) for SB than for LP (0.86). The inclusion of canopy storage (CS) increased the association between turbulent fluxes and available energy in LP. Green vegetation fraction (GVF) significantly controlled evapotranspiration (ET) and surface energy partitioning when available energy and soil moisture were not limited. Seasonal water balance in the Budyko framework showed severe water-limited conditions in SB (6-9 months) compared to LP (6-7 months). Based on the validated Noah land surface model estimates, direct soil evaporation (ESoil) is the main component of ET (62 to 79%) in SB due to a large proportion of bare soil (60%), whereas at the lodgepole pine site, it was transpiration (ETran, 42-52%). A complementary ratio (CR) analysis on ET and potential ET (PET) showed a strong asymmetric CR in SB, indicating significant advection. Both SG and LP showed strong coupling between soil moisture (SM) and air temperature (Ta). However, a weak coupling was observed in SB when the soil was dry and Ta was high. This weak coupling was due to the presence of net advection. The results presented here have a wider application: to help us understand and predict the survival, productivity, and hydroclimatology of water-limited ecosystems.


Assuntos
Artemisia/fisiologia , Ecossistema , Metabolismo Energético , Pinus ponderosa/fisiologia , Água/metabolismo , Clima , Idaho , Estações do Ano , Solo/química
2.
Oecologia ; 165(3): 651-61, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20706849

RESUMO

Many plant species exhibit variable and synchronized reproduction, or masting, but less is known of the spatial scale of synchrony, effects of climate, or differences between patterns of pollen and seed production. We monitored pollen and seed cone production for seven Pinus ponderosa populations (607 trees) separated by up to 28 km and 1,350 m in elevation in Boulder County, Colorado, USA for periods of 4-31 years for a mean per site of 8.7 years for pollen and 12.1 for seed cone production. We also analyzed climate data and a published dataset on 21 years of seed production for an eighth population (Manitou) 100 km away. Individual trees showed high inter-annual variation in reproduction. Synchrony was high within populations, but quickly became asynchronous among populations with a combination of increasing distance and elevational difference. Inter-annual variation in temperature and precipitation had differing influences on seed production for Boulder County and Manitou. We speculate that geographically variable effects of climate on reproduction arise from environmental heterogeneity and population genetic differentiation, which in turn result in localized synchrony. Although individual pines produce pollen and seed, only one-third of the covariation within trees was shared. As compared to seed cones, pollen had lower inter-annual variation at the level of the individual tree and was more synchronous. However, pollen and seed production were similar with respect to inter-annual variation at the population level, spatial scales of synchrony and associations with climate. Our results show that strong masting can occur at a localized scale, and that reproductive patterns can differ between pollen and seed cone production in a hermaphroditic plant.


Assuntos
Pinus ponderosa/fisiologia , Pólen/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Clima , Colorado , Pinus ponderosa/crescimento & desenvolvimento , Reprodução/fisiologia , Fatores de Tempo
3.
Tree Physiol ; 27(4): 597-610, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17242001

RESUMO

At the leaf scale, it is a long-held assumption that stomata close at night in the absence of light, causing transpiration to decrease to zero. Energy balance models and evapotranspiration equations often rely on net radiation as an upper bound, and some models reduce evapotranspiration to zero at night when there is no solar radiation. Emerging research is showing, however, that transpiration can occur throughout the night in a variety of vegetation types and biomes. At the ecosystem scale, eddy covariance measurements have provided extensive data on latent heat flux for a multitude of ecosystem types globally. Nighttime eddy covariance measurements, however, are generally unreliable because of low turbulence. If significant nighttime water loss occurs, eddy flux towers may be missing key information on latent heat flux. We installed and measured rates of sap flow by the heat ratio method (Burgess et al. 2001) at two AmeriFlux (part of FLUXNET) sites in California. The heat ratio method allows measurement and quantification of low rates of sap flow, including negative rates (i.e., hydraulic lift). We measured sap flow in five Pinus ponderosa Dougl. ex Laws. trees and three Arctostaphylos manzanita Parry and two Ceanothus cordulatus A. Kellog shrubs in the Sierra Nevada Mountains, and in five Quercus douglasii Hook and Arn. trees at an oak savanna in the Central Valley of California. Nocturnal sap flow was observed in all species, and significant nighttime water loss was observed in both species of trees. Vapor pressure deficit and air temperature were both well correlated with nighttime transpiration; the influence of wind speed on nighttime transpiration was insignificant at both sites. We distinguished between storage-tissue refilling and water loss based on data from Year 2005, and calculated the percentage by which nighttime transpiration was underestimated by eddy covariance measurements at both sites.


Assuntos
Árvores/fisiologia , Arctostaphylos/fisiologia , California , Ceanothus/fisiologia , Ritmo Circadiano , Clima , Escuridão , Ecossistema , Modelos Biológicos , Pinus ponderosa/fisiologia , Transpiração Vegetal/fisiologia , Quercus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA