Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 457: 131795, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37301070

RESUMO

Biofilm-forming marine bacterium Pseudomonas furukawaii PPS-19 showed strong hydrophobicity under different physicochemical stressors, such as pH and salinity. Strong aggregation of P. furukawaii PPS-19 was observed at hydrophobic interfaces of n-dodecane and crude oil, while uptake of pyrene resulted in blue fluorescence of the bacterium. Changes in biofilm microcolonies were observed under different physicochemical stressors with maximum biofilm thickness of 15.15 µm and 15.77 µm at pH 7% and 1% salinity, respectively. Relative expression analysis of alkB2 gene revealed the maximum expression in n-dodecane (10.5 fold) at pH 7 (1 fold) and 1% salinity (8.3 fold). During the degradation process, a significant drop in surface tension resulted in increased emulsification activity. P. furukawaii PPS-19 showed the respective n-dodecane and pyrene degradation of 94.3% and 81.5% at pH 7% and 94.5% and 83% at 1% salinity. A significant positive correlation was obtained between cell surface hydrophobicity (CSH), biofilm formation, and PHs degradation (P < 0.05) under all the physicochemical stressors, with the highest value at pH 7% and 1% salinity. Analysis of metabolites indicated that mono-terminal oxidation and multiple pathways were followed for n-dodecane and pyrene biodegradation, respectively. Thus, P. furukawaii PPS-19 is an efficient hydrocarbonoclastic bacterium that may be exploited for large-scale oil pollution abatement.


Assuntos
Poluição por Petróleo , Petróleo , Petróleo/metabolismo , Hidrocarbonetos/metabolismo , Biodegradação Ambiental , Biofilmes , Bactérias/metabolismo , Pirenos , Interações Hidrofóbicas e Hidrofílicas
2.
Mar Environ Res ; 187: 105920, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36931048

RESUMO

Plants in general and mangroves in particular can harbor hyper-diverse microorganisms in their different compartments including the phyllosphere area. This study used the leaves of three mangrove species; black mangrove (Avicenia germinans), red mangrove (Rhizophora mangle) and mangrove apple (Sonneratia alba) in order to evaluate the phyllosphere epiphytic bacterial community on their leaves surface and assess the ability of some epiphytic bacteria to tolerate and survive under pyrene stress. Through the 16S rRNA genes sequencing, 380203, 405203 and 344863 OTUs were identified respectively in the leaves of mangroves apple, black and red mangroves. The identified OTUs was positively correlated with leaves-wax (p < 0.05, r2 = 0.904), nitrogen (r2 = 0.72), phosphorus content (r2 = 0.62) and the water factor (r2 = 0.93). It was however highly and negatively correlated with the canopy cover (r2 = 0.93). The pyrene degradation rate in the mineral salt medium (MSM) containing pyrene as external stress was different in each mangrove species and varied depending on various factors. Therefore, through the succession culture in MSM, several bacteria strain belonging to Rhizobiales and Enterobacteres were found to be abundant in red mangroves. Bacteria belonging to Bacilliales and Sphingobacteriales were more abundant in mangroves apples and bacteria from Xanthomonadales and Sphingomonadales were more presents in back mangroves. The important finding was to reveal that the black mangrove at the non-submerged substrate, recorded the highest number of OTU, coinciding with its highest leaf's nitrogen and phosphorus content and most importantly, its highest rate of pyrene degradation. The general result of this study join previous research results and get place in the mangrove agenda, as part of a better understanding insight into the role of plant identity in driving the phyllosphere epiphytic microbial community structures in mangrove ecosystems.


Assuntos
Avicennia , Ecossistema , RNA Ribossômico 16S/genética , Bactérias/genética , Plantas/genética , Plantas/microbiologia , Folhas de Planta/microbiologia , Pirenos , Fósforo
3.
Chemosphere ; 321: 138066, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36781003

RESUMO

Benzo(a)pyrene, a five-ring polyaromatic hydrocarbon, originating from coal tar, crude oil, tobacco, grilled foods, car exhaust etc, is highly persistent in the environment. It has been classified as a Group I carcinogen, as on its ingestion in human body, diol epoxide metabolites are generated, which bind to DNA causing mutations and eventual cancer. Among various removal methods, bioremediation is most preferred as it is a sustainable approach resulting in complete mineralization of benzo(a)pyrene. Therefore, in this study, biodegradation of benzo(a)pyrene was performed by two strains of Pseudomonas, i. e WDE11 and WD23, isolated from refinery effluent. Maximum benzo(a)pyrene tolerance was 250 mg/L and 225 mg/L against Pseudomonas sp. WD23 and Pseudomonas sp. WDE11 correspondingly. Degradation rate constants varied between 0.0468 and 0.0513/day at 50 mg/L with half-life values between 13.5 and 14.3 days as per first order kinetics, while for 100 mg/L, the respective values varied between 0.006 and 0.007 L/mg. day and 15.28-16.67 days, as per second order kinetics. The maximum specific growth rate of strains WDE11 and WD23 was 0.3512/day and 0.38/day accordingly, while concentrations over 75 mg/L had an inhibitory effect on growth. Major degradation metabolites were identified as dihydroxy-pyrene, naphthalene-1,2-dicarboxylic acid, salicylic acid, and oxalic acid, indicating benzo(a)pyrene was degraded via pyrene intermediates by salicylate pathway through catechol meta-cleavage. The substantial activity of the catechol 2,3 dioxygenase enzyme was noted during the benzo(a)pyrene metabolism by both strains with minimal catechol 1,2 dioxygenase activity. This study demonstrates the exceptional potential of indigenous Pseudomonas strains in complete metabolism of benzo(a)pyrene.


Assuntos
Benzo(a)pireno , Petróleo , Humanos , Biodegradação Ambiental , Benzo(a)pireno/metabolismo , Pseudomonas/metabolismo , Petróleo/metabolismo , Pirenos/metabolismo , Redes e Vias Metabólicas
4.
Environ Res ; 215(Pt 1): 114185, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36049506

RESUMO

The impacts of crude oil contamination on soil microbial populations were explored in seven different polluted areas near oil and gas drilling sites and refineries of Assam, India. Using high-throughput sequencing techniques, the functional genes and metabolic pathways involved in the bioconversion of crude oil contaminants by the indigenous microbial community were explored. Total petroleum hydrocarbon (TPH) concentrations in soil samples ranged from 1109.47 to 75,725.33 mg/kg, while total polyaromatic hydrocarbon (PAH) concentrations ranged from 0.780 to 560.05 mg/kg. Pyrene, benzo[a]anthracene, naphthalene, phenanthrene, and anthracene had greater quantities than the maximum permitted limits, suggesting a greater ecological risk, in comparison to other polyaromatic hydrocarbons. According to the metagenomic data analysis, the bacterial phyla Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroides were the most prevalent among all polluted areas. The most prominent hydrocarbon degraders in the contaminated sites included Burkholderia, Mycobacterium, Polaromonas, and Pseudomonas. However, the kinds of pollutants and their concentrations did not correlate with the abundances of respective degrading genes for all polluted locations, as some of the sites with little to low PAH contamination had significant abundances of corresponding functional genes for degradation. Thus, the findings of this study imply that the microbiome of hydrocarbon-contaminated areas, which are biologically involved in the degradation process, has various genes, operons and catabolic pathways that are independent of the presence of a specific kind of contaminant.


Assuntos
Microbiota , Petróleo , Fenantrenos , Poluentes do Solo , Antracenos/análise , Antracenos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Hidrocarbonetos , Naftalenos/análise , Naftalenos/metabolismo , Petróleo/análise , Fenantrenos/análise , Pirenos/metabolismo , Solo , Microbiologia do Solo , Poluentes do Solo/análise
5.
Mar Pollut Bull ; 183: 114073, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36084609

RESUMO

In this study, we examined the distribution of polycyclic aromatic hydrocarbons (PAHs) in sediments from the Mahanadi River Estuary (MRE), identified sources, and evaluated the ecological toxicity. The PAHs distributions in MRE ranged from 13.1 to 685.4 ng g-1 (dry weight), with a mean value of 192.91 ± 177.56 ng g-1 (dry weight). Sediments at sites S11, S8, and S13 have the highest 3-rings, 4-rings, and 5-rings PAHs, respectively. In MRE, pyrene has a significantly higher concentration with a mean value of 30.51 ng g-1, followed by Fluoranthene (86.2 ng g-1), Chrysene (67.4 ng g-1), and Benzo(k)fluoranthene (54.2 ng g-1). Site S8 had a higher total PAH concentration than sites S11, S13, and S1. The diagnostic and principal component analysis suggests that PAHs originated from petroleum, oil, biomass, and coal combustion. Higher toxic and mutagenic equivalent quotients indicate potential aquatic toxicity and a need for continuous monitoring of MRE for PAHs pollution.


Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , China , Crisenos/análise , Carvão Mineral/análise , Monitoramento Ambiental , Estuários , Sedimentos Geológicos/química , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Pirenos/análise , Medição de Risco , Rios/química , Poluentes Químicos da Água/análise
6.
Chemosphere ; 307(Pt 2): 135821, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35944687

RESUMO

The polycyclic aromatic hydrocarbons (PAHs) are substantial wastewater pollutants emitted mostly by petroleum refineries and petrochemical industries, and their environmental fate has been of increasing concern among the public. Consequently, subsurface flow constructed wetlands (SFCWs) filled with Mn oxides (W-CW) or without Mn oxides (K-CW) were established to investigate the performance and mechanisms of pyrene (PYR) removal. The average removal rates of PYR in W-CW and K-CW were 96.00% and 92.33%, respectively. The PYR removal via other pathways (microbial degradation, photolysis, volatilisation, etc.) occupied a sizeable proportion, while the total PYR content in K-CW plant roots was significantly higher than that of W-CW. The microorganisms on the root surface and rhizosphere played an important role in PYR degradation in W-CW and K-CW and were higher in W-CW than that in K-CW in all matrix zones. The microorganisms between the 10-16 cm zone from the bottom of W-CW filled with Mn oxides (W-16) were positively correlated with PYR-degrading microorganisms, aerobic bacteria and facultative anaerobes, whereas K-16 without birnessite-coated sand was negatively correlated with these microorganisms.


Assuntos
Poluentes Ambientais , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Óxidos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Pirenos/metabolismo , Areia , Águas Residuárias , Áreas Alagadas
7.
Sci Rep ; 12(1): 13227, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918482

RESUMO

Biodegradation of high-molecular-weight petroleum hydrocarbons in saline conditions appears to be complicated and requires further investigation. This study used heavy crude oil to enrich petroleum-degrading bacteria from oil-contaminated saline soils. Strain HG 01, with 100% sequence similarity to Bacillus subtilis, grew at a wide range of salinities and degraded 55.5 and 77.2% of 500 mg/l pyrene and 500 mg/l tetracosane, respectively, at 5% w/v NaCl. Additionally, a mixed-culture of HG 01 with Pseudomonas putida and Pseudomonas aeruginosa, named TMC, increased the yield of pyrene, and tetracosane degradation by about 20%. Replacing minimal medium with treated seawater (C/N/P adjusted to 100/10/1) enabled TMC to degrade more than 99% of pyrene and tetracosane, but TMC had lesser degradation in untreated seawater than in minimal medium. Also, the degradation kinetics of pyrene and tetracosane were fitted to a first-order model. Compared to B. subtilis, TMC increased pyrene and tetracosane's removal rate constant (K1) from 0.063 and 0.110 per day to 0.123 and 0.246 per day. TMC also increased the maximum specific growth rate of B. subtilis, P. putida, and P. aeruginosa, respectively, 45% higher in pyrene, 24.5% in tetracosane, and 123.4% and 95.4% higher in pyrene and tetracosane.


Assuntos
Bacillus subtilis , Petróleo , Bacillus subtilis/metabolismo , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Peso Molecular , Petróleo/metabolismo , Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Pirenos/metabolismo
8.
Sci Total Environ ; 848: 157246, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35908714

RESUMO

Most previous water quality studies oversimplified in-stream processes for modeling the fate and transport of critical organic contaminants, such as Polycyclic Aromatic Hydrocarbons (PAHs). Taking four selected PAHs as representative organic contaminants, we developed a numerical modeling framework using a Water Quality Analysis Simulation Program 8 (WASP8) and a well-established watershed model, i.e., Soil and Water Assessment Tool (SWAT) to: (1) address the influence of in-stream processes, including direct photolysis, volatilization, partitioning of PAHs to suspended solids, and DOC complexation processes on PAH concentrations; and (2) establish relationships between spatiotemporal distribution of environmental factors (e.g., ice coverage, water temperature, wind, and light attenuation), in-stream processes, and PAH concentrations at a watershed scale. Using calibrated SWAT and WASP8 models, we evaluated the impacts of seasonal changes in environmental factors on in-stream processes in the Muskeg River watershed, which is part of the Athabasca Oil Sands Region (AOSR), the third-largest crude oil reserves of the world in western Canada. Among four selected PAHs, simulation results suggest that Naphthalene primarily decay in the water through volatilization or direct photolysis. For Phenanthrene, Pyrene, and Chrysene, DOC complexation, volatilization, and direct photolysis all contribute to their decay in the water, with a strong dependence on seasonality. Model simulations indicated that direct photolysis and volatilization rates are meager in cold seasons, mainly due to low river temperature and ice coverage. However, these processes gradually resume when entering the warm season. In summary, the model simulation results suggest that critical in-stream processes such as direct photolysis, volatilization, and partitioning and their relationship with environmental factors should be considered when simulating the fate and transport of organic contaminants in the river systems. Our results also reveal that the relationship between environmental factors and fate processes affecting PAH concentrations can vary across a watershed and in different seasons.


Assuntos
Petróleo , Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Alberta , Crisenos/análise , Monitoramento Ambiental/métodos , Gelo/análise , Naftalenos/análise , Campos de Petróleo e Gás , Petróleo/análise , Fenantrenos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Pirenos/análise , Rios , Solo , Poluentes Químicos da Água/análise
9.
Chemosphere ; 307(Pt 1): 135784, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35870609

RESUMO

Using co-substrates to enhance the metabolic activity of microbes is an effective way for high-molecular-weight polycyclic aromatic hydrocarbons removal in petroleum-contaminated environments. However, the long degradation period and exhausting substrates limit the enhancement of metabolic activity. In this study, Altererythrobacter sp. N1 was screened from petroleum-contaminated soil in Shengli Oilfield, China, which could utilize pyrene as the sole carbon source and energy source. Saturated aromatic fractions and crude oils were used as in-situ co-substrates to enhance pyrene degradation. Enzyme activity was influenced by the different co-substrates. The highest degradation rate (75.98%) was achieved when crude oil was used as the substrate because strain N1 could utilize saturated and aromatic hydrocarbons from crude oil simultaneously to enhance the degrading enzyme activity. Moreover, the phthalate pathway was dominant, while the salicylate pathway was secondary. Furthermore, the Rieske-type aromatic cyclo-dioxygenase gene was annotated in the Altererythrobacter sp. N1 genome for the first time. Therefore, the co-metabolism of pyrene was sustained to achieve a long degradation period without the addition of exogenous substrates. This study is valuable as a potential method for the biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons.


Assuntos
Dioxigenases , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Biodegradação Ambiental , Carbono , Genômica , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Pirenos/metabolismo , Salicilatos , Solo , Poluentes do Solo/análise
10.
Arch Microbiol ; 204(5): 248, 2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397012

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are the hazardous xenobiotic agents of oil production. One of the methods to eliminate hazardous compounds is bioremediation, which is the most efficient and cost-effective method to eliminate the harmful byproducts of crude petroleum processing. In this study, five pure bacterial isolates were isolated from petroleum-contaminated soil, four of which showed a robust growth on the PAH pyrene, as a sole carbon source. Various methods viz mass spectroscopy, biochemical assays, and 16S RNA sequencing employed to identify the isolates ascertained the consistent identification of Klebsiella oxytoca by all three methods. Scanning electron microscopy and Gram staining further demonstrated the characterization of the K. oxytoca. High-performance liquid chromatography of the culture supernatant of K. oxytoca grown in pyrene containing media showed that the cells started utilizing pyrene from the 6th day onwards and by the 12th day of growth, 70% of the pyrene was completely degraded. A genome search for the genes predicted to be involved in pyrene degradation using Kyoto Encyclopedia of Genes and Genomes (KEGG) confirmed their presence in the genome of K. oxytoca. These results suggest that K. oxytoca would be a suitable candidate for removing soil aromatic hydrocarbons.


Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Bactérias/genética , Biodegradação Ambiental , Klebsiella oxytoca/genética , Klebsiella oxytoca/metabolismo , Petróleo/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Pirenos , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Solo , Microbiologia do Solo , Poluentes do Solo/metabolismo
11.
Molecules ; 27(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163953

RESUMO

Microbial degradation is a useful tool for inhibiting or preventing polycyclic aromatic hydrocarbons (PAHs) widely distributed in marine environment after oil spill accidents. This study aimed to evaluate the potential and diversity of bacteria Bacillus sp. PAH-2 on Benzo (a) anthracene (BaA), Pyrene (Pyr), and Benzo (a) pyrene (BaP), their composite system, aromatic components system, and crude oil. The seven-day degradation rates against BaA, Pyr, and BaP were 20.6%, 12.83%, and 17.49%, respectively. Further degradation study of aromatic components demonstrated PAH-2 had a high degradation rate of substances with poor stability of molecular structure. In addition, the degradation of PAHs in crude oil suggested PAH-2 not only made good use of PAHs in such a more complex structure of pollutants but the saturated hydrocarbons in the crude oil also showed a good application potential.


Assuntos
Bacillus/metabolismo , Recuperação e Remediação Ambiental/métodos , Hidrocarbonetos Policíclicos Aromáticos/química , Bactérias/metabolismo , Benzo(a)pireno/metabolismo , Biodegradação Ambiental , Petróleo/metabolismo , Poluição por Petróleo , Pirenos , Água do Mar
12.
Chemosphere ; 294: 133654, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35066084

RESUMO

Phytoremediation is commonly used in the remediation of soils co-contaminated by heavy metals and polycyclic aromatic hydrocarbons (PAHs) because of its economy and effectiveness. Sudan grass (Sorghum sudanense (Piper) Stapf.) has well-developed roots and strong tolerance to heavy metals, so it has been widely concerned. In this study, nitrilotriacetic acid (NTA) and tea saponin (TS) were used as enhancers and combined with Sudan grass for improving the remediation efficiency of Ni-pyrene co-contaminated soil. The results of the pot experiment in soils showed that enhancers promoted the enrichment of Ni in plants. With the function of enhancers, more inorganic and water-soluble Ni were converted into low-toxic phosphate-bonded and residual Ni, so as to reinforce the tolerance of Sudan grass to Ni. In the pot experiment based on vermiculite, it was found that enhancers increased the accumulation of Ni in cell wall by 49.71-102.73%. Enhancers also had the positive effect on the relative abundance of Proteobacteria, Patescibacteria and Bacteroidetes that could tolerate heavy metals at phylum level. Simultaneously, the study found that pyrene reduced the exchangeable Ni in soils. More Ni entered the organelles and transfer to more high-toxic forms in Sudan grass when pynere coexisted. The study manifested that enhancers improved the phytoremediation effect of Ni significantly, yet the co-existence of pyrene weakened the process. Our results provided meaningful references for remediating actual co-contaminated soil of heavy metals and PAHs.


Assuntos
Biodegradação Ambiental , Metais Pesados , Ácido Nitrilotriacético/farmacologia , Saponinas , Poluentes do Solo , Sorghum , Metais Pesados/análise , Pirenos/análise , Saponinas/farmacologia , Solo , Poluentes do Solo/análise , Sorghum/metabolismo , Chá/química
13.
Environ Technol ; 43(21): 3231-3238, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33945429

RESUMO

The aim of the study was to verify the effect of bioaugmentation by the bacterial consortium YS with hydroxypropyl-ß-cyclodextrin (HPCD) in a soil slurry. The bacterial consortium YS was enriched from a petroleum-polluted soil using pyrene as sole carbon resource. After 3 weeks, the degradation rate of phenanthrene in CK increased from 22.58% to 55.23 and 78.21% in bioaugmentation (B) and HPCD + bioaugmentation (MB) respectively. The degradation rate of pyrene in CK increased from 17.33% to 51.10% and 60.32% in B and MB respectively in the slurry. The augmented YS persisted in the slurry as monitored by 16S rRNA gene high-throughput sequencing and outcompeted some indigenous bacteria. Enhanced polycyclic aromatic hydrocarbon (PAH) degradation was observed in the addition of HPCD due to the enhanced bioavailability of phenanthrene and pyrene. Additionally, the amount of PAH-degrading bacteria and enzymatic activity in bioaugmentation with HPCD were higher than that in the CK group. The results indicated that bioaugmentation with a bacterial consortium and HPCD is an environmentally friendly method for the bioremediation of PAH-polluted soil.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , 2-Hidroxipropil-beta-Ciclodextrina/metabolismo , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Reatores Biológicos , Hidrocarbonetos Policíclicos Aromáticos/análise , Pirenos , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo , Poluentes do Solo/análise
14.
Angew Chem Int Ed Engl ; 60(44): 23569-23573, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34347334

RESUMO

Organic self-assembled co-crystals have garnered considerable attention due to their facile synthesis and intriguing properties, but supramolecular interactions restrict their stability in aqueous solution, which is especially important for biological applications. Herein, we report on the first biological application of aqueous dispersible self-assembled organic co-crystals via the construction of metal-organic framework (MOF) -stabilized co-crystals. In particular, we built an electron-deficient MOF with naphthalene diimide (NDI) as the ligand and biocompatible Ca2+ as the metal nodes. An electron donor molecule, pyrene, was encapsulated to form the host-guest MOF self-assembled co-crystal. We observed that such MOF structure leads to uniquely high-density ordered arrangement and the close intermolecular distance (3.47 Å) of the charge transfer pairs. Hence, the concomitant superior charge transfer interaction between pyrene/NDI can be attained and the resultant photothermal conversion efficiency of Py@Ca-NDI in aqueous solution can thus reach up to 41.8 %, which, to the best of our knowledge, is the highest value among the reported organic co-crystal materials; it is also much higher than that of the FDA approved photothermal agent ICG as well as most of the reported MOFs. Based on this realization, as a proof of concept, we demonstrated that such a self-assembled organic co-crystal platform can be used in biological applications that are exemplified via highly effective long wavelength light photothermal therapy.


Assuntos
Materiais Biocompatíveis/química , Cálcio/química , Imidas/química , Estruturas Metalorgânicas/síntese química , Naftalenos/química , Fototerapia , Pirenos/química , Catálise , Estruturas Metalorgânicas/química
15.
Sci Total Environ ; 795: 148813, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34246134

RESUMO

The effect of pyrene on the formation of naturally Au nanoparticles (AuNPs) in the presence of humic acid (HA) under UV irradiation is described. TEM, EDS, FTIR and XPS were carried out to prove the formation of AuNPs and display their morphologies and formation mechanism. There are little differences between size, morphology and function groups of surface coated materials of AuNPs formed with and without pyrene. With the presence of HA, pyrene showed an inhibiting effect on the reduction of Au ion via competition for O2•-, thereby decreasing the production of AuNPs. However, AuNPs formed by HA-pyrene showed higher stability than AuNPs formed by HA with the sedimentation rates of 4.13% and 13.68% respectively after 30-d standing. As for the antibacterial activities against Staphylococcus aureus and Escherichia coli, AuNPs formed by HA-pyrene were more toxic than AuNPs formed by HA. Meanwhile, changes of environmental factors such as temperature, pH and ionic strength exhibited similar influence trend on the formation of AuNPs in the presence and absence of pyrene. The results suggest that the typical petroleum hydrocarbon pyrene contained in spilled oil could influence the formation, fate and ecotoxicity of AuNPs.


Assuntos
Nanopartículas Metálicas , Petróleo , Antibacterianos/toxicidade , Ouro , Nanopartículas Metálicas/toxicidade , Petróleo/toxicidade , Pirenos/toxicidade
16.
Sci Rep ; 11(1): 874, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441650

RESUMO

Currently, there is no appropriate treatment option for patients with sorafenib-resistant hepatocellular carcinoma (HCC). Meanwhile, pronounced anticancer activities of newly-developed mitochondria-accumulating self-assembly peptides (Mito-FF) have been demonstrated. This study intended to determine the anticancer effects of Mito-FF against sorafenib-resistant Huh7 (Huh7-R) cells. Compared to sorafenib, Mito-FF led to the generation of relatively higher amounts of mitochondrial reactive oxygen species (ROS) as well as the greater reduction in the expression of antioxidant enzymes (P < 0.05). Mito-FF was found to significantly promote cell apoptosis while inhibiting cell proliferation of Huh7-R cells. Mito-FF also reduces the expression of antioxidant enzymes while significantly increasing mitochondrial ROS in Huh7-R cells. The pro-apoptotic effect of Mito-FFs for Huh7-R cells is possibly caused by their up-regulation of mitochondrial ROS, which is caused by the destruction of the mitochondria of HCC cells.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Compostos Organofosforados/uso terapêutico , Peptídeos/farmacologia , Fenilalanina/uso terapêutico , Pirenos/uso terapêutico , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Mitocôndrias/metabolismo , Compostos Organofosforados/farmacologia , Peptídeos/metabolismo , Peptídeos/uso terapêutico , Fenilalanina/farmacologia , Pirenos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sorafenibe/farmacologia
17.
Chemosphere ; 263: 128085, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297083

RESUMO

Soil contaminated by combinations of heavy metals and organic pollutants has become an increasingly prominent environmental issue. Developing efficient technologies to synchronously decontaminate such co-contaminated sites is challenging and imperative. In our previous study for the treatment of Copper (Cu) and pyrene contaminated soil, electrokinetics (EK) coupled acidic permanganate (PM) performed best for degradation of pyrene near the injection spot, but it unfortunately prevented the migration of Cu. In order to further enhance the removal efficiency of these contaminants, in this study, batch experiments were conducted to investigate the feasibility of delivering PM by EK under regular refreshment of acidoxidant along with amplification of voltage gradient. The results showed that PM can be transported from cathode to anode to S2 section (near the anode) with a slow mass transfer rate via electromigration and reversed electroosmotic flow, and further delivery was achieved when Cu and pyrene were coexisted. The reaction of pyrene with PM produced a lower soil pH condition, which was conductive to the transport of Cu, and the existence of Cu promoted the migration of PM. The coexistence of Cu and pyrene favored the removal efficiency of the pollutants, and 92.8% of Cu and 70.7% of pyrene were removed after 15 d EK treatment. Thus, EK + acidic PM with regularly supplement of oxidant is appropriate to achieve complete mass depletion of heavy metals and PAHs, especially in low buffered soils.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Cobre/análise , Permanganato de Potássio , Pirenos/análise , Solo , Poluentes do Solo/análise
18.
Nanotechnology ; 31(48): 485501, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-32748805

RESUMO

Graphene decorated with graphitic nanospheres functionalized with pyrene butyric acid (PBA) is used for the first time to fabricate a DNA biosensor. The electrode was formed by attaching a DNA probe onto PBA, which had been stacked onto a graphene material decorated with graphene nanospheres (GNSs). The nanomaterial was drop-coated onto a carbon screen-printed electrode (SPE) to create the GNS-PBA modified electrode (GNS-PBA/SPE). A simple method was used to produce GNS by annealing graphene oxide (GO) solution at high temperature. Field emission scanning electron micrographs confirmed the presence of a spherical shape of GNS with a diameter range of 40-80 nm. A stable and uniform PBA-modified GNS (GNS-PBA) was obtained with a facile ultrasonication step. Thus allowing aminated DNA probes of genetically modified (GM) soybean to be attached to the nanomaterials to form the DNA biosensor. The GNS-PBA/SPE exhibited excellent electrical conductivity via cyclic voltammetry (CV) and differential pulse voltammetry (DPV) tests using potassium ferricyanide (K3[Fe(CN)6]) as the electroactive probe. By employing an anthraquinone monosulfonic acid (AQMS) redox intercalator as the DNA hybridization indicator, the biosensor response was evaluated using the DPV electrochemical method. A good linear relationship between AQMS oxidation peak current and target DNA concentrations from 1.0 × 10-16 to 1.0 × 10-8 M with a limit of detection (LOD) of less than 1.0 × 10-16 M was obtained. Selectivity experiments revealed that the voltammetric GM DNA biosensor could discriminate complementary sequences of GM soybean from non-complementary sequences and hence good recoveries were obtained for real GM soybean sample analysis. The main advantage of using GNS is an improvement of the DNA biosensor analytical performance.


Assuntos
Técnicas Biossensoriais/métodos , Sondas de DNA/química , DNA/análise , Grafite/química , Nanosferas/química , Técnicas Eletroquímicas/métodos , Eletrodos , Ácidos Nucleicos Imobilizados/química , Limite de Detecção , Pirenos/química
19.
Ecotoxicol Environ Saf ; 189: 109994, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31787385

RESUMO

The utilization of thermophilic hydrocarbon-degrading microorganisms is a suitable strategy for improving biodegradation of petroleum hydrocarbons and PAHs, as well as enhancing oil recovery from high-temperature reservoirs. In this study, the thermophilic strain Aeribacillus pallidus SL-1 was evaluated for the biodegradation of crude oil and PAHs at 60 °C. Strain SL-1 was found to preferentially degrade short-chain n-alkanes (

Assuntos
Bacillaceae/metabolismo , Biodegradação Ambiental , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Alcanos/metabolismo , Hidrocarbonetos/análise , Hidrocarbonetos/química , Hidrocarbonetos/metabolismo , Naftalenos/metabolismo , Petróleo/análise , Petróleo/metabolismo , Fenantrenos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Pirenos/metabolismo , Temperatura
20.
Environ Toxicol Chem ; 39(3): 637-647, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31858618

RESUMO

To fully assess the long-term impacts of oil spills like the 2010 Deepwater Horizon incident in the northern Gulf of Mexico, the potential for organisms other than microbes to affect the fate and distribution of the oil may have to be considered. This influence could be substantial for abundant bioturbating benthic animals like the ghost shrimp Lepidophthalmus louisianensis. An assessment of the influence of these ghost shrimp on petroleum hydrocarbons was conducted in laboratory micro- and mesocosms containing coastal Gulf of Mexico sediment, seawater, and oil or the polynuclear aromatic hydrocarbon (PAH) pyrene. In an experiment with pyrene added to the water column, the ghost shrimp presence lowered water-column pyrene concentrations. In an experiment with oil added to the sediment surface, the ghost shrimp presence decreased PAH concentrations in the sediment surface layer but increased these in the water column and subsurface sediment. A companion study and a mass-balance analysis indicated a net loss of PAHs through an enhancement of microbial degradation. In an experiment in which oil was added as a narrow subsurface layer in the sediment, the ghost shrimp presence appeared to broaden the oil's depth distribution. Taken together, these results demonstrate that ghost shrimp can significantly influence the biodegradation and distribution of spilled oil in coastal ecosystems. Environ Toxicol Chem 2020;39:637-647. © 2019 SETAC.


Assuntos
Decápodes/fisiologia , Sedimentos Geológicos/análise , Hidrocarbonetos/análise , Petróleo/análise , Água do Mar/análise , Poluentes Químicos da Água/análise , Animais , Biodegradação Ambiental , Monitoramento Ambiental , Golfo do México , Movimento , Pirenos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA