Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Metabolomics ; 19(12): 98, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37999866

RESUMO

INTRODUCTION: Separately, both exercise and protein ingestion have been shown to alter the blood and urine metabolome. This study goes a step further and examines changes in the metabolome derived from blood, urine and muscle tissue extracts in response to resistance exercise combined with ingestion of three different protein sources. METHODS: In an acute parallel study, 52 young males performed one-legged resistance exercise (leg extension, 4 × 10 repetitions at 10 repetition maximum) followed by ingestion of either cricket (insect), pea or whey protein (0.25 g protein/kg fat free mass). Blood and muscle tissue were collected at baseline and three hours after protein ingestion. Urine was collected at baseline and four hours after protein ingestion. Mixed-effects analyses were applied to examine the effect of the time (baseline vs. post), protein (cricket, pea, whey), and time x protein interaction. RESULTS: Nuclear magnetic resonance (NMR)-based metabolomics resulted in the annotation and quantification of 25 metabolites in blood, 35 in urine and 21 in muscle tissue. Changes in the muscle metabolome after combined exercise and protein intake indicated effects related to the protein source ingested. Muscle concentrations of leucine, methionine, glutamate and myo-inositol were higher after intake of whey protein compared to both cricket and pea protein. The blood metabolome revealed changes in a more ketogenic direction three hours after exercise reflecting that the trial was conducted after overnight fasting. Urinary concentration of trimethylamine N-oxide was significantly higher after ingestion of cricket than pea and whey protein. CONCLUSION: The blood, urine and muscle metabolome showed different and supplementary responses to exercise and ingestion of the different protein sources, and in synergy the summarized results provided a more complete picture of the metabolic state of the body.


Assuntos
Críquete , Treinamento Resistido , Masculino , Humanos , Proteínas do Soro do Leite/metabolismo , Proteínas do Soro do Leite/farmacologia , Soro do Leite/metabolismo , Pisum sativum/metabolismo , Proteínas do Leite/metabolismo , Metabolômica , Músculo Esquelético/metabolismo , Metaboloma
2.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982529

RESUMO

The reproductive stage of plant development has the most critical impact on yield. Flowering is highly sensitive to abiotic stress, and increasing temperatures and drought harm crop yields. Salicylic acid is a phytohormone that regulates flowering and promotes stress resilience in plants. However, the exact molecular mechanisms and the level of protection are far from understood and seem to be species-specific. Here, the effect of salicylic acid was tested in a field experiment with Pisum sativum exposed to heat stress. Salicylic acid was administered at two different stages of flowering, and its effect on the yield and composition of the harvested seeds was followed. Plants treated with salicylic acid produced larger seed pods, and a significant increase in dry weight was found for the plants with a delayed application of salicylic acid. The analyses of the seed proteome, lipidome, and metabolome did not show any negative impact of salicylic treatment on seed composition. Identified processes that could be responsible for the observed improvement in seed yields included an increase in polyamine biosynthesis, accumulation of storage lipids and lysophosphatidylcholines, a higher abundance of components of chromatin regulation, calmodulin-like protein, and threonine synthase, and indicated a decrease in sensitivity to abscisic acid signaling.


Assuntos
Pisum sativum , Ácido Salicílico , Pisum sativum/metabolismo , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Sementes/metabolismo , Estresse Fisiológico , Plantas/metabolismo
3.
J Sci Food Agric ; 103(10): 5096-5107, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36974656

RESUMO

BACKGROUND: Lignification causes a detrimental impact on the quality of edible sprouts. However, the mechanism of inhibition of lignification of edible sprouts by nano-selenium and lentinans remains unclear. RESULTS: To reveal the mechanism of lignification regulation of sprouts by nano-selenium and lentinans, this study investigated the changes in antioxidant indicators, phytohormones, polyphenols, and metabolites in the lignin biosynthesis in pea sprouts following sprays of nano-selenium or/and lentinans twice. There was an overall increase in the aforementioned indices following treatment. In particular, the combined application of 5 mg L-1 nano-selenium and 20 mg L-1 lentinans was more effective than their individual applications in enhancing peroxidase, catalase, DPPH free-radical scavenging rate, luteolin, and sinapic acid, as well as inhibiting malondialdehyde generation and lignin accumulation. Combined with the results from correlation analysis, nano-selenium and lentinans may inhibit lignification by enhancing antioxidant systems, inducing phytohormone-mediated signaling, and enriching precursor metabolites (caffeyl alcohol, sinapyl alcohol, 4-coumaryl alcohol). In terms of the results of non-targeted metabolomics, the combined application of 5 mg L-1 nano-selenium and 20 mg L-1 lentinans mainly affected biosynthesis of plant secondary metabolites, biosynthesis of phenylpropanoids, phenylpropanoid biosynthesis, arginine and proline metabolism, and linoleic acid metabolism pathways, which supported and complemented results from targeted screenings. CONCLUSION: Overall, the combined sprays of nano-selenium and lentinans showed synergistic effects in delaying lignification and optimizing the quality of pea sprouts. This study provides a novel and practicable technology for delaying lignification in the cultivation of edible sprouts. © 2023 Society of Chemical Industry.


Assuntos
Metabolômica , Pisum sativum , Antioxidantes/química , Pisum sativum/metabolismo , Selênio/química , Nanoestruturas , Plântula/química
4.
Plant Physiol Biochem ; 196: 381-392, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36746009

RESUMO

Flavonoids are important secondary metabolites in the plant growth and development process. As a medicinal plant, pigeon pea is rich in secondary metabolites. As a flavonoid, there are few studies on the regulation mechanism of naringenin in plant stress resistance. In our study, we found that naringenin can increase the pigeon pea's ability to tolerate salt and influence the changes that occur in flavonoids including naringenin, genistein and biochanin A. We analyzed the transcriptome data after 1 mM naringenin treatment, and identified a total of 13083 differentially expressed genes. By analyzing the metabolic pathways of these differentially expressed genes, we found that these differentially expressed genes were enriched in the metabolic pathways of phenylpropanoid biosynthesis, starch and sucrose metabolism and so on. We focused on the analysis of flavonoid biosynthesis related pathways. Among them, the expression levels of enzyme genes CcIFS, CcCHI and CcCHS in the flavonoid biosynthesis pathway had considerably higher expression levels. By counting the number of transcription factors and the binding sites on the promoter of the enzyme gene, we screened the transcription factors CcMYB62 and CcbHLH35 related to flavonoid metabolism. Among them, CcMYB62 has a higher expression level than the others. The hairy root transgene showed that CcMYB62 could induce the upregulation of CcCHI, and promote the accumulation of naringenin, genistein and biochanin A. Our study revealed the molecular mechanism of naringenin regulating flavonoid biosynthesis under salt stress in pigeon pea, and provided an idea for the role of flavonoids in plant resistance to abiotic stresses.


Assuntos
Cajanus , Cajanus/genética , Cajanus/química , Cajanus/metabolismo , Genisteína/metabolismo , Pisum sativum/metabolismo , Tolerância ao Sal/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas
5.
J Diet Suppl ; 20(2): 133-155, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34405764

RESUMO

The global scientific community is striving to understand the pathophysiological mechanisms and develop effective therapeutic strategies for COVID-19. Despite overwhelming data, there is limited knowledge about the molecular mechanisms involved in the prominent cytokine storm syndrome and multiple organ failure and fatality in COVID-19 cases. The aim of this work is to investigate the possible role of of α-lipoic acid (ALA) and palmitoylethanolamide (PEA), in countering the mechanisms in overproduction of reactive oxygen species (ROS), and inflammatory cytokines. An in vitro model of lipopolysaccharide (LPS)-stimulated human epithelial lung cells that mimics the pathogen-associated molecular pattern and reproduces the cell signaling pathways in cytokine storm syndrome has been used. In this model of acute lung injury, the combination effects of ALAPEA, administered before and after LPS injury, were investigated. Our data demonstrated that a combination of 50 µM ALA + 5 µM PEA can reduce ROS and nitric oxide (NO) levels modulating the major cytokines involved on COVID-19 infection when administered either before or after LPS-induced damage. The best outcome was observed when administered after LPS, thus reinforcing the hypothesis that ALA combined with PEA to modulate the key point of cytokine storm syndrome. This work supports for the first time that the combination of ALA with PEA may represent a novel intervention strategy to counteract inflammatory damage related to COVID-19 by restoring the cascade activation of the immune response and acting as a powerful antioxidant.


Assuntos
COVID-19 , Ácido Tióctico , Humanos , Ácido Tióctico/farmacologia , Síndrome da Liberação de Citocina/tratamento farmacológico , Pisum sativum/metabolismo , Endotoxinas/metabolismo , Endotoxinas/farmacologia , Lipopolissacarídeos , Espécies Reativas de Oxigênio , Estresse Oxidativo , Citocinas/metabolismo
6.
J Agric Food Chem ; 70(18): 5680-5690, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35475338

RESUMO

Germinated pigeon pea seeds (GPPSs) are good dietary supplements with satisfactory nutritional and medicinal values. In this study, UV-B treatment was used to promote the accumulation of health-promoting phenolic compounds (10 flavonoids and 1 stilbene) in GPPS. The total yield of 11 phenolic compounds (235 839.76 ± 17 118.24 ng/g DW) significantly improved (2.53-fold increase) in GPPSs exposed to UV-B radiation (3 W/m2) for 8 h, whereas free amino acid and reducing sugar contents exhibited a decreasing tendency during UV-B exposure. Meanwhile, the positive response in the antioxidant activities of enzymes and nonenzymatic extracts was noticed in UV-B-treated GPPSs. Moreover, UV-B radiation could cause tissue damages in hypocotyls and cotyledons of the GPPSs and enhance the generation of endogenous salicylic acid, thus activating the expression of biosynthesis genes (especially CHS and STS1). Overall, the simple UV-B supplementation strategy makes GPPSs more attractive as functional foods/nutraceuticals in diet for promoting human health.


Assuntos
Antioxidantes , Cajanus , Antioxidantes/química , Cajanus/química , Expressão Gênica , Pisum sativum/metabolismo , Fenóis/química , Ácido Salicílico/metabolismo , Sementes/química , Raios Ultravioleta
7.
J Sci Food Agric ; 102(7): 2855-2863, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34741307

RESUMO

BACKGROUND: Pea sprouts are considered a healthy food. Sucrose is a key nutritional factor affecting taste and flavor. Meanwhile, selenium (Se) is an essential micronutrient that plays multiple roles in wide variety of physiological processes and improves crop quality and nutritional value. Nonetheless, the effects of the combination of sucrose and Se treatment on growth, quality, and sugar metabolism of pea sprouts have not been explored. RESULTS: The results revealed that sucrose at 10 mg L-1 obviously increased fresh weight, vitamin C, soluble protein, soluble sugar, fructose, glucose, and sucrose contents. Se treatments also improved nutritional quality, but higher Se (2.5 mg L-1 ) significantly inhibited the growth of seedlings. Interestingly, the combined application of sucrose (10 mg L-1 ) and Se (1.25 mg L-1 ) could effectively promote vitamin C, sucrose, and fructose contents, especially the Se content, compared with Se application alone. Additionally, there were significant differences in the regulation of sugar metabolism between Se alone and combined application of sucrose and Se. Acid invertase and neutral invertase play a pivotal role in the accumulation of soluble sugar under Se treatments alone, and acid invertase might be the key enzyme to limit sugar accumulation under combined application of sucrose and Se. CONCLUSION: The moderate combined application of sucrose (10 mg L-1 ) and Se (1.25 mg L-1 ) more effectively regulated sugar metabolism and improved nutritional quality than Se application alone did. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Selênio , Sacarose , Ácido Ascórbico , Metabolismo dos Carboidratos , Carboidratos , Frutose/metabolismo , Pisum sativum/metabolismo , Selênio/metabolismo , Sacarose/metabolismo , Açúcares , beta-Frutofuranosidase/metabolismo
8.
Biomed Pharmacother ; 143: 112120, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34649330

RESUMO

The goal of this work aimed to evaluate the protective effects of pea (Pisum sativum) peels extract versus doxorubicin-induced oxidative myocardial injury in male mice. The mice were divided into seven groups (n = 7): (I) control group; (II) P. sativum 250 group; (III) P. sativum 500 group; (IV) DOX (3 times alternately of 2.5 mg/kg/week, i.p. for a continuous two-week period) group; (V) Vit. E 100 + DOX group; (VI) P. sativum 250 + DOX group, and (VII) P. sativum 500 + DOX group). Twenty polyphenolic compounds, mainly flavonoid glycosides such as quercetin, kaempferol apigenin, and phenolics compounds were characterized by LC-MS/MS analysis in the examined extract. DOX administration elevated the activities of serum biomarkers of myocardial dysfunction (ALT, AST, ALP, LDH, troponin, CPK, and CK-MB), lipid profile, and proinflammatory cytokines. Also, it decreased cardiac antioxidants (GSH, SOD, GPX, CAT) and increased myocardial markers of oxidative stress (NO and MDA) and inflammatory marker (MPO). As well as it downregulated and upregulated the Bcl-2 (anti-apoptotic gene) and the Bax (pro-apoptotic gene) expressions, respectively. Pre-treatment of DOX-exposed mice with P. sativum or vitamin E (as a reference protective antioxidant) alleviated the changes dose-dependently via DOX-induced cardiotoxicity. These data show that P. sativum has a cardio-protective impact against DOX-induced cardiomyocyte damage in mice via boosting endogenous antioxidants, decreasing inflammation, and regulating BcL-2 and Bax apoptosis pathway, which might be related to the presence of flavonoid glycosides. P. sativum peels are a by-product that could be suggested for further screening as a possible new candidate for therapeutic use.


Assuntos
Antioxidantes/farmacologia , Cardiopatias/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Pisum sativum , Extratos Vegetais/farmacologia , Animais , Antioxidantes/isolamento & purificação , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Cardiotoxicidade , Modelos Animais de Doenças , Doxorrubicina , Cardiopatias/induzido quimicamente , Cardiopatias/metabolismo , Cardiopatias/patologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Pisum sativum/metabolismo , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Metabolismo Secundário , Sementes , Transdução de Sinais
9.
Carbohydr Polym ; 263: 117932, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33858566

RESUMO

According to the high interest in agro-industrial waste reutilisation, underutilised lignocellulosic materials, such as walnut shell (WS) and pea pod (PP), come in focus. The aim of this paper was to evaluate WS and PP as sources for the production of xylooligosaccharides (XOS). Hemicelluloses from WS and PP were recovered by combining varying parameters of delignification and alkaline extraction. At optimal recovery conditions, the fractions were further hydrolysed to XOS using GH11 endo-xylanase, by varying time and enzyme concentration. Xylose was predominant in the monomeric composition of the obtained hemicelluloses, building low-branched (arabino)glucuronoxylan, in WS exclusively, while in PP some xyloglucan as well. Delignification was essential for high recovery of total xylose from the materials, up to at least 70 %. High xylan conversions were obtained for 24 h hydrolysis, resulting in xylobiose and xylotriose when using low enzyme concentration, while in xylose and xylobiose with high enzyme concentration.


Assuntos
Fracionamento Químico/métodos , Glucuronatos/química , Juglans/química , Juglans/metabolismo , Oligossacarídeos/química , Pisum sativum/química , Pisum sativum/metabolismo , Glucuronatos/isolamento & purificação , Hidrólise , Juglans/anatomia & histologia , Oligossacarídeos/isolamento & purificação , Pisum sativum/anatomia & histologia , Extratos Vegetais/química , Polissacarídeos/química , Polissacarídeos/metabolismo , Açúcares/análise , Xilanos/química , Xilanos/isolamento & purificação , Xilose/análise , Xilose/isolamento & purificação , Xilose/metabolismo
10.
Carbohydr Polym ; 260: 117801, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33712149

RESUMO

Slowly digestible starches have received interest due to their lower increase of postprandial blood glucose and insulin levels and, hence, modification of starches towards slower digestibility has commercial interest. However, chemical characteristics driving enzymatic (digestive) degradation are not fully unraveled. The digestion properties of starches have been linked to their crystalline type, chain length distribution, amylose content or degree of branching, but content and length of relatively long side-chains in amylopectin has not been paid attention to. Therefore, this research focusses on the unique content and length of amylopectin side-chains from conventional and new starch sources (potato, corn, pea, and tulip) correlated to the enzymatic digestion. The rate of hydrolysis was found to be correlated with the crystalline type of starch, as previously suggested, however, the complete hydrolysis of all starches, independent of the crystalline type and source, was shown to be governed by the content of longer amylopectin chains.


Assuntos
Gelatina/química , Glucana 1,4-alfa-Glucosidase/metabolismo , Amido/metabolismo , alfa-Amilases/metabolismo , Cristalização , Digestão , Hidrólise , Espectroscopia de Ressonância Magnética , Pisum sativum/metabolismo , Solanum tuberosum/metabolismo , Amido/química , Zea mays/metabolismo
11.
J Sci Food Agric ; 101(9): 3551-3563, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33417241

RESUMO

Biofortification refers to an approach to increase micronutrient concentrations in the edible parts of plants with increased bioavailability to the human population. Conventional, agronomic and transgenic breeding methods can be used to develop these biofortified crops, offering sustainable and cost-effective strategies. Pea has long been recognized as a valuable, nutritious food for the human diet, but there is a limited amount of information about it, which prevents the full micronutrient enrichment potential of this pulse crop to be reached. Considerations must include not only micronutrient concentrations but also the amount of the nutrient that can be absorbed by the consumer, after processing and cooking. Development of biofortified pea that retains nutrients during cooking and processing is not only essential for fighting micronutrient malnutrition, but also necessary to improve agricultural productivity. © 2021 Society of Chemical Industry.


Assuntos
Alimentos Fortificados/análise , Pisum sativum/química , Animais , Biofortificação , Humanos , Micronutrientes/análise , Micronutrientes/metabolismo , Pisum sativum/metabolismo , Sementes/química , Sementes/metabolismo
12.
J Sci Food Agric ; 101(10): 4241-4249, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33426682

RESUMO

BACKGROUND: Nitrogen (N) fertiliser used on crops is among the main sources of water pollution. Reliable measurement of N losses from land uses in catchments is key to designing effective management strategies that minimise those losses at the same time as keeping farms profitable. In the present study, we used a management simulation tool within the Agricultural Production Systems sIMulator (APSIM) to assess the effect of fertiliser management on N leaching from croplands in the Aparima catchment in Southland, New Zealand. The assessment was based on two N-fertiliser regimes: (i) Scheduled (conventional) where, N-fertiliser rates and timing of application followed a prescribed programme, and (ii) Soil-test where, N-fertiliser rates and timing depended on daily analysis of simulated soil N levels. Four rotations (continuous wheat, pasture-wheat-grain oats, wheat-fodder beet-peas and wheat-green oats-fodder beet-peas) were used in the evaluation. RESULTS: APSIM simulated crop productivity with reasonable accuracy. Yields were 2% greater, fertiliser N input was 11% lower and leaching was 20% lower under the Soil-test compared to the Scheduled fertiliser management. These results show the potential of a Soil-test based fertiliser application to increase fertiliser-N use efficiency and reduce the risk of N loss to the Southland catchment water systems. CONCLUSION: The present study demonstrates a dynamic farm systems model can be a viable tool to generate valuable data for assessing the productivity and environmental effects of cropping systems at a catchment scale. © 2021 Society of Chemical Industry.


Assuntos
Produção Agrícola/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Nitrogênio/análise , Avena/crescimento & desenvolvimento , Avena/metabolismo , Beta vulgaris/metabolismo , Produtos Agrícolas/metabolismo , Fertilizantes/análise , Nova Zelândia , Nitrogênio/metabolismo , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/metabolismo , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Solo/química , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
13.
Sci Rep ; 10(1): 18940, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144592

RESUMO

Field pea is important to agriculture as a nutritionally dense legume, able to fix nitrogen from the atmosphere and supply it back to the soil. However, field pea requires more phosphorus (P) than other crops. Identifying field pea cultivars with high phosphorus use efficiency (PUE) is highly desirable for organic pulse crop biofortification. This study identified field pea accessions with high PUE by determining (1) the variation in P remobilization rate, (2) correlations between P and phytic acid (PA), and (3) broad-sense heritability estimates of P concentrations. Fifty field pea accessions were grown in a completely randomized design in a greenhouse with two replicates under normal (7551 ppm) and reduced (4459 ppm) P fertilizer conditions and harvested at two time points (mid-pod and full-pod). P concentrations ranged from 332 to 9520 ppm under normal P and from 83 to 8473 ppm under reduced P conditions across all tissues and both time points. Field pea accessions showed variation in remobilization rates, with PI 125840 and PI 137119 increasing remobilization of P under normal P conditions. Field pea accessions PI 411142 and PI 413683 increased P remobilization under the reduced P treatment. No correlation was evident between tissue P concentration and seed PA concentration (8-61 ppm). Finally, seed P concentration under limited P conditions was highly heritable (H2 = 0.85), as was mid-pod lower leaf P concentrations under normal P conditions (H2 = 0.81). In conclusion, breeding for PUE in field pea is possible by selecting for higher P remobilization accessions in low P soils with genetic and location sourcing.


Assuntos
Fósforo/metabolismo , Pisum sativum/genética , Pisum sativum/metabolismo , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/metabolismo , Fertilizantes , Técnicas de Genotipagem , Pisum sativum/efeitos dos fármacos , Fósforo/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo
14.
Food Chem ; 329: 127219, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32516714

RESUMO

Plant-based proteins and polyphenols are increasingly being explored as functional food ingredients. Colloidal complexes were prepared from pea protein (PP) and grape seed proanthocyanidin (GSP) and the ability of the PP/GSP complexes to form and stabilize oil-in-water emulsions were investigated. The main interactions between PP and GSP were hydrogen bonding. The stability of PP-GSP complexes to environmental changes were studied: pH (2-9); ion strength (0-0.3 M); and temperature (30-90 °C). Emulsions produced using PP-GSP complexes as emulsifiers had small mean droplet diameters (~200 nm) and strongly negative surface potentials (~-60 mV). Compared to PP alone, PP-GSP complexes slightly decreased the isoelectric point, thermostability, and salt stability of the emulsions, but increased their storage stability. The presence of GSP gave the emulsions a strong salmon (red-yellow) color, which may be beneficial for some specific applications. These results may assist in the creation of more efficacious food-based strategies for delivering proanthocyanidins.


Assuntos
Emulsões/química , Extrato de Sementes de Uva/química , Proteínas de Ervilha/química , Pisum sativum/metabolismo , Polifenóis/química , Proantocianidinas/química , Antioxidantes/química , Sítios de Ligação , Calorimetria , Extrato de Sementes de Uva/metabolismo , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Simulação de Acoplamento Molecular , Óleos/química , Concentração Osmolar , Proteínas de Ervilha/metabolismo , Polifenóis/metabolismo , Proantocianidinas/metabolismo , Cloreto de Sódio/química , Temperatura , Água/química
15.
Biosci Biotechnol Biochem ; 84(6): 1105-1112, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32013735

RESUMO

Although sweet pea (Lathyrus odoratus) beans contain toxic ß-aminopropionitrile, the plant itself is readily attacked by insects and is, therefore, protected through the use of pesticides. Consequently, the induction of L. odoratus resistance to insect attack via exogenous treatment is promising for pest control development. Screening of inducible elicitor effects showed that treatment of sweet pea foliage with jasmonic acid (JA) can induce antifeeding-based resistance to tobacco cutworm (Spodoptera litura) larvae. Spectroscopic analysis identified 2-cyanoethyl-isoxazolin-5-one (2-CEIX) as the antifeedant with a half-maximal effective concentration of 33.6 µmol/g fr. wt., i.e., exogenous JA treatment induced antifeeding activity due to the accumulation of 2-CEIX. Moreover, 2-CEIX-induced mortality of S. litura larvae was evaluated by a dipping test and the half-maximal lethal dose was determined to be 5.9 mg/mL. Therefore, 2-CEIX was concluded to be a suitable induced resistance target for elicitors or a lead compound for insecticide development.


Assuntos
Proteção de Cultivos/métodos , Ciclopentanos/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Controle de Insetos/métodos , Inseticidas/farmacologia , Isoxazóis/farmacologia , Oxilipinas/farmacologia , Pisum sativum/efeitos dos fármacos , Extratos Vegetais/farmacologia , Spodoptera/fisiologia , Animais , Isoxazóis/metabolismo , Larva/fisiologia , Pisum sativum/química , Pisum sativum/metabolismo , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo
16.
Food Funct ; 10(12): 7806-7817, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31793593

RESUMO

The removal of intact chloroplasts from their cell wall confinement offers a novel way to obtain lipophilic nutrients from green biomass, especially carotenoids and galactolipids. These latter are the main membrane lipids in plants and they represent a major source of the essential α-linolenic acid (18:3; ALA). Nevertheless, knowledge on their digestion is still limited. We have developed a physical method of recovering a chloroplast-rich fraction (CRF) from green biomass and tested its digestibility in vitro under simulated gastrointestinal conditions. Using a two-step static model, CRF from both spinach leaves and postharvest, pea vine field residue (haulm) were first exposed to enzymes from rabbit gastric extracts and then either to pancreatic enzymes from human pancreatic juice (HPJ) or to porcine pancreatic extracts (PPE). The lipolysis of monogalactosyldiacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG) was monitored by thin layer chromatography and gas chromatography of fatty acid methyl esters. For both CRF preparations, MGDG and DGDG were converted to monogalactosylmonoacylglycerol (MGMG) and digalactosylmonoacylglycerol (DGMG), respectively, during the intestinal phase and ALA was the main fatty acid released. Galactolipids were more effectively hydrolysed by HPJ than by PPE, and PPE showed a higher activity on MGDG than on DGDG. These findings may be explained by the higher levels of galactolipase activity in HPJ compared to PPE, which mainly results from pancreatic lipase-related protein 2. Thus, we showed that CRF galactolipids are well digested by pancreatic enzymes and represent an interesting vehicle for ALA supplementation in human diet.


Assuntos
Cloroplastos/química , Galactolipídeos/química , Pisum sativum/química , Spinacia oleracea/química , Animais , Cloroplastos/metabolismo , Galactolipídeos/metabolismo , Trato Gastrointestinal/metabolismo , Humanos , Hidrólise , Modelos Biológicos , Pisum sativum/metabolismo , Extratos Vegetais/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Coelhos , Spinacia oleracea/metabolismo , Suínos , Ácido alfa-Linolênico
17.
Planta ; 251(1): 11, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776673

RESUMO

MAIN CONCLUSION: Components of the photosynthetic electron transport chain in pea (Pisum sativum L.) leaves under in vivo conditions showed the following sensitivity to the inhibitory action of chromium(VI): intersystem electron transport > photosystem I > photosystem II. Inhibitory effects of chromium (VI) (K2Cr2O7, Cr) on the light reactions of photosynthesis were studied in vivo in Pisum sativum L. by using Multi-function Plant Efficiency Analyser (M-PEA-2). Photosynthetic parameters related to photosystem (PS) II, PSI and intersystem electron carriers were calculated from the light-induced kinetics of prompt chlorophyll a fluorescence (OJIP transient), delayed chlorophyll a fluorescence (DF), and 820 nm modulated reflection (MR). We showed that the I2 step of DF induction is sensitive to inhibition of the Q0 site of the cytochrome b6f complex. Such parameters as δRo of the JIP test related to the functional state of photosynthetic reactions beyond the PQ pool, Vred of the MR induction assigned to the overall rate of P700+ and plastocyanin reduction, and I2 step of the DF induction were significantly altered in the presence of low-dose Cr(VI). Moderate doses of Cr affected mainly PSI-related parameters including Vox and ΔMR parameters of the MR induction, whereas high-dose treatment influenced JIP test parameters φPo(= FV/FM) and ψEo related to PSII. The obtained results showed that the earliest Cr(VI) effect on the photosynthetic electron transport chain manifests itself by inhibition of the intersystem electron transport, rather, at the level of the cytochrome b6f complex. Inhibitory effects of Cr on PSI were more pronounced than those on PSII. Sensitivity of the used kinetic parameters toward the functional state of photosynthetic reactions makes this approach suitable for early diagnostics of toxic action of pollutants on plants.


Assuntos
Cromo/farmacologia , Fotossíntese/fisiologia , Pisum sativum/metabolismo , Clorofila A/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Transporte de Elétrons/fisiologia , Metais Pesados/metabolismo , Pisum sativum/fisiologia , Fotossíntese/efeitos dos fármacos
18.
J Agric Food Chem ; 67(43): 11955-11968, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31595748

RESUMO

Increased processing of pulses generates large volumes of hulls, which are known as an excellent source of phenolic antioxidants. However, the bioavailability and in vivo activity of these phenolics are rarely reported. This research was therefore carried out to study the absorption, metabolism, and in vivo antioxidant activities of green pea hull (GPH) phenolics using ultrahigh-pressure liquid chromatography with a linear ion trap-high-resolution Orbitrap mass spectrometry and an oxidative stress rat model. A total of 31 phenolics, including 4 phenolic acids, 24 flavonoids, and 3 other phenolics, were tentatively identified. Ten of these phenolics and 49 metabolites were found in the plasma and urine of rats, which helped to explain the favorable changes by GPH phenolics in key antioxidant enzymes (superoxide dismutase, glutathione peroxidase, and glutathione) and indicators (total antioxidant capacity, malondialdehyde) in the plasma and different tissues of rats. This is the first comprehensive report on dry pea hull phenolics and their bioavailability, metabolic profiles, and mechanisms of in vivo antioxidant activities.


Assuntos
Antioxidantes/metabolismo , Fenóis/sangue , Fenóis/urina , Pisum sativum/metabolismo , Extratos Vegetais/sangue , Extratos Vegetais/urina , Resíduos/análise , Animais , Antioxidantes/química , Disponibilidade Biológica , Feminino , Flavonoides/sangue , Flavonoides/metabolismo , Flavonoides/urina , Hidroxibenzoatos/sangue , Hidroxibenzoatos/metabolismo , Hidroxibenzoatos/urina , Estrutura Molecular , Pisum sativum/química , Fenóis/química , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley
19.
Food Funct ; 10(10): 6840-6850, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31580364

RESUMO

This research aims to study antioxidative activities of polar solvent extractable phenolic compounds from yellow peas with different germination times against oil-in-water emulsion oxidation. After germination (0, 2, 4, and 6 days), soluble free and polar soluble bound phenolic compounds were extracted and their antioxidative activity was evaluated using stripped soybean oil (SSO)-in-water emulsions. Liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS) and size-exclusion chromatography with multiangle-light-scattering and refractive-index detection (SEC-MALS-RI) were employed to analyze the phenolic composition and molar mass, respectively. Antioxidative activities of soluble free phenolic compounds increased in the SSO-in-water emulsion system, while those of polar soluble bound phenolic compounds decreased with germination. On the basis of chemometric analysis, pratensein (2), phloridzin (4), quercetin (9), sayanedine (12), hesperetin (13), glyzaglabrin (14), and pinocembrin (15) were speculated as the pivotal phenolic compounds responsible for the hydrogen donating capacity. Additionally, decreased molecular weight of soluble bound phenolic compounds was accompanied by the reduction of antioxidative activity in SSO-in-water emulsions indicating that the moieties of polar soluble bound phenolic compounds also have an important impact on the antioxidative activity of phenolic compounds.


Assuntos
Germinação , Oxirredução , Fenóis/química , Pisum sativum/química , Antioxidantes , Cromatografia em Gel , Cromatografia Líquida , Emulsões , Pisum sativum/metabolismo , Extratos Vegetais/química , Óleo de Soja , Espectrometria de Massas por Ionização por Electrospray , Fatores de Tempo
20.
Plant Physiol Biochem ; 142: 292-302, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31351320

RESUMO

Plant extracts have recently been used as exogenous adjuvants to strengthen the endogenous plant defense systems when they grow under different environmental stresses, including salinity. The study aimed at determining the effects of seed soaking using licorice root extract (LRE) on photosynthesis and antioxidant defense systems, including transcript levels of enzyme-encoding genes in pea seedling grown under 150 mM NaCl-salinity. Salt stress reduced seedling growth, photosynthesis attributes, and K+ content, and increased oxidative stress (O2•‒ and H2O2, and MDA), Na+, and Cl-, along with an increase in antioxidative defense activities compared to control. However, LRE pretreatment enhanced seedling growth, photosynthetic attributes (chlorophylls, carotenoids, Fv/Fm, Pn, Tr, and gs), ascorbate and glutathione and their redox states, proline, soluble sugars, α-TOC, and enzyme activities compared to stressed control. LRE pretreatment also upregulated transcript levels of CAT-, SOD-, APX-, GR-, DHAR-, and PrxQ-encoding genes in salt-stressed seedlings, decreasing oxidative stress and Na+ and Cl- contents and increasing K+ content and K+/Na+ ratio.


Assuntos
Antioxidantes/metabolismo , Glycyrrhiza/química , Pisum sativum/efeitos dos fármacos , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Pisum sativum/metabolismo , Pisum sativum/fisiologia , Fotossíntese/efeitos dos fármacos , Tolerância ao Sal/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA