Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Phytomedicine ; 129: 155570, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579645

RESUMO

BACKGROUND: Energy deficiency and oxidative stress are interconnected during ischemia/reperfusion (I/R) and serve as potential targets for the treatment of cerebral ischemic stroke. Baicalin is a neuroprotective antioxidant, but the underlying mechanisms are not fully revealed. PURPOSE: This study explored whether and how baicalin rescued neurons against ischemia/reperfusion (I/R) attack by focusing on the regulation of neuronal pyruvate dehydrogenase kinase 2 (PDK2)-pyruvate dehydrogenase (PDH) axis implicated with succinate dehydrogenase (SDH)-mediated oxidative stress. STUDY DESIGN: The effect of the tested drug was explored in vitro and in vivo with the model of oxygen-glucose deprivation/reoxygenation (OGD/R) and middle cerebral artery occlusion/reperfusion (MCAO/R), respectively. METHODS: Neuronal damage was evaluated according to cell viability, infarct area, and Nissl staining. Protein levels were measured by western blotting and immunofluorescence. Gene expression was investigated by RT-qPCR. Mitochondrial status was also estimated by fluorescence probe labeling. RESULTS: SDH activation-induced excessive production of reactive oxygen species (ROS) changed the protein expression of Lon protease 1 (LonP1) and hypoxia-inducible factor-1ɑ (HIF-1ɑ) in the early stage of I/R, leading to an upregulation of PDK2 and a decrease in PDH activity in neurons and cerebral cortices. Treatment with baicalin prevented these alterations and ameliorated neuronal ATP production and survival. CONCLUSION: Baicalin improves the function of the neuronal PDK2-PDH axis via suppression of SDH-mediated oxidative stress, revealing a new signaling pathway as a promising target under I/R conditions and the potential role of baicalin in the treatment of acute ischemic stroke.


Assuntos
Flavonoides , Neurônios , Fármacos Neuroprotetores , Estresse Oxidativo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Traumatismo por Reperfusão , Flavonoides/farmacologia , Animais , Traumatismo por Reperfusão/tratamento farmacológico , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Fármacos Neuroprotetores/farmacologia , Succinato Desidrogenase/metabolismo , Masculino , Espécies Reativas de Oxigênio/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Ratos Sprague-Dawley , Sobrevivência Celular/efeitos dos fármacos , Ratos , Antioxidantes/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
2.
Cells ; 10(7)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34359884

RESUMO

Hypoxia, low oxygen (O2) level, is a hallmark of solid cancers, especially hepatocellular carcinoma (HCC), one of the most common and fatal cancers worldwide. Hypoxia contributes to drug resistance in cancer through various molecular mechanisms. In this review, we particularly focus on the roles of hypoxia-inducible factor (HIF)-mediated metabolic reprogramming in drug resistance in HCC. Combination therapies targeting hypoxia-induced metabolic enzymes to overcome drug resistance will also be summarized. Acquisition of drug resistance is the major cause of unsatisfactory clinical outcomes of existing HCC treatments. Extra efforts to identify novel mechanisms to combat refractory hypoxic HCC are warranted for the development of more effective treatment regimens for HCC patients.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Reprogramação Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Hipóxia/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Anticorpos Monoclonais Humanizados/uso terapêutico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Reprogramação Celular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Hipóxia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Nivolumabe/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Sorafenibe/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética
3.
J Ethnopharmacol ; 277: 114232, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34044078

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The internal capsule is vulnerable to ischemia, and mild ischemic stroke often results in lesion of the internal capsule, manifested as contralateral hemiplegia. Protocatechudehyde (PCA), a potential neuroprotective agent, has shown therapeutic effects in the study of a variety of nervous system diseases, including ischemic stroke. AIM OF THE STUDY: The aim of this study was to evaluate the effects of PCA on cerebral ischemia reperfusion (CI/R)-elicited internal capsule injury and to elucidate the role of mitochondrial energy metabolism in the underlying mechanism of neuroprotective effects on ischemic stroke. MATERIALS AND METHODS: A rat tMCAO model was established to investigate the therapeutic effects of intravenous PCA (20, 40, and 80 mg/kg, once per day, continued for 7 days) on CI/R-induced internal capsule injury and the regulation of PCA on molecules related to mitochondrial energy metabolism. In vitro, an OGD/R model of PC12 cells was established to further verify the therapeutic mechanism of PCA. RESULTS: Results showed that PCA dose-dependently attenuated neurological deficit, reduced cerebral infarction, alleviated histopathological damage, and improved mitochondrial ultrastructure of the internal capsule after CI/R. Moreover, PCA reversed the upregulation of HIF1α, PDK1 and pPDHA1 expression induced by CI/R and significantly increased the content of acetyl-CoA, ATP, and the activity of ATP synthase. In vitro, PCA treatment promoted cell survival, inhibited apoptosis, attenuated the dissipation of mitochondrial membrane potential in OGD/R-treated PC12 cells, and these therapeutic effects were reversed by the combination of cobalt chloride (CoCl2), a specific pharmacological inducer of HIF1a expression. CONCLUSIONS: These results indicate that PCA exerts a protective effect against CI/R-induced internal capsule injury and improves mitochondrial energy metabolism in the internal capsule, and the mechanism is associated with the inhibition of HIF1α/PDK1 signaling pathway.


Assuntos
Benzaldeídos/farmacologia , Catecóis/farmacologia , AVC Isquêmico/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Animais , Apoptose/efeitos dos fármacos , Benzaldeídos/administração & dosagem , Isquemia Encefálica/tratamento farmacológico , Catecóis/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Metabolismo Energético/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Cápsula Interna/efeitos dos fármacos , Cápsula Interna/patologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Células PC12 , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
4.
Hum Cell ; 34(1): 187-200, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33040228

RESUMO

Cholangiocarcinoma (CCA) is one of the most aggressive and lethal malignancies. Long noncoding RNAs (lncRNAs) are being found to play crucial roles in CCA progression. This work aims to investigate the roles of long intergenic non-protein coding RNA 667 (LINC00667) in progression of CCA. RT-qPCR and western blot were applied to detect gene expression. Clinical correlation and survival were analyzed by statistical methods. Overexpression and RNA interference approaches were used to investigate the effects of LINC00667 on CCA cells. Tumor xenograft assay was performed to detect the function of LINC00667 in vivo. Transcriptional regulation and competing endogenous RNA (ceRNA) mechanism were predicted via bioinformatics analysis. ChIP, luciferase reporter, and Ago2 RIP assays further confirmed the predicted results. Our data indicated that LINC00667 was highly expressed in CCA tissues and cells, and transcription factor Yin Yang 1 (YY1) induced LINC00667 expression in CCA cells. Up-regulated LINC00667 was significantly associated with lymph node metastasis, advanced TNM stage, and poor prognosis. Knockdown of LINC00667 suppressed the proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) of CCA cells, while overexpression of LINC00667 acquired opposite effects. Moreover, knockdown of LINC00667 inhibited tumor growth in vivo. In addition, LINC00667 was demonstrated to function as a ceRNA for miR-200c-3p, and then LINC00667 up-regulated pyruvate dehydrogenase kinase 1 (PDK1) to promote CCA development by inhibiting miR-200c-3p. These findings identified a pivotal role of LINC00667 in tumorigenesis and development of CCA. Targeting the YY1/LINC00667/miR-200c-3p/PDK1 axis may provide a new therapeutic strategy for CCA treatment.


Assuntos
Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Movimento Celular/genética , Proliferação de Células/genética , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Invasividade Neoplásica/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , RNA Longo não Codificante/fisiologia , Regulação para Cima/genética , Fator de Transcrição YY1/fisiologia , Linhagem Celular Tumoral , Humanos
5.
Nat Commun ; 11(1): 5906, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219201

RESUMO

Hypothalamic inflammation plays an important role in disrupting feeding behavior and energy homeostasis as well as in the pathogenesis of obesity and diabetes. Here, we show that pyruvate dehydrogenase kinase (PDK)-2 plays a role in hypothalamic inflammation and its sequelae in mouse models of diabetes. Cell type-specific genetic ablation and pharmacological inhibition of PDK2 in hypothalamic astrocytes suggest that hypothalamic astrocytes are involved in the diabetic phenotype. We also show that the PDK2-lactic acid axis plays a regulatory role in the observed metabolic imbalance and hypothalamic inflammation in mouse primary astrocyte and organotypic cultures, through the AMPK signaling pathway and neuropeptidergic circuitry governing feeding behavior. Our findings reveal that PDK2 ablation or inhibition in mouse astrocytes attenuates diabetes-induced hypothalamic inflammation and subsequent alterations in feeding behavior.


Assuntos
Astrócitos/metabolismo , Diabetes Mellitus/metabolismo , Hipotálamo , Inflamação/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Animais , Encefalopatias Metabólicas , Modelos Animais de Doenças , Comportamento Alimentar , Hipotálamo/citologia , Hipotálamo/metabolismo , Hipotálamo/patologia , Camundongos , Obesidade , Transdução de Sinais
6.
Cell Death Dis ; 11(11): 991, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203874

RESUMO

Pyruvate dehydrogenase kinase 4 (PDK4) is an important mitochondrial matrix enzyme in cellular energy regulation. Previous studies suggested that PDK4 is increased in the calcified vessels of patients with atherosclerosis and is closely associated with mitochondrial function, but the precise regulatory mechanisms remain largely unknown. This study aims to investigate the role of PDK4 in vascular calcification and the molecular mechanisms involved. Using a variety of complementary techniques, we found impaired autophagic activity in the process of vascular smooth muscle cells (VSMCs) calcification, whereas knocking down PDK4 had the opposite effect. PDK4 drives the metabolic reprogramming of VSMCs towards a Warburg effect, and the inhibition of PDK4 abrogates VSMCs calcification. Mechanistically, PDK4 disturbs the integrity of the mitochondria-associated endoplasmic reticulum membrane, concomitantly impairing mitochondrial respiratory capacity, which contributes to a decrease in lysosomal degradation by inhibiting the V-ATPase and lactate dehydrogenase B interaction. PDK4 also inhibits the nuclear translocation of the transcription factor EB, thus inhibiting lysosomal function. These changes result in the interruption of autophagic flux, which accelerates calcium deposition in VSMCs. In addition, glycolysis serves as a metabolic adaptation to improve VSMCs oxidative stress resistance, whereas inhibition of glycolysis by 2-deoxy-D-glucose induces the apoptosis of VSMCs and increases the calcium deposition in VSMCs. Our results suggest that PDK4 plays a key role in vascular calcification through autophagy inhibition and metabolic reprogramming.


Assuntos
Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Calcificação Vascular/metabolismo , Animais , Autofagia/fisiologia , Sinalização do Cálcio , Masculino , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Calcificação Vascular/patologia
7.
Am J Chin Med ; 48(6): 1475-1489, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32907364

RESUMO

Inadequate responses to traditional chemotherapeutic agents in cholangiocarcinoma (CCA) emphasize a requirement for new effective compounds for the treatment of this malignancy. This study aimed to investigate the antiproliferative property of cucurbitacin B on KKU-100 CCA cells. The determination of underlying molecular mechanisms was also carried out. The results revealed that cucurbitacin B suppressed growth and replicative ability to form colonies of CCA cells, suggesting the antiproliferative effect of this compound against the cells. Flow cytometry analysis demonstrated that the interfering effect of cucurbitacin B on the CCA cell cycle at the G2/M phase was accountable for its antiproliferation property. Accompanied with cell cycle disruption, cucurbitacin B altered the expression of proteins involved in the G2/M phase transition including downregulation of cyclin A, cyclin D1, and cdc25A, and upregulation of p21. Additional molecular studies demonstrated that cucurbitacin B suppressed the activation of focal adhesion kinase (FAK) which consequently resulted in inhibition of its kinase-dependent and kinase-independent downstream targets contributing to the regulation of cell proliferation including PI3K/PDK1/AKT and p53 proteins. In this study, the transient knockdown of FAK using siRNA was employed to ascertain the role of FAK in CCA cell proliferation. Finally, the effect of cucurbitacin B on upstream receptor tyrosine kinases regulating FAK activation was elucidated. The results showed that the inhibitory effect of cucurbitacin B on FAK activation in CCA cells is mediated via interference of EGFR and HER2 expression. Collectively, cucurbitacin B might be a promising drug for CCA treatment by targeting FAK protein.


Assuntos
Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Triterpenos/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Neoplasias dos Ductos Biliares/dietoterapia , Linhagem Celular Tumoral , Colangiocarcinoma/tratamento farmacológico , Receptores ErbB/genética , Receptores ErbB/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Triterpenos/uso terapêutico
8.
Integr Cancer Ther ; 19: 1534735420911437, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32248711

RESUMO

Dichloroacetate (DCA) is a metabolic modulator that inhibits pyruvate dehydrogenase activity and promotes the influx of pyruvate into the tricarboxylic acid cycle for complete oxidation of glucose. DCA stimulates oxidative phosphorylation (OXPHOS) more than glycolysis by altering the morphology of the mitochondria and supports mitochondrial apoptosis. As a consequence, DCA induces apoptosis in cancer cells and inhibits the proliferation of cancer cells. Recently, the role of miRNAs has been reported in regulating gene expression at the transcriptional level and also in reprogramming energy metabolism. In this article, we indicate that DCA treatment leads to the upregulation of let-7a expression, but DCA-induced cancer cell death is independent of let-7a. We observed that the combined effect of DCA and let-7a induces apoptosis, reduces reactive oxygen species generation and autophagy, and stimulates mitochondrial biogenesis. This was later accompanied by stimulation of OXPHOS in combined treatment and was thus involved in metabolic reprogramming of MDA-MB-231 cells.


Assuntos
Morte Celular , Ácido Dicloroacético/farmacocinética , MicroRNAs/genética , Fosforilação Oxidativa/efeitos dos fármacos , Piruvato Desidrogenase Quinase de Transferência de Acetil , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Regulação Neoplásica da Expressão Gênica , Glucose/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Regulação para Cima
9.
J Diabetes Res ; 2020: 9309768, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32051833

RESUMO

Diabetic kidney disease (DKD) is a major cause of end-stage renal disease (ESRD), and therapeutic strategies for delaying its progression are limited. Loss of podocytes by apoptosis characterizes the early stages of DKD. To identify novel therapeutic options, we investigated the effects of Xuesaitong (XST), consisting of total saponins from Panax notoginseng, on podocyte apoptosis in streptozotocin- (STZ-) induced diabetic rats. XST (5 mg/kg·d) or Losartan (10 mg/kg·d) was given to diabetic rats for 12 weeks. Albuminuria, renal function markers, and renal histopathology morphological changes were examined. Podocyte apoptosis was determined by triple immunofluorescence labelling including a TUNEL assay, WT1, and DAPI. Renal expression of Nox4, miRNA-214, PTEN, PDK1, phosphorylated Akt, mTOR, and mTORC1 was detected. In diabetic rats, severe hyperglycaemia and albuminuria developed, and apoptotic podocytes were markedly increased in diabetic kidneys. However, XST attenuated albuminuria, mesangial expansion, podocyte apoptosis, and morphological changes of podocytes in diabetic rats. Decreased expression of PTEN, as well as increased expression of Nox4, miRNA-214, PDK1, phosphorylated Akt, mTOR, and mTORC1, was detected. These abnormalities were partially restored by XST treatment. Thus, XST ameliorated podocyte apoptosis partly through modulating the PTEN-PDK1-Akt-mTOR pathway. These novel findings might point the way to a natural therapeutic strategy for treating DKD.


Assuntos
Apoptose/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Podócitos/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Saponinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , PTEN Fosfo-Hidrolase/metabolismo , Podócitos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Ratos , Serina-Treonina Quinases TOR/metabolismo
10.
Food Funct ; 11(1): 297-304, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31915782

RESUMO

In recent years, the conversion of white adipocytes to brown-like adipocytes by pharmacological and dietary compounds has gained attention as an effective strategy to fight obesity. Strawberry bioactive compounds present several biological activities including antioxidant, anti-inflammatory, anti-cancer, anti-atherosclerotic and antiadipogenic properties. However, to the best of our knowledge, the possible role of strawberry bioactive compounds in white adipose tissue (WAT) browning has never been explored. Our results demonstrated that a strawberry methanolic extract (SE) significantly reduced 3T3-L1 pre-adipocytes differentiation, and down-regulated the mRNA expression of the adipogenic transcription factors CCAAT/enhancer-binding protein (C/REB- α) and peroxisome proliferation-activated receptor (PPAR-γ). It also down-regulated the mRNA expression of resistin and angiotensinogen, two genes considered as markers of white adipocytes, while increased the mRNA expression of pyruvate dehydrogenase lipoamide kinase isozyme 4 (PDK4) and uncoupling protein 1 (UCP1) which, conversely, are brown adipocyte-specific markers. Likewise, SE stimulated AMP-activated protein kinase (AMPKα), sirtuin 1 (Sirt1) and the peroxisome proliferator activated receptor gamma coactivator 1-alpha (PGC-1α), suggesting a possible increase in mitochondrial biogenesis. It also stimulated oxygen consumption rate and uncoupled respiration. Taken together, all these results suggest that SE induces brown fat-like phenotype in 3T3-L1 cells and may have potential therapeutic implications for treatment and/or prevention of obesity.


Assuntos
Adipócitos Marrons/citologia , Adipócitos Brancos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Fragaria/química , Extratos Vegetais/farmacologia , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos Brancos/citologia , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Diferenciação Celular , Metanol , Camundongos , PPAR gama/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Sirtuína 1/metabolismo , Fatores de Transcrição/metabolismo , Proteína Desacopladora 1/metabolismo
11.
Biomed Pharmacother ; 121: 109648, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31810115

RESUMO

Malignant cells frequently demonstrate an oncogenic-driven reliance on glycolytic metabolism to support their highly proliferative nature. Overexpression of pyruvate dehydrogenase kinase (PDK) may promote this unique metabolic signature of tumor cells by inhibiting mitochondrial function. PDKs function to phosphorylate and inhibit pyruvate dehydrogenase (PDH) activity. Silencing of PDK expression has previously been shown to restore mitochondrial function and reduce tumor cell proliferation. High dose Vitamin B1, or thiamine, possesses antitumor properties related to its capacity to reduce PDH phosphorylation and promote its enzymatic activity, presumably through PDK inhibition. Though a promising nutraceutical approach for cancer therapy, thiamine's low bioavailability may limit clinical effectiveness. Here, we have demonstrated exploiting the commercially available lipophilic thiamine analogs sulbutiamine and benfotiamine increases thiamine's anti-cancer effect in vitro. Determined by crystal violet proliferation assays, both sulbutiamine and benfotiamine reduced thiamine's millimolar IC50 value to micromolar equivalents. HPLC analysis revealed that sulbutiamine and benfotiamine significantly increased intracellular thiamine and TPP concentrations in vitro, corresponding with reduced levels of PDH phosphorylation. Through an ex vitro kinase screen, thiamine's activated cofactor form thiamine pyrophosphate (TPP) was found to inhibit the function of multiple PDK isoforms. Attempts to maximize intracellular TPP by exploiting thiamine homeostasis gene expression resulted in enhanced apoptosis in tumor cells. Based on our in vitro evaluations, we conclude that TPP serves as the active species mediating thiamine's inhibitory effect on tumor cell proliferation. Pharmacologic administration of benfotiamine, but not sulbutiamine, reduced tumor growth in a subcutaneous xenograft mouse model. It remains unclear if benfotiamine's effects in vivo are associated with PDK inhibition or through an alternative mechanism of action. Future work will aim to define the action of lipophilic thiamine mimetics in vivo in order to translate their clinical usefulness as anticancer strategies.


Assuntos
Antineoplásicos/farmacologia , Suplementos Nutricionais , Tiamina/análogos & derivados , Tiamina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Intervalos de Confiança , Feminino , Humanos , Concentração Inibidora 50 , Espaço Intracelular/metabolismo , Camundongos Nus , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Tiamina/química , Tiamina Pirofosfato/metabolismo
12.
Med Chem ; 16(7): 860-880, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31339076

RESUMO

BACKGROUND: 3-Phosphoinositide Dependent Protein Kinase-1 (PDK1) is being lately considered as an attractive and forthcoming anticancer target. A Protein Data Bank (PDB) cocrystallized crystal provides not only rigid theoretical data but also a realistic molecular recognition data that can be explored and used to discover new hits. OBJECTIVE: This incited us to investigate the co-crystallized ligands' contacts inside the PDK1 binding pocket via a structure-based receptor-ligand pharmacophore generation technique in Discovery Studio 4.5 (DS 4.5). METHODS: Accordingly, 35 crystals for PDK1 were collected and studied. Every single receptorligand interaction was validated and the significant ones were converted into their corresponding pharmacophoric features. The generated pharmacophores were scored by the Receiver Operating Characteristic (ROC) curve analysis. RESULTS: Consequently, 169 pharmacophores were generated and sorted, 11 pharmacophores acquired good ROC-AUC results of 0.8 and a selectivity value above 8. Pharmacophore 1UU3_2_01 was used in particular as a searching filter to screen NCI database because of its acceptable validity criteria and its distinctive positive ionizable feature. Several low micromolar PDK1 inhibitors were revealed. The most potent hit illustrated anti-PDK1 IC50 values of 200 nM with 70% inhibition against SW480 cell lines. CONCLUSION: Eventually, the active hits were docked inside the PDK1 binding pocket and the recognition points between the active hits and the receptor were analyzed that led to the discovery of new scaffolds as potential PDK1 inhibitors.


Assuntos
Fosfatidilinositóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Sítios de Ligação/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Fosfatidilinositóis/síntese química , Fosfatidilinositóis/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo
13.
Phytomedicine ; 62: 152713, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31078968

RESUMO

BACKGROUND: Apigenin, a natural flavonoid compound, can improve the myocardial abnormal glucolipid metabolism and down-regulate the myocardial hypoxia inducible factor-1α (HIF-1α) in hypertensive cardiac hypertrophic rats. However, whether or not the ameliorative effect of glucolipid metabolism is from the reduction of HIF-1α expression remains uncertain. PURPOSE: This study aimed to investigate the exact relationship between them in angiotensin Ⅱ (Ang Ⅱ)/hypoxia-stimulated or HIF-1α overexpressed H9c2 cells. METHODS: Two cell models with Ang Ⅱ/hypoxia-induced hypertrophy and HIF-1α overexpression were established. After treatment of the cells with different concentrations of apigenin, the levels of total protein, free fatty acids (FFA), and glucose were detected by the colorimetric method, the level of atrial natriuretic peptide (ANP) was detected by the ELISA method, and the expressions of HIF-1α, peroxisome proliferator-activated receptor α/γ (PPARα/γ), carnitine palmitoyltmnsferase-1 (CPT-1), pyruvate dehydrogenase kinase-4 (PDK-4), glycerol-3-phosphate acyltransferase genes (GPAT), and glucose transporter-4 (GLUT-4) proteins were detected by the Western blot assay. RESULTS: Following treatment of the both model cells with apigenin 1-10 µM for 24 h, the levels of intracellular total protein, ANP, and FFA were decreased, while the level of cultured supernatant glucose was increased. Importantly, apigenin treatment could inhibit the expressions of HIF-1α, PPARγ, GPAT, and GLUT-4 proteins, and increase the expressions of PPARα, CPT-1, and PDK-4 proteins. CONCLUSION: Apigenin could exert an ameliorative effect on abnormal glucolipid metabolism in AngⅡ/hypoxia-stimulated or HIF-1α-overexpressed H9c2 cells, and its mechanisms were associated with the inhibition of HIF-1α expression and subsequent upregulation of PPARα-mediated CPT-1 and PDK-4 expressions and downregulation of PPARγ-mediated GPAT and GLUT-4 expressions.


Assuntos
Apigenina/farmacologia , Cardiomegalia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Angiotensina II/farmacologia , Animais , Fator Natriurético Atrial/metabolismo , Cardiomegalia/metabolismo , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , PPAR alfa/metabolismo , PPAR gama/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Ratos , Regulação para Cima/efeitos dos fármacos
14.
Bioorg Chem ; 87: 136-141, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30884307

RESUMO

Chlorovaltrates U-W (1-3), three previously undescribed iridoids, together with four known analogues were isolated from the roots of Valeriana jatamansi. Their structures were elucidated by means of spectroscopic analyses (HRESIMS, NMR). The cytotoxicity of all isolates was evaluated. Compounds 5-7 exhibited selective cytotoxicity against HCT116 cells, with IC50 values of 9.3, 1.7 and 2.2 µM, respectively. The preliminary mechanistic study revealed that, the cytotoxicity effect of 6 was attributed to Akt/mTOR activation blockade via inhibition of PDK1 phosphorylation. Meanwhile, compound 6 could induce autophagosome formation in HCT116 cells via suppressing its downstream Akt/mTOR. These findings show that compound 6 could be of great importance to the development of anti-colon cancer agents.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Autofagia/efeitos dos fármacos , Iridoides/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Valeriana/química , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Iridoides/química , Iridoides/isolamento & purificação , Modelos Moleculares , Estrutura Molecular , Raízes de Plantas/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
15.
Cell Rep ; 26(11): 2984-2997.e4, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30865888

RESUMO

The CNS plays a pivotal role in energy homeostasis, but whether oligodendrocytes are involved has been largely unexplored. Here, we show that signaling through GPR17, a G-protein-coupled receptor predominantly expressed in the oligodendrocyte lineage, regulates food intake by modulating hypothalamic neuronal activities. GPR17-null mice and mice with an oligodendrocyte-specific knockout of GPR17 have lean phenotypes on a high-fat diet, suggesting that GPR17 regulates body weight by way of oligodendrocytes. Downregulation of GPR17 results in activation of cAMP-protein kinase A (PKA) signaling in oligodendrocytes and upregulated expression of pyruvate dehydrogenase kinase 1 (PDK1), which promotes lactate production. Elevation of lactate activates AKT and STAT3 signaling in the hypothalamic neurons, leading to increased expression of Pomc and suppression of Agrp. Our findings uncover a critical role of oligodendrocytes in metabolic homeostasis, where GPR17 modulates the production of lactate, which, in turn, acts as a metabolic signal to regulate neuronal activity.


Assuntos
AMP Cíclico/metabolismo , Hipotálamo/metabolismo , Ácido Láctico/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Oligodendroglia/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células HEK293 , Humanos , Hipotálamo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais
16.
JCI Insight ; 3(15)2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30089711

RESUMO

Limited understanding of the mechanisms responsible for life-threatening organ and immune failure hampers scientists' ability to design sepsis treatments. Pyruvate dehydrogenase kinase 1 (PDK1) is persistently expressed in immune-tolerant monocytes of septic mice and humans and deactivates mitochondrial pyruvate dehydrogenase complex (PDC), the gate-keeping enzyme for glucose oxidation. Here, we show that targeting PDK with its prototypic inhibitor dichloroacetate (DCA) reactivates PDC; increases mitochondrial oxidative bioenergetics in isolated hepatocytes and splenocytes; promotes vascular, immune, and organ homeostasis; accelerates bacterial clearance; and increases survival. These results indicate that the PDC/PDK axis is a druggable mitochondrial target for promoting immunometabolic and organ homeostasis during sepsis.


Assuntos
Ácido Dicloroacético/farmacologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Complexo Piruvato Desidrogenase/metabolismo , Sepse/tratamento farmacológico , Animais , Células Cultivadas , Ácido Dicloroacético/uso terapêutico , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/imunologia , Homeostase/efeitos dos fármacos , Homeostase/imunologia , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Monócitos/citologia , Monócitos/imunologia , Monócitos/metabolismo , Cultura Primária de Células , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Sepse/imunologia , Sepse/mortalidade , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA