Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 165: 115026, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37336148

RESUMO

This study sought to investigate the anti-amyloid ß (Aß) and anti-neuroinflammatory effects of catalpol in an Alzheimer's disease (AD) mouse model. METHODS: The effects of catalpol on Aß formation were investigated by thioflavin T assay. The effect of catalpol on generating inflammatory cytokines from microglial cells and the cytotoxicity of microglial cells on HT22 hippocampal cells were assessed by real-time quantitative PCR, ELISA, redox reactions, and cell viability. APPswe/PS1ΔE9 mice were treated with catalpol, and their cognitive ability was investigated using the water maze and novel object recognition tests. Immunohistochemistry and immunofluorescence were used to probe for protein markers of microglia and astrocyte, Aß deposits, and NF-κB pathway activity. Aß peptides, neuroinflammation, and nitric oxide production were examined using ELISA and redox reactions. RESULTS: Catalpol potently inhibited Aß fibril and oligomer formation. In microglial cells stimulated by Aß, catalpol alleviated the expression of the proinflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and inducible nitric oxide synthase (iNOS) but promoted the expression of the anti-inflammatory cytokine IL-10. Catalpol alleviated the cytotoxic effects of Aß-exposed microglia on HT22 cells. Treatment with catalpol in APPswe/PS1ΔE9 mice downregulated neuroinflammation production, decreased Aß deposits in the brains and alleviated cognitive impairment. Catalpol treatment decreased the number of IBA-positive microglia and GFAP-positive astrocytes and their activities of the NF-κB pathway in the hippocampus of APPswe/PS1ΔE9 mice. CONCLUSION: The administration of catalpol protected neurons by preventing neuroinflammation and Aß deposits in an AD mouse model. Therefore, catalpol may be a promising strategy for treating AD.


Assuntos
Peptídeos beta-Amiloides , Disfunção Cognitiva , Medicamentos de Ervas Chinesas , Glucosídeos Iridoides , Doenças Neuroinflamatórias , Fármacos Neuroprotetores , Placa Amiloide , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Glucosídeos Iridoides/farmacologia , Glucosídeos Iridoides/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Placa Amiloide/tratamento farmacológico , Doenças Neuroinflamatórias/tratamento farmacológico , Animais , Camundongos , Modelos Animais de Doenças , Citocinas/metabolismo , Linhagem Celular , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Peptídeos beta-Amiloides/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Masculino , Feminino , Camundongos Transgênicos
2.
Nutrients ; 14(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36235616

RESUMO

Accumulation of amyloid-beta (Aß) plaques leading to oxidative stress, mitochondrial damage, and cell death is one of the most accepted pathological hallmarks of Alzheimer's disease (AD). Pandanus amaryllifolius, commonly recognized as fragrant screw pine due to its characteristic smell, is widely distributed in Southeast Asia and is consumed as a food flavor. In search for potential anti-AD agents from terrestrial sources, P. amaryllifolius was explored for its in vitro anti-amyloidogenic and neuroprotective effects. Thioflavin T (ThT) assay and the high-throughput screening multimer detection system (MDS-HTS) assay were used to evaluate the extracts' potential to inhibit Aß aggregations and oligomerizations, respectively. The crude alcoholic extract (CAE, 50 µg/mL) and crude base extract (CBE, 50 µg/mL) obstructed the Aß aggregation. Interestingly, results revealed that only CBE inhibited the Aß nucleation at 100 µg/mL. Both CAE and CBE also restored the cell viability, reduced the level of reactive oxygen species, and reversed the mitochondrial dysfunctions at 10 and 20 µg/mL extract concentrations in Aß-insulted SY-SY5Y cells. In addition, the unprecedented isolation of nicotinamide from P. amaryllifolius CBE is a remarkable discovery as one of its potential bioactive constituents against AD. Hence, our results provided new insights into the promising potential of P. amaryllifolius extracts against AD and further exploration of other prospective bioactive constituents.


Assuntos
Doença de Alzheimer , Neuroblastoma , Fármacos Neuroprotetores , Pandanaceae , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Linhagem Celular Tumoral , Humanos , Neuroblastoma/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Niacinamida/uso terapêutico , Pandanaceae/metabolismo , Fragmentos de Peptídeos/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Placa Amiloide/tratamento farmacológico , Estudos Prospectivos , Espécies Reativas de Oxigênio/metabolismo
3.
PLoS One ; 17(2): e0263332, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35108319

RESUMO

Dysregulation of calcium homeostasis has been hypothesized to play a role in Alzheimer's disease (AD) pathogenesis. Increased calcium levels can impair axonal transport, disrupt synaptic transmission, and ultimately lead to cell death. Given the potential role of calcium dyshomeostasis in AD, there is interest in testing the ability of already approved drugs targeting various calcium channels to affect amyloid pathology and other aspects of disease. The objective of this study was to test the effects of FDA-approved L-type calcium channel antagonist nimodipine on amyloid accumulation and dystrophic neurite formation in 5XFAD mice, a mouse model of amyloid pathology. 5XFAD transgenic mice and non-transgenic littermates were treated with vehicle or nimodipine-containing chow from two to eight months of age, then brains were harvested and amyloid pathology assessed by immunoblot and immunofluorescence microscopy analyses. Nimodipine was well tolerated and crossed the blood brain barrier, as expected, but there was no effect on Aß accumulation or on the relative amount of neuritic dystrophy, as assessed by either immunoblot, dot blot or immunofluorescence imaging of Aß42 and dystrophic neurite marker LAMP1. While we conclude that nimodipine treatment is not likely to improve amyloid pathology or decrease neuritic dystrophy in AD, it is worth noting that nimodipine did not worsen the phenotype suggesting its use is safe in AD patients.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Modelos Animais de Doenças , Neuritos/efeitos dos fármacos , Distrofias Neuroaxonais/tratamento farmacológico , Nimodipina/administração & dosagem , Placa Amiloide/tratamento farmacológico , Administração Oral , Doença de Alzheimer/patologia , Animais , Bloqueadores dos Canais de Cálcio/administração & dosagem , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neuritos/patologia , Distrofias Neuroaxonais/patologia , Placa Amiloide/patologia
4.
Int J Mol Sci ; 23(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35008983

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease with a multifactorial etiology. A multitarget treatment that modulates multifaceted biological functions might be more effective than a single-target approach. Here, the therapeutic efficacy of combination treatment using anti-Aß antibody NP106 and curcumin analog TML-6 versus monotherapy was investigated in an APP/PS1 mouse model of AD. Our data demonstrate that both combination treatment and monotherapy attenuated brain Aß and improved the nesting behavioral deficit to varying degrees. Importantly, the combination treatment group had the lowest Aß levels, and insoluble forms of Aß were reduced most effectively. The nesting performance of APP/PS1 mice receiving combination treatment was better than that of other APP/PS1 groups. Further findings indicate that enhanced microglial Aß phagocytosis and lower levels of proinflammatory cytokines were concurrent with the aforementioned effects of NP106 in combination with TML-6. Intriguingly, combination treatment also normalized the gut microbiota of APP/PS1 mice to levels resembling the wild-type control. Taken together, combination treatment outperformed NP106 or TML-6 monotherapy in ameliorating Aß pathology and the nesting behavioral deficit in APP/PS1 mice. The superior effect might result from a more potent modulation of microglial function, cerebral inflammation, and the gut microbiota. This innovative treatment paradigm confers a new avenue to develop more efficacious AD treatments.


Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Precursor de Proteína beta-Amiloide/deficiência , Anticorpos Monoclonais/farmacologia , Curcumina/farmacologia , Presenilina-1/deficiência , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Animais , Comportamento Animal/efeitos dos fármacos , Biomarcadores , Curcumina/análogos & derivados , Gerenciamento Clínico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Microbiota/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Terapia de Alvo Molecular , Placa Amiloide/tratamento farmacológico , Placa Amiloide/patologia
5.
Eur Rev Med Pharmacol Sci ; 26(24): 9502-9510, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36591860

RESUMO

Alzheimer's disease (AD) is an irreversible degenerative illness of the central nervous system with characteristic histological alterations, known as amyloid plaques and neurofibrillary tangles (NFT). Aggregation of plaques and tangles in the brain induces neurotoxicity and synaptic dysfunction, eventually contributing to neuronal cell death and neurodegeneration. Recent studies have revealed that COVID-19 has a great impact on the development of AD, directly or indirectly, by facilitating the accumulation of amyloid plaques, causing altered functional brain integrity or increasing the phosphorylation rate of tau protein. As two important bioactive components of Ginkgo biloba extract (GbE), ginkgolides and bilobalide (BB) have been reported to show neuroprotective effects in AD via multiple mechanisms such as anti-excitotoxicity, anti-inflammatory and anti-oxidative activities. Intriguingly, ginkgolides and BB also seem to demonstrate antiviral properties against COVID-19 by inhibiting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease. Herein, we review studies on the neuroprotective and antiviral mechanisms of ginkgolides and bilobalide, as well as their therapeutic potential against AD and COVID-19.


Assuntos
Doença de Alzheimer , Bilobalídeos , COVID-19 , Humanos , Doença de Alzheimer/tratamento farmacológico , Placa Amiloide/tratamento farmacológico , SARS-CoV-2 , Ginkgolídeos/farmacologia , Ginkgolídeos/uso terapêutico , Extratos Vegetais/farmacologia , Ginkgo biloba
6.
Molecules ; 26(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204308

RESUMO

Globally, Alzheimer's disease (AD) is one of the most prevalent age-related neurodegenerative disorders associated with cognitive decline and memory deficits due to beta-amyloid deposition (Aß) and tau protein hyperphosphorylation. To date, approximately 47 million people worldwide have AD. This figure will rise to an estimated 75.6 million by 2030 and 135.5 million by 2050. According to the literature, the efficacy of conventional medications for AD is statistically substantial, but clinical relevance is restricted to disease slowing rather than reversal. Withaferin A (WA) is a steroidal lactone glycowithanolides, a secondary metabolite with comprehensive biological effects. Biosynthetically, it is derived from Withania somnifera (Ashwagandha) and Acnistus breviflorus (Gallinero) through the mevalonate and non-mevalonate pathways. Mounting evidence shows that WA possesses inhibitory activities against developing a pathological marker of Alzheimer's diseases. Several cellular and animal models' particulates to AD have been conducted to assess the underlying protective effect of WA. In AD, the neuroprotective potential of WA is mediated by reduction of beta-amyloid plaque aggregation, tau protein accumulation, regulation of heat shock proteins, and inhibition of oxidative and inflammatory constituents. Despite the various preclinical studies on WA's therapeutic potentiality, less is known regarding its definite efficacy in humans for AD. Accordingly, the present study focuses on the biosynthesis of WA, the epidemiology and pathophysiology of AD, and finally the therapeutic potential of WA for the treatment and prevention of AD, highlighting the research and augmentation of new therapeutic approaches. Further clinical trials are necessary for evaluating the safety profile and confirming WA's neuroprotective potency against AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Vitanolídeos/uso terapêutico , Peptídeos beta-Amiloides/metabolismo , Animais , Disfunção Cognitiva/tratamento farmacológico , Humanos , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/uso terapêutico , Placa Amiloide/tratamento farmacológico , Solanaceae/metabolismo , Withania/metabolismo , Vitanolídeos/metabolismo , Proteínas tau/metabolismo
7.
Nutrients ; 13(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069842

RESUMO

Alzheimer's disease (AD) is a complex progressive neurodegenerative disorder affecting humans mainly through the deposition of Aß-amyloid (Aß) fibrils and accumulation of neurofibrillary tangles in the brain. Currently available AD treatments only exhibit symptomatic relief but do not generally intervene with the amyloid and tau pathologies. The extra-virgin olive oil (EVOO) monophenolic secoiridoid S-(-)-oleocanthal (OC) showed anti-inflammatory activity through COX system inhibition with potency comparable to the standard non-steroidal anti-inflammatory drug (NSAID) like ibuprofen. OC also showed positive in vitro, in vivo, and clinical therapeutic effects against cardiovascular diseases, many malignancies, and AD. Due to its pungent, astringent, and irritant taste, OC should be formulated in acceptable dosage form before its oral use as a potential nutraceutical. The objective of this study is to develop new OC oral formulations, assess whether they maintained OC activity on the attenuation of ß-amyloid pathology in a 5xFAD mouse model upon 4-month oral dosing use. Exploration of potential OC formulations underlying molecular mechanism is also within this study scope. OC powder formulation (OC-PF) and OC-solid dispersion formulation with erythritol (OC-SD) were prepared and characterized using FT-IR spectroscopy, powder X-ray diffraction, and scanning electron microscopy (ScEM) analyses. Both formulations showed an improved OC dissolution profile. OC-PF and OC-SD improved memory deficits of 5xFAD mice in behavioral studies. OC-PF and OC-SD exhibited significant attenuation of the accumulation of Aß plaques and tau phosphorylation in the brain of 5xFAD female mice. Both formulations markedly suppressed C3AR1 (complement component 3a receptor 1) activity by targeting the downstream marker STAT3. Collectively, these results demonstrate the potential for the application of OC-PF as a prospective nutraceutical or dietary supplement to control the progression of amyloid pathogenesis associated with AD.


Assuntos
Aldeídos/administração & dosagem , Doença de Alzheimer/tratamento farmacológico , Monoterpenos Ciclopentânicos/administração & dosagem , Suplementos Nutricionais , Azeite de Oliva/administração & dosagem , Fenóis/administração & dosagem , Placa Amiloide/tratamento farmacológico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Formas de Dosagem , Feminino , Camundongos , Camundongos Transgênicos , Placa Amiloide/patologia , Pós , Espectroscopia de Infravermelho com Transformada de Fourier
8.
J Alzheimers Dis ; 79(2): 833-844, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33361598

RESUMO

BACKGROUND: Berberine (BBR) plays a neuroprotective role in the pathogenesis of Alzheimer's disease (AD), inhibiting amyloid-ß (Aß) production and promoting Aß clearance. Advanced glycation end products (AGEs) promote Aß aggregation and tau hyperphosphorylation. The activation of mTOR signaling occurring at the early stage of AD has a prominent impact on the Aß production. This work focused on whether BBR regulates the production and clearance of ribosylation-induced Aß pathology via inhibiting mTOR signaling. OBJECTIVE: To explore whether BBR ameliorates ribosylation-induced Aß pathology in APP/PS1 mice. METHODS: Western blot and immunofluorescence staining were used to detect the related proteins of the mammalian target of Rapamycin (mTOR) signaling pathway and autophagy, as well as the related kinases of Aß generation and clearance. Tissue sections and Immunofluorescence staining were used to observe Aß42 in APP/PS1 mice hippocampal. Morris water maze test was used to measure the spatial learning and memory of APP/PS1 mice. RESULTS: BBR improves spatial learning and memory of APP/PS1 mice. BBR limits the activation of mTOR/p70S6K signaling pathway and enhances autophagy process. BBR reduces the activity of BACE1 and γ-secretase induced by D-ribose, and enhances Aß-degrading enzymes and Neprilysin, and inhibits the expression of Aß in APP/PS1 mice. CONCLUSION: BBR ameliorates ribosylation-induced Aß pathology via inhibiting mTOR/p70S6K signaling and improves spatial learning and memory of the APP/PS1 mice.


Assuntos
Berberina/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Placa Amiloide/tratamento farmacológico , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Berberina/farmacologia , Western Blotting , Encéfalo/metabolismo , Encéfalo/patologia , Imunofluorescência , Camundongos , Camundongos Transgênicos , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Placa Amiloide/patologia , Ribose/metabolismo
9.
Biochem Biophys Res Commun ; 532(1): 82-87, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-32828536

RESUMO

Curcumin and related compounds have been validated to remove even well-developed human ß-amyloid plaques from the brain of transgenic mice, in vivo. However, their molecular mechanism of the plaque buster activity is rather unknown. Computational chemistry was employed here to better understand the ß-amyloid protein elimination. According to our docking studies, a tautomeric "keto-enol" flip-flop mechanism is proposed that may chop up ß-amyloid plaques in Alzheimer's due to removing each hairpin-foldamers one by one from both ends of aggregated fibrils. According to the experimented models, other bi-stable "keto-enol" pharmacophores might be identified to break up amyloid plaques and enhance rapid clearance of toxic aggregates in Alzheimer's disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Curcumina/farmacologia , Placa Amiloide/tratamento farmacológico , Placa Amiloide/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Curcumina/química , Suplementos Nutricionais , Humanos , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Simulação de Acoplamento Molecular , Fitoterapia , Placa Amiloide/química , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas , Ligação Proteica/efeitos dos fármacos
10.
Mech Ageing Dev ; 189: 111259, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32450086

RESUMO

Accumulation of neurotoxic forms of amyloid-ß proteins in senile plaques and hyperphosphorylated tau proteins in neurofibrillary tangles is a well-known pathophysiological hallmark of Alzheimer's disease (AD). However, clinical trials with drugs targeting amyloid-ß and tau have failed to demonstrate efficacy in treating AD. All currently FDA-approved anti-AD drugs have symptomatic effects only and are not able to cure this disease. This makes necessary to search for alternative therapeutic targets. Accumulating evidence suggests that systemic inflammation and related vascular dysfunction play important etiological roles in AD and precede its clinical manifestation. Therefore, novel therapeutic modalities targeted at these pathophysiological components of AD are intensively developed now. Phytochemicals such as resveratrol, curcumin, quercetin, genistein and catechins are promising anti-AD therapeutics due to their ability to affect major pathogenetic mechanisms of AD, including oxidative stress, neuroinflammation and mitochondrial dysfunction. The implementation of innovative approaches for phytochemical delivery, including the nanotechnology-based ones which enable to significantly enhance their oral bioavailability, would likely provide an opportunity to address many challenges of conventional anti-AD therapies. In this review, roles of inflammation and vascular dysregulation in AD are described and phytobioactive compound-based treatment strategies for AD are discussed.


Assuntos
Doença de Alzheimer , Compostos Fitoquímicos/uso terapêutico , Placa Amiloide , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Placa Amiloide/tratamento farmacológico , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Proteínas tau/metabolismo
11.
Biomed Pharmacother ; 121: 109682, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31810113

RESUMO

There is currently no effective treatment to prevent the progress of Alzheimer's disease (AD). The traditional Chinese herbs Dengzhan Shengmai (DZSM) capsules and their active component scutellarin possess multiple effects and are clinically used for the treatment of cerebrovascular diseases. Scutellarin has been reported to affect Aß aggregation. However, the effects of DZSM capsules on AD remain unknown. Through in vivo experiments, our study proved that the alleviating effects of DZSM capsules on cognitive deficits of AD mice were due to the role of scutellarin, which up-regulated low toxic amyloid plaques and down-regulated highly toxic soluble Aß42 and Aß40 levels in cortex. In vitro, we confirmed scutellarin's role in accelerating transforming Aß42 monomers into high-molecular-mass aggregates by biochemical assays, which supported the results observed in drug-treated APP/PS1 mice. In detail, the 1:10 ratio of scutellarin/Aß42 mixtures promoted production of large ß-sheet-rich fibrils whereas the 1:1 ratio promoted production of protofibrils. In addition, the binding between scutellarin and Aß monomers was quantified by microscale thermophoresis test and the apparent dissociation constant (Kd) was 1284.4 ±â€¯238.8 µM. What's more, binding regions between scutellarin and Aß fibrils were predicted by computational docking models and scutellarin might bind parallel to the long axis of Aß42 fibrils targeting hydrophobic grooves at residues 35-36 or 39. In conclusion, DZSM capsules protected against cognitive defects of AD through scutellarin-mediated acceleration of Aß aggregation into fibrils or protofibrils and reduction of soluble Aß oligomers, thus suggesting potential clinical applications of DZSM capsules and scutellarin in the treatment of AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Apigenina/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/prevenção & controle , Medicamentos de Ervas Chinesas/uso terapêutico , Glucuronatos/uso terapêutico , Presenilina-1/metabolismo , Agregados Proteicos , Multimerização Proteica , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/ultraestrutura , Animais , Apigenina/química , Apigenina/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Glucuronatos/química , Glucuronatos/farmacologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Peso Molecular , Placa Amiloide/tratamento farmacológico , Placa Amiloide/patologia , Placa Amiloide/ultraestrutura , Solubilidade
12.
Sci Rep ; 9(1): 561, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728442

RESUMO

Brain aging and Alzheimer's disease both demonstrate the accumulation of beta-amyloid protein containing "plaques" and tau protein containing "tangles" that contribute to accelerated memory loss and cognitive decline. In the present investigation we identified a specific plant extract and its constituents as a potential alternative natural solution for preventing and reducing both brain "plaques and tangles". PTI-00703 cat's claw (Uncaria tomentosa from a specific Peruvian source), a specific and natural plant extract from the Amazon rain forest, was identified as a potent inhibitor and reducer of both beta-amyloid fibrils (the main component of "plaques") and tau protein paired helical filaments/fibrils (the main component of "tangles"). PTI-00703 cat's claw demonstrated both the ability to prevent formation/aggregation and disaggregate preformed Aß fibrils (1-42 and 1-40) and tau protein tangles/filaments. The disaggregation/dissolution of Aß fibrils occurred nearly instantly when PTI-00703 cat's claw and Aß fibrils were mixed together as shown by a variety of methods including Thioflavin T fluorometry, Congo red staining, Thioflavin S fluorescence and electron microscopy. Sophisticated structural elucidation studies identified the major fractions and specific constituents within PTI-00703 cat's claw responsible for both the observed "plaque" and "tangle" inhibitory and reducing activity. Specific proanthocyanidins (i.e. epicatechin dimers and variants thereof) are newly identified polyphenolic components within Uncaria tomentosa that possess both "plaque and tangle" reducing and inhibitory activity. One major identified specific polyphenol within PTI-00703 cat's claw was epicatechin-4ß-8-epicatechin (i.e. an epicatechin dimer known as proanthocyanidin B2) that markedly reduced brain plaque load and improved short-term memory in younger and older APP "plaque-producing" (TASD-41) transgenic mice (bearing London and Swedish mutations). Proanthocyanidin B2 was also a potent inhibitor of brain inflammation as shown by reduction in astrocytosis and gliosis in TASD-41 transgenic mice. Blood-brain-barrier studies in Sprague-Dawley rats and CD-1 mice indicated that the major components of PTI-00703 cat's claw crossed the blood-brain-barrier and entered the brain parenchyma within 2 minutes of being in the blood. The discovery of a natural plant extract from the Amazon rain forest plant (i.e. Uncaria tomentosa or cat's claw) as both a potent "plaque and tangle" inhibitor and disaggregator is postulated to represent a potential breakthrough for the natural treatment of both normal brain aging and Alzheimer's disease.


Assuntos
Amiloide/metabolismo , Encéfalo/efeitos dos fármacos , Emaranhados Neurofibrilares/metabolismo , Extratos Vegetais/farmacologia , Placa Amiloide/tratamento farmacológico , Proantocianidinas/farmacologia , Animais , Encéfalo/patologia , Unha-de-Gato/metabolismo , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Ratos , Ratos Sprague-Dawley , Proteínas tau/metabolismo
13.
J Photochem Photobiol B ; 190: 98-102, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30504054

RESUMO

The main factors of Alzheimer's disease (AD) are the cerebral accumulation and the formation of extracellular amyloid plaques. The Aß peptides are highly able to accumulative and produce fibrils that are placed to form these plaques in the AD. The biological action and drug delivery properties of curcumin (Cur) nanoformulation in the Alzheimer's disease therapeutics can be developed by the altering surface of the Poly-lactide-co-glycolide (PLGA) polymer and encapsulation of selenium nanoparticles (Se NPs). The morphological structure, size distributions of nanospheres, chemical interactions between the polymer and nanoformulations of synthesized curcumin and Se NPs loaded PLGA nanospheres have been studied by using the techniques of analytical instruments. The microscopic and nano observation results of synthesized Cur loaded nanospheres are exhibited that the mono-dispersed distributions of particles with spherical shaped structure. The present drug delivery system of Cur loaded Se-PLGA nanospheres could be decreases the amyloid-ß load in the brains samples of AD mice, and greatly cured the memory deficiency of the model mice. The specific binding of Cur loaded Se-PLGA nanospheres with Aß plaques were visualized by fluorescence microscopic technique. Se-PLGA targeting delivery system to amyloid plaques might be providing the enhanced therapeutic efficacy in AD lesions, which was studied by using transgenic mice (5XFAD). In conclusion, Cur loaded Se-PLGA nanoformulation has been demonstrated that valued delivery system for the targeted delivery and effective way to treat AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Curcumina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Placa Amiloide/tratamento farmacológico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Selênio/química , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/efeitos dos fármacos , Animais , Camundongos , Nanopartículas/química , Nanosferas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacocinética , Agregação Patológica de Proteínas/prevenção & controle
14.
J Alzheimers Dis ; 66(3): 1175-1191, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30400089

RESUMO

The most common type of dementia is Alzheimer's disease (AD), a progressive neurodegenerative disease characterized by impairment in cognitive performance in aged individuals. Currently, there is no effective pharmacological treatment that cures the disease due to the lack of knowledge on the actual mechanisms involved in its pathogenesis. In the last decades, the amyloidogenic hypothesis has been the most studied theory trying to explain the origin of AD, yet it does not address all the concerns relating to its development. In the present study, a possible new preclinical treatment of AD was evaluated using the ethyl acetate extract (EAE) of leaves of Ugni molinae Turcz. (synonym Myrtus ugni Molina Family Myrtacea). The effects were assessed on female transgenic mice from a preclinical model of familial AD (APPswe/PS1dE9) combined with a high fat diet. This preclinical model was selected due to the already available experimental and observational data proving the relationship between obesity, gender, metabolic stress, and cognitive dysfunction; related to characteristics of sporadic AD. According to chemical analyses, EAE would contain polyphenols such as tannins, flavonoid derivatives, and phenolic acids, as well as pentacyclic triterpenoids that exhibit neuroprotective, anti-inflammatory, and antioxidant effects. In addition, the treatment evidenced its capacity to prevent deterioration of memory capacity and reduction of progression speed of AD neuropathology.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Encéfalo/efeitos dos fármacos , Memória/efeitos dos fármacos , Myrtus , Extratos Vegetais/uso terapêutico , Placa Amiloide/tratamento farmacológico , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Transgênicos , Extratos Vegetais/farmacologia , Folhas de Planta , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Presenilina-1/genética , Presenilina-1/metabolismo
15.
Mol Cell Neurosci ; 92: 67-81, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29953929

RESUMO

Structural and functional abnormalities in the cerebral microvasculature have been observed in Alzheimer's disease (AD) patients and animal models. One cause of hypoperfusion is the thickening of the cerebrovascular basement membrane (CVBM) due to increased collagen-IV deposition around capillaries. This study investigated whether these and other alterations in the cerebrovascular system associated with AD can be prevented by long-term dietary supplementation with the antioxidant ubiquinol (Ub) stabilized with Kaneka QH P30 powder containing ascorbic acid (ASC) in a mouse model of advanced AD (3 × Tg-AD mice, 12 months old). Animals were treated from prodromal stages of disease (3 months of age) with standard chow without or with Ub + ASC or ASC-containing vehicle and compared to wild-type (WT) mice. The number of ß-amyloid (Aß) plaques in the hippocampus and entorhinal cortex was higher in female than in male 3 × Tg-AD mice. Extensive regions of hypoxia were characterized by a higher plaque burden in females only. This was abolished by Ub + ASC and, to a lesser extent, by ASC treatment. Irrespective of Aß burden, increased collagen-IV deposition in the CVBM was observed in both male and female 3 × Tg-AD mice relative to WT animals; this was also abrogated in Ub + ASC- and ASC-treated mice. The chronic inflammation in the hippocampus and oxidative stress in peripheral leukocytes of 3 × Tg-AD mice were likewise reversed by antioxidant treatment. These results provide strong evidence that long-term antioxidant treatment can mitigate plasma oxidative stress, amyloid burden, and hypoxia in the AD brain parenchyma.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Antioxidantes/uso terapêutico , Ácido Ascórbico/uso terapêutico , Placa Amiloide/tratamento farmacológico , Ubiquinona/análogos & derivados , Animais , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Hipóxia Celular , Córtex Entorrinal/efeitos dos fármacos , Córtex Entorrinal/metabolismo , Córtex Entorrinal/patologia , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico
16.
Int J Mol Sci ; 19(2)2018 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-29463001

RESUMO

Hericium erinaceus was used in traditional Chinese medicine for physiologically beneficial medicines. Recently, it has become a candidate in causing positive brain health-related activities. We previously reported that Hericium erinaceus mycelium ameliorates Alzheimer's disease (AD)-related pathologies. To reveal the role of the cyanthin diterpenoid and sesterterpene constituents on this effects, erinacine A and S were isolated and their effects on attenuating AD-related pathology in APPswe/PS1dE9 transgenic mice were investigated. A 30 day short-term administration of erinacine A and S were performed to explore the effect of each erinacine on AD-related pathology including amyloid ß production and degradation, plaque formation, plaque growth, glial activation and neurogenesis deterioration. Our results indicated the benefit effects of both erinacine A and S in cerebrum of APPswe/PS1dE9 mice, including: (1) attenuating cerebral plaque loading by inhibiting plaque growth; (2) diminishing the activation of glial cells; (3) raising the level of insulin degrading enzyme; and (4) promoting hippocampal neurogenesis. Moreover, erinacine A reduced the level of insoluble amyloid ß and C-terminal fragment of amyloid precursor protein which was not mediated by erinacine S. We further performed a long term administration of erinacine A and found that erinacine A recovered the impairment in the tasks including burrowing, nesting, and Morris water maze. Our data pointed out that although both erinacine A and S reduce AD pathology via reducing amyloid deposition and promoting neurogenesis, erinacine A can also inhibit amyloid ß production and is worth to be further developed for AD therapeutic use.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Neurogênese/efeitos dos fármacos , Placa Amiloide/tratamento farmacológico , Agregação Patológica de Proteínas/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/genética , Animais , Basidiomycota/química , Diterpenos/administração & dosagem , Diterpenos/química , Hipocampo/efeitos dos fármacos , Hipocampo/crescimento & desenvolvimento , Humanos , Insulisina/genética , Camundongos , Camundongos Transgênicos , Micélio/química , Neuroglia/efeitos dos fármacos , Oligopeptídeos/genética , Placa Amiloide/genética , Placa Amiloide/patologia , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Sesterterpenos/administração & dosagem , Sesterterpenos/química
17.
Alzheimers Res Ther ; 10(1): 11, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29378621

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by deposition of amyloid plaques and disruption of neural circuitry, leading to cognitive decline. Animal models of AD deposit senile plaques and exhibit structural and functional deficits in neurons and neural networks. An effective treatment would prevent or restore these deficits, including calcium dyshomeostasis observed with in-vivo imaging. METHODS: We examined the effects of DA-9803, a multimodal botanical drug, in 5XFAD and APP/PS1 transgenic mice which underwent daily oral treatment with 30 or 100 mg/kg DA-9803 or vehicle alone. Behavioral testing and longitudinal imaging of amyloid deposits and intracellular calcium in neurons with multiphoton microscopy was performed. RESULTS: Chronic administration of DA-9803 restored behavioral deficits in 5XFAD mice and reduced amyloid-ß levels. DA-9803 also prevented progressive amyloid plaque deposition in APP/PS1 mice. Elevated calcium, detected in a subset of neurons before the treatment, was restored and served as a functional indicator of treatment efficacy in addition to the behavioral readout. In contrast, mice treated with vehicle alone continued to progressively accumulate amyloid plaques and calcium overload. CONCLUSIONS: In summary, treatment with DA-9803 prevented structural and functional outcome measures in mouse models of AD. Thus, DA-9803 shows promise as a novel therapeutic approach for Alzheimer's disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Nootrópicos/farmacologia , Administração Oral , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Cálcio/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Humanos , Aprendizagem/efeitos dos fármacos , Estudos Longitudinais , Masculino , Camundongos Transgênicos , Fitoterapia , Placa Amiloide/tratamento farmacológico , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Presenilina-1/genética , Presenilina-1/metabolismo , Distribuição Aleatória
18.
Chin J Integr Med ; 24(5): 378-384, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28578486

RESUMO

OBJECTIVE: To research Angelica tenuissima Nakai (ATN) for use in novel Alzheimer's disease (AD) therapeutics. METHODS: The effect of a 30% ethanol extract of ATN (KH032) on AD-like cognitive impairment and neuropathological and neuroinflammatory changes induced by bilateral intracerebroventricular injections of ß-amyloid (Aß) peptide (Aß1-42) was investigated. Male C57Bl/6 mice were randomly divided into 4 groups, 10 in each group. KH032-treated groups were administrated with a low or high dose of KH032 (50 and 200 mg/kg, respectively), intragastrically for 16 days; distilled water was applied in the sham and negative groups. Open fifield test, Y maze and Morris water maze test were used for behavior test and cognitive ability. In addition, the neuroprotective effects of KH032 in Aß1-42-infused mice on the histopathological markers [neuronspecific nuclear protein (NeuN), Aß1-42] of neurodegeneration were examined. The levels of glial fibrillary acidic protein (GFAP), NeuN, phosphorylation extracellular signal-regulated kinase (ERK)/ERK, brain-derived neurotrophic factor (BDNF), phosphorylation cAMP response element-binding (CREB)/CREB protein expression were measured by Western blot. RESULTS: KH032 treatment ameliorated cognitive impairments, reduced the overexpression of Aß1-42, and inhibited neuronal loss and neuroinflammatory response in the Aß1-42-infused mice. Moreover, KH032 treatment enhanced BDNF expression levels in the hippocampus. Finally, KH032 treatment increased phosphorylation of ERK1/2 and CREB, vital for ERK-CREB signaling. CONCLUSIONS: KH032 attenuated cognitive defificits in the Aß1-42-infused mice by increasing BDNF expression and ERK1/2 and CREB phosphorylation and inhibiting neuronal loss and neuroinflflammatory response, suggesting that KH032 has therapeutic potential in neurodegenerative disorders such as AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Angelica/química , Disfunção Cognitiva/tratamento farmacológico , Neurogênese , Extratos Vegetais/uso terapêutico , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides , Animais , Encéfalo/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Disfunção Cognitiva/complicações , Disfunção Cognitiva/fisiopatologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Neurogênese/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fosforilação/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/farmacologia , Placa Amiloide/tratamento farmacológico , Placa Amiloide/patologia , Placa Amiloide/fisiopatologia , Transdução de Sinais/efeitos dos fármacos
19.
Int J Mol Sci ; 18(12)2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29257109

RESUMO

Alzheimer's disease (AD) is characterized by extracellular plaques in the brain, mainly consisting of amyloid-ß (Aß), as derived from sequential cleavage of the amyloid precursor protein. Epidemiological studies suggest a tight link between hypovitaminosis of the secosteroid vitamin D and AD. Besides decreased vitamin D level in AD patients, an effect of vitamin D on Aß-homeostasis is discussed. However, the exact underlying mechanisms remain to be elucidated and nothing is known about the potential effect of vitamin D analogues. Here we systematically investigate the effect of vitamin D and therapeutically used analogues (maxacalcitol, calcipotriol, alfacalcidol, paricalcitol, doxercalciferol) on AD-relevant mechanisms. D2 and D3 analogues decreased Aß-production and increased Aß-degradation in neuroblastoma cells or vitamin D deficient mouse brains. Effects were mediated by affecting the Aß-producing enzymes BACE1 and γ-secretase. A reduced secretase activity was accompanied by a decreased BACE1 protein level and nicastrin expression, an essential component of the γ-secretase. Vitamin D and analogues decreased ß-secretase activity, not only in mouse brains with mild vitamin D hypovitaminosis, but also in non-deficient mouse brains. Our results further strengthen the link between AD and vitamin D, suggesting that supplementation of vitamin D or vitamin D analogues might have beneficial effects in AD prevention.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Placa Amiloide/tratamento farmacológico , Proteólise , Vitamina D/uso terapêutico , Vitaminas/uso terapêutico , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Vitamina D/administração & dosagem , Vitamina D/farmacologia , Vitaminas/administração & dosagem , Vitaminas/farmacologia
20.
CNS Neurosci Ther ; 23(5): 428-437, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28271615

RESUMO

AIMS: The main purpose was to verify the potent capacity of Neurotropin® against neuronal damage in hippocampus and to explore its underlying mechanisms. METHODS: HT22 cells were treated with 40 µmol/L Aß25-35 in the presence of various concentrations of Neurotropin® or in its absence. The cell viability was assessed with a CCK-8 assay, and flow cytometry was used to measure cell apoptosis, intracellular ROS levels, and mitochondrial membrane potential. Aß plaques were examined by Bielschowsky silver staining, and the activities of antioxidants were detected in hippocampus of APP/PS1 mice after Neurotropin® treatment. The expression of proteins, including HIF-1α, Bcl-2, Bax, and MAPKs signaling molecules was evaluated by Western blot. RESULTS: Neurotropin® significantly reversed the cell injury induced by Aß25-35 through increasing cell viability and mitochondrial membrane potential, decreasing intracellular ROS and cell apoptosis of HT22 cells (P<.05). Furthermore, Neurotropin® markedly reduced the formation of Aß plaques and upregulated the activities of antioxidants (P<.05). Additionally, the protein expression of HIF-1α, p-ERK1/2, p-JNK, and p-P38 was significantly inhibited in hippocampus of APP/PS1 mice. CONCLUSIONS: Neurotropin® exhibited a potent neuroprotective effect on inhibiting Aß-induced oxidative damage and alleviating Aß deposition in hippocampus via modulation of HIF-1α/MAPK signaling pathway.


Assuntos
Hipocampo/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Polissacarídeos/farmacologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/toxicidade , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Hipocampo/metabolismo , Hipocampo/patologia , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/toxicidade , Placa Amiloide/tratamento farmacológico , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Distribuição Aleatória , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA