Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 75(16): 3009-3026, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29445841

RESUMO

The pyruvate dehydrogenase complex (PDC) bridges glycolysis and the citric acid cycle. In human, PDC deficiency leads to severe neurodevelopmental delay and progressive neurodegeneration. The majority of cases are caused by variants in the gene encoding the PDC subunit E1α. The molecular effects of the variants, however, remain poorly understood. Using yeast as a eukaryotic model system, we have studied the substitutions A189V, M230V, and R322C in yeast E1α (corresponding to the pathogenic variants A169V, M210V, and R302C in human E1α) and evaluated how substitutions of single amino acid residues within different functional E1α regions affect PDC structure and activity. The E1α A189V substitution located in the heterodimer interface showed a more compact conformation with significant underrepresentation of E1 in PDC and impaired overall PDC activity. The E1α M230V substitution located in the tetramer and heterodimer interface showed a relatively more open conformation and was particularly affected by low thiamin pyrophosphate concentrations. The E1α R322C substitution located in the phosphorylation loop of E1α resulted in PDC lacking E3 subunits and abolished overall functional activity. Furthermore, we show for the E1α variant A189V that variant E1α accumulates in the Hsp60 chaperonin, but can be released upon ATP supplementation. Our studies suggest that pathogenic E1α variants may be associated with structural changes of PDC and impaired folding of E1α.


Assuntos
Substituição de Aminoácidos , Piruvato Desidrogenase (Lipoamida)/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/genética , Proteínas de Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia Confocal , Dobramento de Proteína , Piruvato Desidrogenase (Lipoamida)/química , Piruvato Desidrogenase (Lipoamida)/metabolismo , Complexo Piruvato Desidrogenase/química , Complexo Piruvato Desidrogenase/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
2.
Proteomics ; 16(17): 2419-31, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27357730

RESUMO

Prostate cancer is one of the leading cancers in men. Taking dietary supplements, such as fish oil (FO), which is rich in n-3 polyunsaturated fatty acids (PUFAs), has been employed as a strategy to lower prostate cancer risk and control disease progression. In this study, we investigated the global phosphoproteomic changes induced by FO using a combination of phosphoprotein-enrichment strategy and high-resolution tandem mass spectrometry. We found that FO induces many more phosphorylation changes than oleic acid when they both are compared to control group. Quantitative comparison between untreated group and FO- or oleic acid-treated groups uncovered a number of important protein phosphorylation changes induced by n-3PUFAs. This phosphoproteomic discovery study and the follow-up Western Blot validation study elucidate that phosphorylation levels of the two regulatory serine residues in pyruvate dehydrogenase alpha 1 (PDHA1), serine-232 and serine-300, are significantly decreased upon FO treatment. As expected, increased pyruvate dehydrogenase activity was also observed. This study suggests that FO-induced phosphorylation changes in PDHA1 is more likely related to the glucose metabolism pathway, and n-3 PUFAs may have a role in controlling the balance between lipid and glucose oxidation.


Assuntos
Ácidos Graxos Ômega-3/uso terapêutico , Óleos de Peixe/uso terapêutico , Fosfoproteínas/metabolismo , Neoplasias da Próstata/dietoterapia , Piruvato Desidrogenase (Lipoamida)/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Suplementos Nutricionais/análise , Humanos , Masculino , Ácidos Oleicos/uso terapêutico , Fosfopeptídeos/análise , Fosfopeptídeos/metabolismo , Fosfoproteínas/análise , Fosforilação , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Proteoma/análise , Proteoma/metabolismo , Piruvato Desidrogenase (Lipoamida)/química , Espectrometria de Massas em Tandem
3.
Hum Mutat ; 22(6): 496-7, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14635113

RESUMO

In a patient with fatal neonatal lactic acidosis due to pyruvate dehydrogenase deficiency, the only potential mutation detected was c.888C>G in PDHA1, the gene for the E1alpha subunit of the complex. This would result in a substitution of glutamate for aspartate (D296E). Pathogenicity of this minor alteration in amino acid sequence was demonstrated by expression studies. By comparing the mutant sequence with the known structures of the E1 components of pyruvate dehydrogenase and the closely related branched chain alpha-ketoacid dehydrogenase, an explanation for the profound consequences of the mutation can be proposed.


Assuntos
Substituição de Aminoácidos/genética , Piruvato Desidrogenase (Lipoamida)/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Ácido Aspártico/genética , Domínio Catalítico/genética , Análise Mutacional de DNA , DNA Complementar/química , DNA Complementar/genética , Evolução Fatal , Feminino , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Ácido Glutâmico/genética , Humanos , Recém-Nascido , Masculino , Modelos Moleculares , Mutação , Piruvato Desidrogenase (Lipoamida)/química , Piruvato Desidrogenase (Lipoamida)/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/patologia
4.
Plant J ; 34(1): 57-66, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12662309

RESUMO

We hypothesized that cytoplasmic male sterility (CMS) in sugar beet may be the consequence of mitochondrial dysfunctions affecting normal anther development. To test the hypothesis, we attempted to mimic the sugar beet CMS phenotype by inhibiting the expression of mitochondrial pyruvate dehydrogenase (PDH), which is essential for the operation of the tricarboxylic acid (TCA) cycle. Screening with a cDNA library of sugar beet flower buds allowed the identification of two PDH E1alpha subunit genes (bvPDH_E1alpha-1 and bvPDH_E1alpha-2). bvPDH_E1alpha-1 was found to be highly expressed in tap roots, whereas bvPDH_E1alpha-2 was expressed most abundantly in flower buds. Green fluorescent protein (GFP) fusion of bvPDH_E1alpha revealed mitochondrial targeting properties. A 300-bp bvPDH_E1alpha-1 cDNA sequence (from +620 to +926) was connected to a tapetum-specific promoter in the antisense orientation and then introduced into tobacco. Antisense expression of bvPDH_E1alpha-1 resulted in conspicuously decreased endogenous bvPDH_E1alpha-1 transcripts and male sterility. The tapetum in the male-sterile anthers showed swelling or abnormal vacuolation. It is also worth noting that in the sterile anthers, cell organelles, such as elaioplasts, tapetosomes and orbicules were poorly formed and microspores exhibited aberrant exine development. These features are shared by sugar beet CMS. The results thus clearly indicate that inhibition of PDH activity in anther tapetum is sufficient to cause male sterility, a phenocopy of the sugar beet CMS.


Assuntos
Beta vulgaris/enzimologia , Beta vulgaris/genética , Beta vulgaris/fisiologia , DNA Antissenso/metabolismo , Mitocôndrias/enzimologia , Piruvato Desidrogenase (Lipoamida)/genética , Piruvato Desidrogenase (Lipoamida)/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , DNA Antissenso/genética , DNA Complementar/genética , Fertilidade/fisiologia , Flores/citologia , Flores/genética , Flores/fisiologia , Flores/ultraestrutura , Genes de Plantas/genética , Dados de Sequência Molecular , Fenótipo , Plantas Geneticamente Modificadas , Piruvato Desidrogenase (Lipoamida)/química , Nicotiana/citologia , Nicotiana/genética , Nicotiana/fisiologia , Nicotiana/ultraestrutura
5.
Chem Biol ; 10(12): 1293-302, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14700636

RESUMO

Lipoic acid is synthesized from octanoic acid by insertion of sulfur atoms at carbons 6 and 8 and is covalently attached to a pyruvate dehydrogenase (PDH) subunit. We show that sulfur atoms can be inserted into octanoyl moieties attached to a PDH subunit or a derived domain. Escherichia coli lipB mutants grew well when supplemented with octanoate in place of lipoate. Octanoate growth required both lipoate protein ligase (LplA) and LipA, the sulfur insertion protein, suggesting that LplA attached octanoate to the dehydrogenase and LipA then converted the octanoate to lipoate. This pathway was tested by labeling a PDH domain with deuterated octanoate in an E. coli strain devoid of LipA activity. The labeled octanoyl domain was converted to lipoylated domain upon restoration of LipA. Moreover, octanoyl domain and octanoyl-PDH were substrates for sulfur insertion in vitro.


Assuntos
Proteínas de Bactérias , Escherichia coli/enzimologia , Ligases , Piruvato Desidrogenase (Lipoamida)/química , Piruvato Desidrogenase (Lipoamida)/metabolismo , Ácido Tióctico/química , Ácido Tióctico/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Caprilatos/metabolismo , Caprilatos/farmacologia , Cromatografia Líquida de Alta Pressão , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Espectrometria de Massas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação/genética , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Enxofre/metabolismo , Ácido Tióctico/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA