Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.734
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 210: 108598, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608503

RESUMO

Nanopollution (NPOs), a burgeoning consequence of the widespread use of nanoparticles (NPs) across diverse industrial and consumer domains, has emerged as a critical environmental issue. While extensive research has scrutinized the repercussions of NPs pollution on ecosystems and human health, scant attention has been directed towards unraveling its implications for plant life. This comprehensive review aims to bridge this gap by delving into the nuanced interplay between NPOs and plant metabolism, encompassing both primary and secondary processes. Our exploration encompasses an in-depth analysis of the intricate mechanisms governing the interaction between plants and NPs. This involves a thorough examination of how physicochemical properties such as size, shape, and surface characteristics influence the uptake and translocation of NPs within plant tissues. The impact of NPOs on primary metabolic processes, including photosynthesis, respiration, nutrient uptake, and water transport. Additionally, this study explored the multifaceted alterations in secondary metabolism, shedding light on the synthesis and modulation of secondary metabolites in response to NPs exposure. In assessing the consequences of NPOs for plant life, we scrutinize the potential implications for plant growth, development, and environmental interactions. The intricate relationships revealed in this review underscore the need for a holistic understanding of the plant-NPs dynamics. As NPs become increasingly prevalent in ecosystems, this investigation establishes a fundamental guide that underscores the importance of additional research to shape sustainable environmental management strategies and address the extensive effects of NPs on the development of plant life and environmental interactions.


Assuntos
Ecossistema , Nanopartículas , Plantas , Plantas/metabolismo , Plantas/efeitos dos fármacos , Nanopartículas/metabolismo , Fotossíntese/efeitos dos fármacos
2.
Sci Total Environ ; 929: 172560, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38641102

RESUMO

Lanthanum (La), the second most abundant rare earth element (REE) is emerging as an environmental issue, with the potential to impact ecosystems and human health. Major sources of soil contamination by La include agricultural, and industrial activities. Lanthanum is non-essential for plant growth but accumulates in various plant parts. The uptake of La by plants is intricately influenced by various factors such as soil pH, redox potential, cation exchange capacity, presence of organic acids and rhizosphere composition. These factors significantly impact the availability and absorption of La ions. Lanthanum impact on plants depends on soil characteristics, cultivated species, developmental stage, La concentration, treatment period, and growth conditions. Excessive La concentrations affect cell division, DNA structure, nutrient uptake, and photosynthesis and induce toxicity symptoms. Plants employ detoxification mechanisms like vacuolar sequestration, osmolyte synthesis, and antioxidant defense system. However, higher concentrations of La can overwhelm these defense mechanisms, leading to adverse effects on plant growth and development. Further, accumulation of La in plants increases the risk for human exposure. Strategies to mitigate La toxicity are, therefore, vital for ecosystem protection. The application of phytoremediation, supplementation, chelation, amendments, and biosorption techniques contributes to the mitigation of La toxicity. This review provides insights into La sources, uptake, toxicity, and alleviation strategies in plants. Identifying research gaps and discussing advancements aims to foster a holistic understanding and develop effective strategies for protecting plant health and ecosystem resilience against La contamination.


Assuntos
Biodegradação Ambiental , Lantânio , Plantas , Poluentes do Solo , Lantânio/toxicidade , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Plantas/efeitos dos fármacos , Plantas/metabolismo , Solo/química
3.
Methods Mol Biol ; 2788: 3-18, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656505

RESUMO

Carotenoids are the natural pigments available in nature and exhibit different colors such as yellow, red, and orange. These are a class of phytonutrients that have anti-cancer, anti-inflammatory, anti-oxidant, immune-modulatory, and anti-aging properties. These were used in food, pharmaceutical, nutraceutical, and cosmetic industries. They are divided into two classes: carotenes and xanthophylls. The carotenes are non-oxygenated derivatives and xanthophylls are oxygenated derivatives. The major source of carotenoids are vegetables, fruits, and tissues. Carotenoids also perform the roles of photoprotection and photosynthesis. In addition to the roles mentioned above, they are also involved and act as precursor molecules for the biosynthesis of phytohormones such as strigolactone and abscisic acid. This chapter briefly introduces carotenoids and their extraction method from plant tissue. Proposed protocol describes the extraction of carotenoid using solvents chloroform and dichloromethane. Reverse-phase HPLC can be performed with C30 columns using gradient elution. The column C30 is preferred to the C18 column because the C30 column has salient features, which include selective nature in the separation of structural isomers and hydrophobic, long-chain compounds, and shows the best compatibility with highly aqueous mobile phases. A complete pipeline for the extraction of carotenoids from plant tissue is given in the present protocol.


Assuntos
Carotenoides , Carotenoides/isolamento & purificação , Carotenoides/química , Carotenoides/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Plantas/química , Plantas/metabolismo , Extratos Vegetais/química
4.
Methods Mol Biol ; 2788: 19-37, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656506

RESUMO

Metabolites are intermediate products formed during metabolism. Metabolites play different roles, including providing energy, supporting structure, transmitting signals, catalyzing reactions, enhancing defense, and interacting with other species. Plant metabolomics research aims to detect precisely all metabolites found within tissues of plants through GC-MS. This chapter primarily focuses on extracting metabolites using chemicals such as methanol, chloroform, ribitol, MSTFA, and TMCS. The metabolic analysis method is frequently used according to the specific kind of sample or matrix being investigated and the analysis objective. Chromatography (LC, GC, and CE) with mass spectrometry and NMR spectroscopy is used in modern metabolomics to analyze metabolites from plant samples. The most frequently used method for metabolites analysis is the GC-MS. It is a powerful technique that combines gas chromatography's separation capabilities with mass spectrometry, offering detailed information, including structural identification of each metabolite. This chapter contains an easy-to-follow guide to extract plant-based metabolites. The current protocol provides all the information needed for extracting metabolites from a plant, precautions, and troubleshooting.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Metabolômica , Plantas , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica/métodos , Plantas/metabolismo , Plantas/química , Metaboloma , Extratos Vegetais/química , Extratos Vegetais/análise
5.
Zhongguo Zhong Yao Za Zhi ; 49(3): 702-716, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621874

RESUMO

Uridine diphosphate glycosyltransferase(UGT) is involved in the glycosylation of a variety of secondary metabolites in plants and plays an important role in plant growth and development and regulation of secondary metabolism. Based on the genome of a diploid Chrysanthemum indicum, the UGT gene family from Ch. indicum was identified by bioinformatics methods, and the physical and chemical properties, subcellular localization prediction, conserved motif, phylogeny, chromosome location, gene structure, and gene replication events of UGT protein were analyzed. Transcriptome and real-time fluorescence quantitative polymerase chain reaction(PCR) were used to analyze the expression pattern of the UGT gene in flowers and leaves of Ch. indicum. Quasi-targeted metabolomics was used to analyze the differential metabolites in flowers and leaves. The results showed that a total of 279 UGT genes were identified in the Ch. indicum genome. Phylogenetic analysis showed that these UGT genes were divided into 8 subfamilies. Members of the same subfamily were distributed in clusters on the chromosomes. Tandem duplications were the main driver of the expansion of the UGT gene family from Ch. indicum. Structural domain analysis showed that 262 UGT genes had complete plant secondary metabolism signal sequences(PSPG box). The analysis of cis-acting elements indicated that light-responsive elements were the most ubiquitous elements in the promoter regions of UGT gene family members. Quasi-targeted metabolome analysis of floral and leaf tissue revealed that most of the flavonoid metabolites, including luteolin-7-O-glucoside and kaempferol-7-O-glucoside, had higher accumulation in flowers. Comparative transcriptome analysis of flower and leaf tissue showed that there were 72 differentially expressed UGT genes, of which 29 genes were up-regulated in flowers, and 43 genes were up-regulated in leaves. Correlation network and phylogenetic analysis showed that CindChr9G00614970.1, CindChr2G00092510.1, and CindChr2G00092490.1 may be involved in the synthesis of 7-O-flavonoid glycosides in Ch. indicum, and real-time fluorescence quantitative PCR analysis further confirmed the reliability of transcriptome data. The results of this study are helpful to understand the function of the UGT gene family from Ch. indicum and provide data reference and theoretical basis for further study on the molecular regulation mechanism of flavonoid glycosides synthesis in Ch. indicum.


Assuntos
Chrysanthemum , Glicosiltransferases , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Chrysanthemum/genética , Difosfato de Uridina , Filogenia , Reprodutibilidade dos Testes , Plantas/metabolismo , Flavonoides , Glicosídeos , Regulação da Expressão Gênica de Plantas
6.
Physiol Plant ; 176(2): e14293, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38641970

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs in eukaryotes. Plant endogenous miRNAs play pivotal roles in regulating plant development and defense responses. MicroRNA394 (miR394) has been reported to regulate plant development, abiotic stresses and defense responses. Previous reports showed that miR394 responded to P. infestans inoculation in potato, indicating that miR394 may be involved in defense responses. In this study, we further investigated its role in potato defense against P. infestans. Stable expression of miR394 in tobacco and potato enhances the susceptibility to P. infestans, which is accompanied with the reduced accumulation of ROS and down-regulation of the PTI (pattern-triggered immunity) marker genes. Besides well-known target StLCR, miR394 also targets StA/N-INVE, which encodes a chloroplast Alkaline/Neutral Invertases (A/N-INVE). Both StLCR and StA/N-INVE positively regulate late blight resistance, while miR394 degrades them. Interestingly, StA/N-INVE is located in the chloroplast, indicating that miR394 may manipulate chloroplast immunity. Degradation of StA/N-INVE may affect the chloroplast function and hence lead to the compromised ROS (reactive oxygen species) burst and reduced retrograde signaling from the chloroplast to the nucleus and cytoplasm. In summary, this study provides new information that miR394 targets and degrades StA/N-INVE and StLCR, which are positive regulators, to enhance potato susceptibility to P. infestans.


Assuntos
MicroRNAs , Phytophthora infestans , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Phytophthora infestans/genética , Phytophthora infestans/metabolismo , Plantas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Mol Biol Rep ; 51(1): 543, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642191

RESUMO

Heavy metal stress is a major problem in present scenario and the consequences are well known. The agroecosystems are heavily affected by the heavy metal stress and the question arises on the sustainability of the agricultural products. Heavy metals inhibit the process to influence the reactive oxygen species production. When abundantly present copper metal ion has toxic effects which is mitigated by the exogenous application of Si. The role of silicon is to enhance physical parameters as well as gas exchange parameters. Si is likely to increase antioxidant enzymes in response to copper stress which can relocate toxic metals at subcellular level and remove heavy metals from the cell. Silicon regulates phytohormones when excess copper is present. Rate of photosynthesis and mineral absorption is increased in response to metal stress. Silicon manages enzymatic and non-enzymatic activities to balance metal stress condition. Cu transport by the plasma membrane is controlled by a family of proteins called copper transporter present at cell surface. Plants maintain balance in absorption, use and storage for proper copper ion homeostasis. Copper chaperones play vital role in copper ion movement within cells. Prior to that metallochaperones control Cu levels. The genes responsible in copper stress mitigation are discovered in various plant species and their function are decoded. However, detailed molecular mechanism is yet to be studied. This review discusses about the crucial mechanisms of Si-mediated alleviation of copper stress, the role of copper binding proteins in copper homeostasis. Moreover, it also provides a brief information on the genes, their function and regulation of their expression in relevance to Cu abundance in different plant species which will be beneficial for further understanding of the role of silicon in stabilization of copper stress.


Assuntos
Cobre , Metais Pesados , Cobre/metabolismo , Silício/farmacologia , Silício/metabolismo , Metais Pesados/metabolismo , Antioxidantes/metabolismo , Plantas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Suplementos Nutricionais
8.
Biomed Pharmacother ; 174: 116543, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608523

RESUMO

In recent years, there has been an increasing number of related studies on exosomes. Most studies have focused on exosomes derived from mammals, confirming the important role that exosomes play in cell communication. Plants, as a natural ingredient, plant-derived exosomes have been confirmed to have similar structures and functions to mammalian-derived exosomes. Plant-derived exosome-like nanoparticles (PELNs) are lipid bilayer membrane nanovesicles containing bioactive constituents such as miRNA, mRNA, protein, and lipids obtained from plant cells, that can participate in intercellular communication and mediate transboundary communication, have high bioavailability and low immunogenicity, are relatively safe, and have been shown to play an important role in maintaining cell homeostasis and preventing, and treating a variety of diseases. In this review, we describe the biogenesis, isolation and purification methods, structural composition, stability, safety, function of PELNs and challenges. The functions of PELNs in anti-inflammatory, antioxidant, antitumor and drug delivery are mainly described, and the status of research on exosome nanoparticles of Chinese herbal medicines is outlined. Overall, we summarized the importance of PELNs and the latest research results in this field and provided a theoretical basis for the future research and clinical application of PELNs.


Assuntos
Exossomos , Nanopartículas , Exossomos/metabolismo , Nanopartículas/química , Humanos , Animais , Sistemas de Liberação de Medicamentos/métodos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Plantas/química , Plantas/metabolismo
9.
J Plant Physiol ; 296: 154237, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583194

RESUMO

Selenium (Se) is an essential micronutrient for both human and animals. Plants serve as the primary source of Se in the food chain. Se concentration and availability in plants is influenced by soil properties and environmental conditions. Optimal Se levels promote plant growth and enhance stress tolerance, while excessive Se concentration can result in toxicity. Se enhances plants ROS scavenging ability by promoting antioxidant compound synthesis. The ability of Se to maintain redox balance depends upon ROS compounds, stress conditions and Se application rate. Furthermore, Se-dependent antioxidant compound synthesis is critically reliant on plant macro and micro nutritional status. As these nutrients are fundamental for different co-factors and amino acid synthesis. Additionally, phytohormones also interact with Se to promote plant growth. Hence, utilization of phytohormones and modified crop nutrition can improve Se-dependent crop growth and plant stress tolerance. This review aims to explore the assimilation of Se into plant proteins, its intricate effect on plant redox status, and the specific interactions between Se and phytohormones. Furthermore, we highlight the proposed physiological and genetic mechanisms underlying Se-mediated phytohormone-dependent plant growth modulation and identified research opportunities that could contribute to sustainable agricultural production in the future.


Assuntos
Antioxidantes , Selênio , Animais , Humanos , Antioxidantes/metabolismo , Selênio/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plantas/metabolismo
10.
Physiol Plant ; 176(2): e14261, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527955

RESUMO

In response to our ever-increasing demand for metals, phytotechnologies are being developed to limit the environmental impact of conventional metal mining. However, the development of these technologies, which rely on plant species able to tolerate and accumulate metals, is partly limited by our lack of knowledge of the underlying molecular mechanisms. In this work, we aimed to better understand the role of metal transporters of the IRON REGULATED 1/FERROPORTIN (IREG/FPN) family from the nickel hyperaccumulator Leucocroton havanensis from the Euphorbiaceae family. Using transcriptomic data, we identified two homologous genes, LhavIREG1 and LhavIREG2, encoding divalent metal transporters of the IREG/FPN family. Both genes are expressed at similar levels in shoots, but LhavIREG1 shows higher expression in roots. The heterologous expression of these transporters in A. thaliana revealed that LhavIREG1 is localized to the plasma membrane, whereas LhavIREG2 is located on the vacuole. In addition, the expression of each gene induced a significant increase in nickel tolerance. Taken together, our data suggest that LhavIREG2 is involved in nickel sequestration in vacuoles of leaf cells, whereas LhavIREG1 is mainly involved in nickel translocation from roots to shoots, but could also be involved in metal sequestration in cell walls. Our results suggest that paralogous IREG/FPN transporters may play complementary roles in nickel hyperaccumulation in plants.


Assuntos
Proteínas de Transporte de Cátions , Níquel , Metais , Plantas/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo
11.
Plant Physiol Biochem ; 208: 108459, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484684

RESUMO

The essentiality of silicon (Si) has always been a matter of debate as it is not considered crucial for the lifecycles of most plants. But beneficial effects of endogenous Si and its supplementation have been observed in many plants. Silicon plays a pivotal role in alleviating the biotic and abiotic stress in plants by acting as a physical barrier as well as affecting molecular pathways involved in stress tolerance, thus widely considered as "quasi-essential". In soil, most of Si is found in complex forms as mineral silicates which is not available for plant uptake. Monosilicic acid [Si(OH)4] is the only plant-available form of silicon (PAS) present in the soil. The ability of a plant to uptake Si is positively correlated with the PAS concentration of the soil. Since many cultivated soils often lack a sufficient amount of PAS, it has become common practice to supplement Si through the use of Si-based fertilizers in various crop cultivation systems. This review outlines the use of natural and chemical sources of Si as fertilizer, different regimes of Si fertilization, and conclude by identifying the optimum concentration of Si required to observe the beneficial effects in plants. Also, the different mathematical models defining the mineral dynamics for Si uptake at whole plant scale considering various natural factors like plant morphology, mineral distribution, and transporter expression have been discussed. Information provided here will further help in increasing understanding of Si role and thereby facilitate efficient exploration of the element as a fertilizer in crop production.


Assuntos
Fertilizantes , Silício , Silício/farmacologia , Solo/química , Transporte Biológico , Plantas/metabolismo , Minerais/metabolismo
12.
Zhongguo Zhong Yao Za Zhi ; 49(2): 361-369, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403312

RESUMO

The 4-coumarate: CoA ligase(4CL) is a key enzyme in the upstream pathway of phenylpropanoids such as flavonoids, soluble phenolic esters, lignans, and lignins in plants. In this study, 13 4CL family members of Arabidopsis thaliana were used as reference sequences to identify the 4CL gene family candidate members of Isatis indigotica from the reported I. indigotica genome. Further bioinformatics analysis and analysis of the expression pattern of 4CL genes and the accumulation pattern of flavonoids were carried out. Thirteen 4CL genes were obtained, named Ii4CL1-Ii4CL13, which were distributed on chromosomes 1, 2, 3, 4, and 6. The analysis of the gene structure and conserved structural domains revealed the intron number of I. indigotica 4CL genes was between 1 and 12 and the protein structural domains were highly conserved. Cis-acting element analysis showed that there were multiple response elements in the promoter sequence of I. indigotica 4CL gene family, and jasmonic acid had the largest number of reaction elements. The collinearity analysis showed that there was a close relationship between the 4CL gene family members of I. indigotica and A. thaliana. As revealed by qPCR results, the expression analysis of the 4CL gene family showed that 10 4CL genes had higher expression levels in the aboveground part of I. indigotica. The content assay of flavonoids in different parts of I. indigotica showed that flavonoids were mainly accumulated in the aboveground part of plants. This study provides a basis for further investigating the roles of the 4CL gene family involved in the biosynthesis of flavonoids in I. indigotica.


Assuntos
Isatis , Ligases , Ligases/genética , Isatis/genética , Regiões Promotoras Genéticas , Plantas/metabolismo , Flavonoides , Coenzima A Ligases/genética , Coenzima A Ligases/química , Coenzima A Ligases/metabolismo
13.
Biochem J ; 481(5): 363-385, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38421035

RESUMO

The plant macronutrient phosphorus is a scarce resource and plant-available phosphate is limiting in most soil types. Generally, a gene regulatory module called the phosphate starvation response (PSR) enables efficient phosphate acquisition by roots and translocation to other organs. Plants growing on moderate to nutrient-rich soils need to co-ordinate availability of different nutrients and repress the highly efficient PSR to adjust phosphate acquisition to the availability of other macro- and micronutrients, and in particular nitrogen. PSR repression is mediated by a small family of single SYG1/Pho81/XPR1 (SPX) domain proteins. The SPX domain binds higher order inositol pyrophosphates that signal cellular phosphorus status and modulate SPX protein interaction with PHOSPHATE STARVATION RESPONSE1 (PHR1), the central transcriptional regulator of PSR. Sequestration by SPX repressors restricts PHR1 access to PSR gene promoters. Here we focus on SPX4 that primarily acts in shoots and sequesters many transcription factors other than PHR1 in the cytosol to control processes beyond the classical PSR, such as nitrate, auxin, and jasmonic acid signalling. Unlike SPX1 and SPX2, SPX4 is subject to proteasomal degradation not only by singular E3 ligases, but also by SCF-CRL complexes. Emerging models for these different layers of control and their consequences for plant acclimation to the environment will be discussed.


Assuntos
Fosfatos , Fósforo , Fosfatos/metabolismo , Fósforo/metabolismo , Fatores de Transcrição/metabolismo , Plantas/genética , Plantas/metabolismo , Ubiquitinação , Regulação da Expressão Gênica de Plantas
14.
J Exp Bot ; 75(9): 2604-2630, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38300237

RESUMO

Ascorbate (vitamin C) is one of the most abundant primary metabolites in plants. Its complex chemistry enables it to function as an antioxidant, as a free radical scavenger, and as a reductant for iron and copper. Ascorbate biosynthesis occurs via the mannose/l-galactose pathway in green plants, and the evidence for this pathway being the major route is reviewed. Ascorbate accumulation is leaves is responsive to light, reflecting various roles in photoprotection. GDP-l-galactose phosphorylase (GGP) is the first dedicated step in the pathway and is important in controlling ascorbate synthesis. Its expression is determined by a combination of transcription and translation. Translation is controlled by an upstream open reading frame (uORF) which blocks translation of the main GGP-coding sequence, possibly in an ascorbate-dependent manner. GGP associates with a PAS-LOV protein, inhibiting its activity, and dissociation is induced by blue light. While low ascorbate mutants are susceptible to oxidative stress, they grow nearly normally. In contrast, mutants lacking ascorbate do not grow unless rescued by supplementation. Further research should investigate possible basal functions of ascorbate in severely deficient plants involving prevention of iron overoxidation in 2-oxoglutarate-dependent dioxygenases and iron mobilization during seed development and germination.


Assuntos
Ácido Ascórbico , Plantas , Ácido Ascórbico/metabolismo , Ácido Ascórbico/biossíntese , Plantas/metabolismo , Plantas/genética , Regulação da Expressão Gênica de Plantas , Vias Biossintéticas
15.
Bioengineered ; 15(1): 2314888, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38375815

RESUMO

Cadmium (Cd) has become a severe issue in relatively low concentration and attracts expert attention due to its toxicity, accumulation, and biomagnification in living organisms. Cd does not have a biological role and causes serious health issues. Therefore, Cd pollutants should be reduced and removed from the environment. Microalgae have great potential for Cd absorption for waste treatment since they are more environmentally friendly than existing treatment methods and have strong metal sorption selectivity. This study evaluated the tolerance and ability of the microalga Tetratostichococcus sp. P1 to remove Cd ions under acidic conditions and reveal mechanisms based on transcriptomics analysis. The results showed that Tetratostichococcus sp. P1 had a high Cd tolerance that survived under the presence of Cd up to 100 µM, and IC50, the half-maximal inhibitory concentration value, was 57.0 µM, calculated from the change in growth rate based on the chlorophyll content. Long-term Cd exposure affected the algal morphology and photosynthetic pigments of the alga. Tetratostichococcus sp. P1 removed Cd with a maximum uptake of 1.55 mg g-1 dry weight. Transcriptomic analysis revealed the upregulation of the expression of genes related to metal binding, such as metallothionein. Group A, Group B transporters and glutathione, were also found upregulated. While the downregulation of the genes were related to photosynthesis, mitochondria electron transport, ABC-2 transporter, polysaccharide metabolic process, and cell division. This research is the first study on heavy metal bioremediation using Tetratostichococcus sp. P1 and provides a new potential microalga strain for heavy metal removal in wastewater.[Figure: see text]Abbreviations:BP: Biological process; bZIP: Basic Leucine Zipper; CC: Cellular component; ccc1: Ca (II)-sensitive cross complementary 1; Cd: Cadmium; CDF: Cation diffusion facilitator; Chl: Chlorophyll; CTR: Cu TRansporter families; DAGs: Directed acyclic graphs; DEGs: Differentially expressed genes; DVR: Divinyl chlorophyllide, an 8-vinyl-reductase; FPN: FerroportinN; FTIR: Fourier transform infrared; FTR: Fe TRansporter; GO: Gene Ontology; IC50: Growth half maximal inhibitory concentration; ICP: Inductively coupled plasma; MF: molecular function; NRAMPs: Natural resistance-associated aacrophage proteins; OD: Optical density; RPKM: Reads Per Kilobase of Exon Per Million Reads Mapped; VIT1: Vacuolar iron transporter 1 families; ZIPs: Zrt-, Irt-like proteins.


Assuntos
Clorófitas , Metais Pesados , Cádmio/toxicidade , Bioacumulação , Perfilação da Expressão Gênica , Plantas/metabolismo , Clorófitas/genética , Clorófitas/metabolismo , Clorofila
16.
Sci Total Environ ; 918: 170607, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38336057

RESUMO

Plant overcompensatory growth (OCG) is an important mechanism by which plant communities adapt to environmental disturbance. However, it is not clear whether plant OCG can occur in degraded alpine meadows. Here, we conducted a mowing experiment in an alpine meadow at three degradation levels (i.e., severe degradation, SD; moderate degradation, MD; and light degradation, LD) on the southeastern Qinghai-Tibetan Plateau from 2018 to 2020 to investigate plant OCG and its relationships with soil available nutrients, plant nutrient use efficiency (i.e., nitrogen use efficiency, NUE; and phosphorus use efficiency, PUE), and precipitation. The results showed that 1) the OCG of the plant community generally occurred across all degradation levels, and the OCG strength of the plant community decreased with mowing duration. Moreover, the OCG strength of the plant community in the SD treatment was significantly greater than that in the MD and LD treatments after two years of mowing (p < 0.05). 2) In LD and MD, the soil nitrate nitrogen (NO3-) and available phosphorus (AP) concentrations exhibited a decreasing trend (p < 0.05), while the soil ammonium nitrogen (NH4+) concentration did not change from 2018 to 2020 (p > 0.05). In the SD treatment, the soil NO3- concentration tended to decrease (p < 0.05), the NH4+ concentration tended to increase (p < 0.05), and the AP concentration exhibited an inverse parabolic trend (p < 0.05) from 2018 to 2020. 3) From 2018 to 2020, plant NUE and PUE exhibited decreasing trends at all degradation levels. 4) Plant nutrient use efficiency, which is regulated by complex plant-soil interactions, strongly controlled the OCG of the plant community along each degradation gradient. Moreover, precipitation not only directly promoted the OCG of the plant community but also indirectly affected it by regulating the structure of the plant community and plant nutrient use efficiency. These results suggest that the OCG of the plant community in degraded alpine meadows may benefit not only from the strong self-regulating capacity of the plant-soil system but also from humid climatic conditions.


Assuntos
Pradaria , Plantas , Tibet , Plantas/metabolismo , Nitrogênio/análise , Solo/química , Fósforo/metabolismo
17.
Plant Physiol Biochem ; 207: 108368, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237424

RESUMO

Silicon (Si) has been well-known to enhance plant resistance to heavy-metal stress. However, the mechanisms by which silicon mitigates heavy-metal stress in plants are not clear. In particular, information regarding the role of Si in mediating resistance to heavy-metal stress at a single cell level is still lacking. Here, we developed a hierarchical system comprising the plant, protoplast, and suspension cell subsystems to investigate the mechanisms by which silicon helps to alleviate the toxic effects of trivalent chromium [Cr(III)] in rice. Our results showed that in whole-plant subsystem silicon reduced shoot Cr(III) concentration, effectively alleviating Cr(III) stress in seedlings and causing changes in antioxidant enzyme activities similar to those observed at lower Cr(III) concentrations without silicon added. However, in protoplast subsystem lacking the cell wall, no silicon deposition occurred, leading to insignificant changes in cell survival or antioxidation processes under Cr(III) stress. Conversely, in suspension cell subsystem, silicon supplementation substantially improved cell survival and changes in antioxidant enzyme activities under Cr(III) stress. This is due to the fact that >95% of silicon was on the cell wall, reducing Cr(III) concentration in cells by 7.7%-10.4%. Collectively, the results suggested that the silicon deposited on the cell wall hindered Cr(III) bio-uptake, which consequently delayed Cr(III)-induced changes in antioxidant enzyme activities. This research emphasizes the significance of cell walls in Si-alleviated heavy-metal stress and deepens our understanding of silicon functioning in plants. Furthermore, the hierarchical system has great potential for application in studying the functioning of other elements in plant cell walls.


Assuntos
Metais Pesados , Oryza , Cromo/toxicidade , Antioxidantes/metabolismo , Oryza/metabolismo , Silício/farmacologia , Plantas/metabolismo , Estresse Oxidativo
18.
Plant Physiol ; 194(4): 2709-2723, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38206193

RESUMO

Plants and their associated microbes live in complicated, changeable, and unpredictable environments. They usually interact with each other in many ways through multidimensional, multiscale, and multilevel coupling manners, leading to challenges in the coexistence of randomness and determinism or continuity and discreteness. Gaining a deeper understanding of these diverse interaction mechanisms can facilitate the development of data-mining theories and methods for complex systems, coupled modeling for systems with different spatiotemporal scales and functional properties, or even a universal theory of information and information interactions. In this study, we use a "closed-loop" model to present a plant-microbe interaction system and describe the probable functions of microbial natural products. Specifically, we report a rhizosphere species, Streptomyces ginsengnesis G7, which produces polyketide lydicamycins and other active metabolites. Interestingly, these distinct molecules have the potential to function both as antibiotics and as herbicides for crop protection. Detailed laboratory experiments conducted in Arabidopsis (Arabidopsis thaliana), combined with a comprehensive bioinformatics analysis, allow us to rationalize a model for this specific plant-microbe interaction process. Our work reveals the benefits of exploring otherwise neglected resources for the identification of potential functional molecules and provides a reference to better understand the system biology of complex ecosystems.


Assuntos
Arabidopsis , Microbiota , Panax , Streptomyces , Rizosfera , Plantas/metabolismo , Microbiologia do Solo
19.
New Phytol ; 242(4): 1576-1588, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38173184

RESUMO

Phosphorus (P) for carbon (C) exchange is the pivotal function of arbuscular mycorrhiza (AM), but how this exchange varies with soil P availability and among co-occurring plants in complex communities is still largely unknown. We collected intact plant communities in two regions differing c. 10-fold in labile inorganic P. After a 2-month glasshouse incubation, we measured 32P transfer from AM fungi (AMF) to shoots and 13C transfer from shoots to AMF using an AMF-specific fatty acid. AMF communities were assessed using molecular methods. AMF delivered a larger proportion of total shoot P in communities from high-P soils despite similar 13C allocation to AMF in roots and soil. Within communities, 13C concentration in AMF was consistently higher in grass than in blanketflower (Gaillardia aristata Pursh) roots, that is P appeared more costly for grasses. This coincided with differences in AMF taxa composition and a trend of more vesicles (storage structures) but fewer arbuscules (exchange structures) in grass roots. Additionally, 32P-for-13C exchange ratios increased with soil P for blanketflower but not grasses. Contrary to predictions, AMF transferred proportionally more P to plants in communities from high-P soils. However, the 32P-for-13C exchange differed among co-occurring plants, suggesting differential regulation of the AM symbiosis.


Assuntos
Carbono , Micorrizas , Fósforo , Solo , Micorrizas/fisiologia , Micorrizas/metabolismo , Fósforo/metabolismo , Carbono/metabolismo , Solo/química , Brotos de Planta/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Isótopos de Carbono , Plantas/metabolismo , Plantas/microbiologia , Meio Ambiente , Poaceae/metabolismo
20.
Plant Cell Environ ; 47(5): 1592-1605, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38282262

RESUMO

Reactive oxygen species (ROS) can serve as signaling molecules that are essential for plant growth and development but abiotic stress can lead to ROS increases to supraoptimal levels resulting in cellular damage. To ensure efficient ROS signaling, cells have machinery to locally synthesize ROS to initiate cellular responses and to scavenge ROS to prevent it from reaching damaging levels. This review summarizes experimental evidence revealing the role of ROS during multiple stages of plant reproduction. Localized ROS synthesis controls the formation of pollen grains, pollen-stigma interactions, pollen tube growth, ovule development, and fertilization. Plants utilize ROS-producing enzymes such as respiratory burst oxidase homologs and organelle metabolic pathways to generate ROS, while the presence of scavenging mechanisms, including synthesis of antioxidant proteins and small molecules, serves to prevent its escalation to harmful levels. In this review, we summarized the function of ROS and its synthesis and scavenging mechanisms in all reproductive stages from gametophyte development until completion of fertilization. Additionally, we further address the impact of elevated temperatures induced ROS on impairing these reproductive processes and of flavonol antioxidants in maintaining ROS homeostasis to minimize temperature stress to combat the impact of global climate change on agriculture.


Assuntos
Pólen , Reprodução , Espécies Reativas de Oxigênio/metabolismo , Pólen/metabolismo , Estresse Fisiológico/fisiologia , Plantas/metabolismo , Antioxidantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA