Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biochem Parasitol ; 258: 111617, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554736

RESUMO

Malaria poses a significant global health threat particularly due to the prevalence of Plasmodium falciparum infection. With the emergence of parasite resistance to existing drugs including the recently discovered artemisinin, ongoing research seeks novel therapeutic avenues within the malaria parasite. Proteases are promising drug targets due to their essential roles in parasite biology, including hemoglobin digestion, merozoite invasion, and egress. While exploring the genomic landscape of Plasmodium falciparum, it has been revealed that there are 92 predicted proteases, with only approximately 14 of them having been characterized. These proteases are further distributed among 26 families grouped into five clans: aspartic proteases, cysteine proteases, metalloproteases, serine proteases, and threonine proteases. Focus on metalloprotease class shows further role in organelle processing for mitochondria and apicoplasts suggesting the potential of metalloproteases as viable drug targets. Holistic understanding of the parasite intricate life cycle and identification of potential drug targets are essential for developing effective therapeutic strategies against malaria and mitigating its devastating global impact.


Assuntos
Antimaláricos , Metaloproteases , Plasmodium falciparum , Plasmodium falciparum/enzimologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Metaloproteases/metabolismo , Metaloproteases/genética , Humanos , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Malária Falciparum/parasitologia , Malária Falciparum/tratamento farmacológico , Inibidores de Proteases/farmacologia , Inibidores de Proteases/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/genética
2.
ACS Sens ; 9(3): 1458-1464, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38446423

RESUMO

The evolution of drug resistance to many antimalarial drugs in the lethal strain of malaria (Plasmodium falciparum) has been a great concern over the past 50 years. Among these drugs, artemisinin has become less effective for treating malaria. Indeed, several P. falciparum variants have become resistant to this drug, as elucidated by specific mutations in the pfK13 gene. This study presents the development of a diagnostic kit for the detection of a common point mutation in the pfK13 gene of P. falciparum, namely, the C580Y point mutation. FIT-PNAs (forced-intercalation peptide nucleic acid) are DNA mimics that serve as RNA sensors that fluoresce upon hybridization to their complementary RNA. Herein, FIT-PNAs were designed to sense the C580Y single nucleotide polymorphism (SNP) and were conjugated to biotin in order to bind these molecules to streptavidin-coated plates. Initial studies with synthetic RNA were conducted to optimize the sensing system. In addition, cyclopentane-modified PNA monomers (cpPNAs) were introduced to improve FIT-PNA sensing. Lastly, total RNA was isolated from red blood cells infected with P. falciparum (WT strain - NF54-WT or mutant strain - NF54-C580Y). Streptavidin plates loaded with either FIT-PNA or cpFIT-PNA were incubated with the total RNA. A significant difference in fluorescence for mutant vs WT total RNA was found only for the cpFIT-PNA probe. In summary, this study paves the way for a simple diagnostic kit for monitoring artemisinin drug resistance that may be easily adapted to malaria endemic regions.


Assuntos
Artemisininas , Malária Falciparum , Ácidos Nucleicos Peptídicos , Humanos , Plasmodium falciparum/genética , Estreptavidina , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/farmacologia , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Resistência a Medicamentos/genética , RNA
3.
Microbiol Spectr ; 12(4): e0350023, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38363132

RESUMO

During blood-stage infection, Plasmodium falciparum parasites are constantly exposed to a range of extracellular stimuli, including host molecules and drugs such as artemisinin derivatives, the mainstay of artemisinin-based combination therapies currently used as first-line treatment worldwide. Partial resistance of P. falciparum to artemisinin has been associated with mutations in the propeller domain of the Pfkelch13 gene, resulting in a fraction of ring stages that are able to survive exposure to artemisinin through a temporary growth arrest. Here, we investigated whether the growth arrest in ring-stage parasites reflects a general response to stress. We mimicked a stressful environment in vitro by exposing parasites to chloroquine or dihydroartemisinin (DHA). We observed that early ring-stage parasites pre-exposed to a stressed culture supernatant exhibited a temporary growth arrest and a reduced susceptibility to DHA, as assessed by the ring-stage survival assay, irrespective of their Pfkelch13 genotype. These data suggest that temporary growth arrest of early ring stages may be a constitutive, Pfkelch13-independent survival mechanism in P. falciparum.IMPORTANCEPlasmodium falciparum ring stages have the ability to sense the extracellular environment, regulate their growth, and enter a temporary growth arrest state in response to adverse conditions such as drug exposure. This temporary growth arrest results in reduced susceptibility to artemisinin in vitro. The signal responsible for this process is thought to be small molecules (less than 3 kDa) released by stressed mature-stage parasites. These data suggest that Pfkelch13-dependent artemisinin resistance and the growth arrest phenotype are two complementary but unrelated mechanisms of ring-stage survival in P. falciparum. This finding provides new insights into the field of P. falciparum antimalarial drug resistance by highlighting the extracellular compartment and cellular communication as an understudied mechanism.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Parasitos , Animais , Plasmodium falciparum/genética , Artemisininas/farmacologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Resistência a Medicamentos , Proteínas de Protozoários/genética
4.
Parasit Vectors ; 16(1): 421, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974285

RESUMO

BACKGROUND: The emergence and spread of artemisinin resistance threaten global malaria control and elimination goals, and encourage research on the mechanisms of drug resistance in malaria parasites. Mutations in Plasmodium falciparum Kelch 13 (PfK13) protein are associated with artemisinin resistance, but the unique or common mechanism which results in this resistance is unclear. METHODS: We analyzed the effects of the PfK13 mutation on the transcriptome and proteome of P. falciparum at different developmental stages. Additionally, the number of merozoites, hemozoin amount, and growth of P. falciparum 3D7C580Y and P. falciparum 3D7WT were compared. The impact of iron supplementation on the number of merozoites of P. falciparum 3D7C580Y was also examined. RESULTS: We found that the PfK13 mutation did not significantly change glycolysis, TCA, pentose phosphate pathway, or oxidative phosphorylation, but did reduce the expression of reproduction- and DNA synthesis-related genes. The reduced number of merozoites, decreased level of hemozoin, and slowed growth of P. falciparum 3D7C580Y were consistent with these changes. Furthermore, adding iron supply could increase the number of the merozoites of P. falciparum 3D7C580Y. CONCLUSIONS: These results revealed that the PfK13 mutation reduced hemoglobin ingestion, leading to artemisinin resistance, likely by decreasing the parasites' requirement for haem and iron. This study helps elucidate the mechanism of artemisinin resistance due to PfK13 mutations.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Animais , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Malária Falciparum/parasitologia , Mutação , Resistência a Medicamentos/genética , Proteínas de Protozoários/genética , Ferro/uso terapêutico
5.
Lancet Microbe ; 4(6): e461-e469, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37086737

RESUMO

BACKGROUND: Strong surveillance systems with wide geographic coverage are needed to detect and respond to reports of antimalarial drug resistance on the African continent. We aimed to assess the utility and feasibility of using blood-fed mosquitos (xenomonitoring) to conduct rapid surveillance of molecular markers associated with resistance in human populations. METHODS: We conducted three cross-sectional surveys in two rainy seasons and the interim dry season in southwest Burkina Faso between Oct 10, 2018, and Sept 17, 2019. We collected human blood samples and blood-fed mosquitos residing in household clusters across seven village sectors. Samples were assessed for Plasmodium falciparum with ultrasensitive quantitative PCR, genotyped for two markers of reduced drug susceptibility, pfmdr1 256A>T (Asn86Tyr) and pfcrt 227A>C (Lys76Thr), and sequenced for four markers of clonality. We assessed statistical equivalence using a 10% margin of equivalence. FINDINGS: We identified 551 infections in 1483 human blood samples (mean multiplicity of infection [MOI] 1·94, SD 1·47) and 346 infections in 2151 mosquito blood meals (mean MOI 2·2, SD 1·67). The frequency of pfmdr1 Asn86Tyr was 4% in survey 1, 2% in survey 2, and 12% in survey 3 in human samples, and 3% in survey 1, 0% in survey 2, and 8% in survey 3 in mosquito blood meals, and inter-host frequencies were statistically equivalent in surveys 1 and 2 (p<0·0001) but not Survey 3 (p=0·062) within a tolerability of 0·10. The frequency of pfcrt Lys76Thr was 16% in survey 1, 55% in survey 2, and 11% in survey 3 in humans and 40% in survey 1, 72% in survey 2, and 13% in survey 3 in mosquitos, and inter-host frequencies were equivalent in survey 3 only (p=0·032) within a tolerability of 0·10. In simulations, multiple but not preferential feeding behaviour in mosquitos reduced the accuracy of frequency estimates between hosts, particularly for markers circulating at higher frequencies. INTERPRETATION: Molecular markers in mosquito blood meals and in humans exhibited similar temporal trends but frequencies were not statistically equivalent in all scenarios. More work is needed to determine empirical and pragmatic thresholds of difference. Xenomonitoring might be an efficient tool to provide rapid information on emerging antimalarial resistance in regions with insufficient surveillance. FUNDING: National Institute of Allergy and Infectious Diseases. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Assuntos
Antimaláricos , Culicidae , Antagonistas do Ácido Fólico , Animais , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Estudos Transversais , Plasmodium falciparum/genética , Reação em Cadeia da Polimerase
6.
Microbiol Spectr ; 10(6): e0223422, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36409095

RESUMO

Asexual blood-stage malaria parasites must produce sexual progeny to infect mosquitoes. It is important to understand the scope and causes of intraspecific variation in sexual commitment rates, particularly for the major human parasite P. falciparum. First, two alternative assay methods of measuring sexual commitment were compared to test a genetically modified P. falciparum line with elevated commitment rates inducible by overexpression of GDV1. The methods yielded correlated measurements with higher sensitivity and precision being achieved by one employing detection of the early gametocyte differentiation marker Pfs16. Thus, this was used to survey a diverse range of parasite lines and test each in multiple biological replicate assays in a serum-free medium supplemented with Albumax. There were differences among six recent clinical isolates from Ghana in their mean rates of sexual commitment per cycle, ranging from 3.3% to 12.2%. Among 13 diverse long-term laboratory-adapted lines, mean sexual commitment rates for most ranged from 4.7% to 13.4%, a few had lower rates with means from 0.3 to 1.6%, and one with a nonfunctional ap2-g gene always showed zero commitment. Among a subset of lines tested for the effects of exogenous choline to suppress commitment, there were significant differences. As expected, there was no effect in a line that had lost the gdv1 gene and that had generally low commitment, whereas the others showed quantitatively variable but significant responses to choline, suggesting potential trait variation. The results indicated the value of performing multiple replicate assays for understanding the variation of this key reproductive trait that likely affects transmission. IMPORTANCE Only sexual-stage malaria parasites are transmitted from human blood to mosquitoes. Thus, it is vital to understand variations in sexual commitment rates because these may be modifiable or susceptible to blocking. Two different methods of commitment rate measurement were first compared, demonstrating higher sensitivity and precision by the detection of an early differentiation marker, which was subsequently used to survey diverse lines. Clinical isolates from Ghana showed significant variation in mean per-cycle commitment rates and variation among biological replicates. Laboratory-adapted lines of diverse origins had a wider range with most being within the range observed for the clinical isolates, while a minority consistently had lower or zero rates. There was quantitative variation in the effects when adding choline to suppress commitment, indicating differing responsiveness of parasites to this environmental modification. Performing multiple assay replicates and comparisons of diverse isolates was important to understand this trait and its potential effects on transmission.


Assuntos
Culicidae , Malária Falciparum , Malária , Animais , Humanos , Plasmodium falciparum/genética , Malária Falciparum/parasitologia , Reprodução
7.
Int J Mol Sci ; 22(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34884870

RESUMO

The parasite species of genus Plasmodium causes Malaria, which remains a major global health problem due to parasite resistance to available Antimalarial drugs and increasing treatment costs. Consequently, computational prediction of new Antimalarial compounds with novel targets in the proteome of Plasmodium sp. is a very important goal for the pharmaceutical industry. We can expect that the success of the pre-clinical assay depends on the conditions of assay per se, the chemical structure of the drug, the structure of the target protein to be targeted, as well as on factors governing the expression of this protein in the proteome such as genes (Deoxyribonucleic acid, DNA) sequence and/or chromosomes structure. However, there are no reports of computational models that consider all these factors simultaneously. Some of the difficulties for this kind of analysis are the dispersion of data in different datasets, the high heterogeneity of data, etc. In this work, we analyzed three databases ChEMBL (Chemical database of the European Molecular Biology Laboratory), UniProt (Universal Protein Resource), and NCBI-GDV (National Center for Biotechnology Information-Genome Data Viewer) to achieve this goal. The ChEMBL dataset contains outcomes for 17,758 unique assays of potential Antimalarial compounds including numeric descriptors (variables) for the structure of compounds as well as a huge amount of information about the conditions of assays. The NCBI-GDV and UniProt datasets include the sequence of genes, proteins, and their functions. In addition, we also created two partitions (cassayj = caj and cdataj = cdj) of categorical variables from theChEMBL dataset. These partitions contain variables that encode information about experimental conditions of preclinical assays (caj) or about the nature and quality of data (cdj). These categorical variables include information about 22 parameters of biological activity (ca0), 28 target proteins (ca1), and 9 organisms of assay (ca2), etc. We also created another partition of (cprotj = cpj) including categorical variables with biological information about the target proteins, genes, and chromosomes. These variables cover32 genes (cp0), 10 chromosomes (cp1), gene orientation (cp2), and 31 protein functions (cp3). We used a Perturbation-Theory Machine Learning Information Fusion (IFPTML) algorithm to map all this information (from three databases) into and train a predictive model. Shannon's entropy measure Shk (numerical variables) was used to quantify the information about the structure of drugs, protein sequences, gene sequences, and chromosomes in the same information scale. Perturbation Theory Operators (PTOs) with the form of Moving Average (MA) operators have been used to quantify perturbations (deviations) in the structural variables with respect to their expected values for different subsets (partitions) of categorical variables. We obtained three IFPTML models using General Discriminant Analysis (GDA), Classification Tree with Univariate Splits (CTUS), and Classification Tree with Linear Combinations (CTLC). The IFPTML-CTLC presented the better performance with Sensitivity Sn(%) = 83.6/85.1, and Specificity Sp(%) = 89.8/89.7 for training/validation sets, respectively. This model could become a useful tool for the optimization of preclinical assays of new Antimalarial compounds vs. different proteins in the proteome of Plasmodium.


Assuntos
Antimaláricos/farmacologia , Descoberta de Drogas/métodos , Aprendizado de Máquina , Plasmodium falciparum/genética , Algoritmos , Antimaláricos/química , Bases de Dados de Produtos Farmacêuticos , Avaliação Pré-Clínica de Medicamentos , Genoma de Protozoário , Cadeias de Markov , Modelos Teóricos , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Reprodutibilidade dos Testes
8.
Front Cell Infect Microbiol ; 11: 708834, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395314

RESUMO

The calcium ion (Ca2+) is a ubiquitous second messenger involved in key biological processes in prokaryotes and eukaryotes. In Plasmodium species, Ca2+ signaling plays a central role in the parasite life cycle. It has been associated with parasite development, fertilization, locomotion, and host cell infection. Despite the lack of a canonical inositol-1,4,5-triphosphate receptor gene in the Plasmodium genome, pharmacological evidence indicates that inositol-1,4,5-triphosphate triggers Ca2+ mobilization from the endoplasmic reticulum. Other structures such as acidocalcisomes, food vacuole and mitochondria are proposed to act as supplementary intracellular Ca2+ reservoirs. Several Ca2+-binding proteins (CaBPs) trigger downstream signaling. Other proteins with no EF-hand motifs, but apparently involved with CaBPs, are depicted as playing an important role in the erythrocyte invasion and egress. It is also proposed that a cross-talk among kinases, which are not members of the family of Ca2+-dependent protein kinases, such as protein kinases G, A and B, play additional roles mediated indirectly by Ca2+ regulation. This statement may be extended for proteins directly related to invasion or egress, such as SUB1, ERC, IMC1I, IMC1g, GAP45 and EBA175. In this review, we update our understanding of aspects of Ca2+-mediated signaling correlated to the developmental stages of the malaria parasite life cycle.


Assuntos
Malária , Parasitos , Animais , Biologia , Cálcio/metabolismo , Sinalização do Cálcio , Eritrócitos , Parasitos/metabolismo , Plasmodium falciparum/genética
9.
EMBO J ; 40(16): e107247, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34031901

RESUMO

Malaria parasites contain an essential organelle called the apicoplast that houses metabolic pathways for fatty acid, heme, isoprenoid, and iron-sulfur cluster synthesis. Surprisingly, malaria parasites can survive without the apicoplast as long as the isoprenoid precursor isopentenyl pyrophosphate (IPP) is supplemented in the growth medium, making it appear that isoprenoid synthesis is the only essential function of the organelle in blood-stage parasites. In the work described here, we localized an enzyme responsible for coenzyme A synthesis, DPCK, to the apicoplast, but we were unable to delete DPCK, even in the presence of IPP. However, once the endogenous DPCK was complemented with the E. coli DPCK (EcDPCK), we were successful in deleting it. We were then able to show that DPCK activity is required for parasite survival through knockdown of the complemented EcDPCK. Additionally, we showed that DPCK enzyme activity remains functional and essential within the vesicles present after apicoplast disruption. These results demonstrate that while the apicoplast of blood-stage P. falciparum parasites can be disrupted, the resulting vesicles remain biochemically active and are capable of fulfilling essential functions.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Apicoplastos , Ácido Pantotênico/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/genética
10.
J Biol Chem ; 296: 100614, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33839154

RESUMO

Epigenetic modifications have emerged as critical regulators of virulence genes and stage-specific gene expression in Plasmodium falciparum. However, the specific roles of histone core epigenetic modifications in regulating the stage-specific gene expression are not well understood. In this study, we report an unconventional trimethylation at lysine 64 on histone 3 (H3K64me3) and characterize its functional relevance in P. falciparum. We show that PfSET4 and PfSET5 proteins of P. falciparum methylate H3K64 and that they prefer the nucleosome as a substrate over free histone 3 proteins. Structural analysis of PfSET5 revealed that it interacts with the nucleosome as a dimer. The H3K64me3 mark is dynamic, being enriched in the ring and trophozoite stages and drastically reduced in the schizont stages. Stage-specific global chromatin immunoprecipitation -sequencing analysis of the H3K64me3 mark revealed the selective enrichment of this methyl mark on the genes of exported family proteins in the ring and trophozoite stages and a significant reduction of the same in the schizont stages. Collectively, our data identify a novel epigenetic mark that is associated with the subset of genes encoding for exported proteins, which may regulate their expression in different stages of P. falciparum.


Assuntos
Eritrócitos/parasitologia , Código das Histonas , Histonas/química , Lisina/química , Malária Falciparum/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/metabolismo , Metilação de DNA , Histonas/genética , Histonas/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Malária Falciparum/genética , Malária Falciparum/metabolismo , Nucleossomos/parasitologia , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética
11.
Sci Rep ; 11(1): 2121, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483532

RESUMO

The spread of Plasmodium falciparum parasites resistant to most first-line antimalarials creates an imperative to enrich the drug discovery pipeline, preferably with curative compounds that can also act prophylactically. We report a phenotypic quantitative high-throughput screen (qHTS), based on concentration-response curves, which was designed to identify compounds active against Plasmodium liver and asexual blood stage parasites. Our qHTS screened over 450,000 compounds, tested across a range of 5 to 11 concentrations, for activity against Plasmodium falciparum asexual blood stages. Active compounds were then filtered for unique structures and drug-like properties and subsequently screened in a P. berghei liver stage assay to identify novel dual-active antiplasmodial chemotypes. Hits from thiadiazine and pyrimidine azepine chemotypes were subsequently prioritized for resistance selection studies, yielding distinct mutations in P. falciparum cytochrome b, a validated antimalarial drug target. The thiadiazine chemotype was subjected to an initial medicinal chemistry campaign, yielding a metabolically stable analog with sub-micromolar potency. Our qHTS methodology and resulting dataset provides a large-scale resource to investigate Plasmodium liver and asexual blood stage parasite biology and inform further research to develop novel chemotypes as causal prophylactic antimalarials.


Assuntos
Antimaláricos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Fígado/efeitos dos fármacos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/química , Avaliação Pré-Clínica de Medicamentos/métodos , Células Hep G2 , Humanos , Fígado/parasitologia , Malária Falciparum/sangue , Malária Falciparum/parasitologia , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/fisiologia , Plasmodium falciparum/genética , Plasmodium falciparum/fisiologia , Substâncias Protetoras/química , Substâncias Protetoras/farmacologia , Reprodutibilidade dos Testes , Relação Estrutura-Atividade , Tiadiazinas/química , Tiadiazinas/farmacologia
12.
Malar J ; 20(1): 61, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482823

RESUMO

BACKGROUND: The World Health Organization recommends the provision of intermittent preventive treatment during pregnancy (IPTp) with sulfadoxine-pyrimethamine (SP) at 4-week intervals from gestational week 13 to delivery in areas of moderate to high malaria transmission intensity. However, the effect of IPTp-SP has been compromised in some areas due to parasite resistance, raising the importance of parasitological and chemoprophylactic surveillance, and monitoring SP-resistance markers in the Plasmodium falciparum population. METHODS: Between November 2013 and April 2014 in Nchelenge, Zambia, 1086 pregnant women received IPTp-SP at antenatal-care bookings. Blood samples were collected on day 0, and on day 28 post-treatment to test for malaria parasites and to estimate SP parasitological efficacy in the treatment and prevention of parasitaemia. A random sample of 96, day 0 malaria-positive samples were analysed to estimate the prevalence of SP-resistance markers in the P. falciparum population. RESULTS: The overall parasitological and prophylactic failure among women who had paired day 0 and day 28 blood slides was 18.6% (95% CI 15.5, 21.8; 109 of 590). Among pregnant women who had asymptomatic parasitaemia on day 0, the day 28 PCR-uncorrected parasitological failure was 30.0% (95% CI 23.7, 36.2; 62 of 207) and the day 28 PCR-corrected parasitological failure was 15.6% (95% CI: 10.6, 20.6; 32 of 205). Among women who tested negative at day 0, 12.3% (95% CI: 9.0, 15.6; 47 of 383) developed parasitaemia at day 28. Among the 96 malaria-positive samples assayed from day 0, 70.8% (95% CI: 60.8, 79.2) contained the DHPS double (Gly-437 + Glu-540) mutation and 92.7% (95% CI: 85.3, 96.5) had the DHFR triple (Asn-108 + Ile-51 + Arg-59) mutation. The quintuple mutation (DHFR triple + DHPS double) and the sextuple mutant (DHFR triple + DHPS double + Arg-581) were found among 68.8% (95% CI: 58.6, 77.3) and 9.4% (95% CI: 4.2, 16.0) of samples, respectively. CONCLUSION: The parasitological and chemoprophylactic failure of SP, and the prevalence of resistance markers in Nchelenge is alarmingly high. Alternative therapies are urgently needed to safeguard pregnant women against malarial infection.


Assuntos
Antimaláricos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Pirimetamina/uso terapêutico , Sulfadoxina/uso terapêutico , Adulto , Estudos de Coortes , Combinação de Medicamentos , Feminino , Marcadores Genéticos/genética , Humanos , Malária Falciparum/epidemiologia , Mutação , Parasitemia/tratamento farmacológico , Plasmodium falciparum/genética , Gravidez , Gestantes , Prevalência , Adulto Jovem , Zâmbia/epidemiologia
13.
Curr Drug Discov Technol ; 18(4): 554-569, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32729419

RESUMO

BACKGROUND: In a bid to come up with effective compounds as inhibitors for antimalarial treatment, we built a library of 2,000 traditional Chinese medicine(TCM)-derived compounds retrieved from TCM Database@Taiwan. METHODS: The active sites of both the wild type and mutant Plasmodium falciparum dihydrofolatereductase (pfDHFR) were explored using computational tools. pfDHFR, one of the prime drug targets in the prevention of malaria infection induced by the female anopheles mosquito has continued to offer resistance to drugs (antifolates) due to mutation in some of the key amino acid residues crucial for its inhibition. RESULTS: We utilized virtual throughput screening and glide XP docking to screen the compounds, and 8 compounds were found to have promising docking scores with both the wild type and mutant pfDHFR. They were further subjected to Induce Fit Docking (IFD) to affirm their inhibitory potency. The ADME properties and biological activity spectrum of the compounds were also considered. The inhibition profile of the compounds revealed that a number of compounds formed intermolecular interactions with ASP54, ILE14, LEU164, SER108/ASN108, ARG122 and ASP58. Most of the compounds can be considered as drug candidates due to their antiprotozoal activities and accordance with the Lipinski's Rule of Five (ROF). CONCLUSION: The outcome of the present study should further be investigated to attest the efficacy of these compounds as better drug candidates than the antifolates.


Assuntos
Antimaláricos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Animais , Antimaláricos/química , Antimaláricos/uso terapêutico , Domínio Catalítico/efeitos dos fármacos , Desenho de Fármacos/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Malária Falciparum/parasitologia , Simulação de Acoplamento Molecular , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Tetra-Hidrofolato Desidrogenase/genética
14.
Infect Immun ; 89(1)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33077626

RESUMO

Malaria infection by Plasmodium falciparum continues to afflict millions of people worldwide, with transmission being dependent upon mosquito ingestion of the parasite gametocyte stage. These sexually committed stages develop from the asexual stages, yet the factors behind this transition are not completely understood. Here, we found that lactic acid increases gametocyte quantity and quality in P. falciparum culture. Low-passage-number NF54 parasites exposed to 8.2 mM lactic acid for various times were monitored using blood film gametocyte counts and RNA analysis throughout 2 weeks of gametocyte development in vitro for a total of 5 biological cohorts. We found that daily continuous medium exchange and 8.2 mM lactic acid supplementation increased gametocytemia approximately 2- to 6-fold relative to controls after 5 days. In membrane feeding mosquito infection experiments, we found that gametocytes continuously exposed to 8.2 mM lactic acid supplementations were more infectious to Anopheles stephensi mosquitoes, essentially doubling prevalence of infected midguts and oocyst density. Supplementation on days 9 to 16 did not increase the quantity of gametocytes but did increase quality, as measured by oocyst density, by 2.4-fold. Lactic acid did not impact asexual growth, as measured by blood film counts and luciferase quantification, as well as radioactive hypoxanthine incorporation assays. These data indicate a novel role for lactic acid in sexual development of the parasite.


Assuntos
Suplementos Nutricionais , Ácido Láctico/administração & dosagem , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Animais , Anopheles/parasitologia , Expressão Gênica , Genes Reporter , Humanos , Malária Falciparum/transmissão , Mosquitos Vetores/parasitologia , Parasitemia/parasitologia , Plasmodium falciparum/genética
15.
Mol Biochem Parasitol ; 238: 111292, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32505674

RESUMO

Defining protein-protein interactions is fundamental to the understanding of gene function. Protein-fragment complementation assays have been used for the analysis of protein-protein interactions in various organisms. The split-dihydrofolate reductase (DHFR) protein-fragment complementation assay utilises two complementary fragments of the enzyme fused to a pair of potentially interacting proteins. If these proteins interact, the DHFR fragments associate, fold into their native structure, reconstitute their function and confer resistance to antifolate drugs. We show that murine DHFR fragments fused to interacting proteins reconstitute a functional enzyme and confer resistance to the antifolate drug WR99210 in Plasmodium falciparum. These data demonstrate that the split-DHFR method can be used to detect in vivo protein-protein interactions in the parasite. Additionally, we show that split-DHFR fragments can be used as selection markers, permitting simultaneous selection of two plasmids in the presence of a single antifolate drug. Taken together, these experiments show that split-DHFR represents a valuable tool for the characterisation of Plasmodium protein function and genetic manipulation of the parasite.


Assuntos
Plasmodium falciparum/genética , Mapeamento de Interação de Proteínas/métodos , Proteínas de Protozoários/genética , Tetra-Hidrofolato Desidrogenase/genética , Transfecção/métodos , Antimaláricos/farmacologia , Bioensaio , Eritrócitos/parasitologia , Antagonistas do Ácido Fólico/farmacologia , Expressão Gênica , Genes Reporter , Teste de Complementação Genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Ligação Proteica , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo , Triazinas/farmacologia , Proteína Vermelha Fluorescente
16.
Malar J ; 19(1): 178, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32384930

RESUMO

BACKGROUND: Malaria in pregnancy is associated with considerable morbidity and mortality. Regular surveillance of artemisinin-based combination therapy tolerance, or molecular makers of resistance, is vital for effective malaria treatment, control and eradication programmes. Plasmodium falciparum multiple drug resistance-1 gene (Pfmdr1) N86Y mutation is associated with reduced susceptibility to lumefantrine. This study assessed the prevalence of Pfmdr1 N86Y in Brazzaville, Republic of Congo. METHODS: A total 1001 of P. falciparum-infected blood samples obtained from asymptomatic malaria pregnant women having a normal child delivery at the Madibou Integrated Health Centre were analysed. Pfmdr1 N86Y genotyping was conducted using PCR-restriction fragment length polymorphism. RESULTS: The wild type Pfmdr1 N86 allele was predominant (> 68%) in this study, whereas a few isolates carrying the either the mutant allele (Pfmdr1 86Y) alone or both alleles (mixed genotype). The dominance of the wildtype allele (pfmdr1 N86) indicates the plausible decline P. falciparum susceptibility to lumefantrine. CONCLUSION: This study gives an update on the prevalence of Pfmdr1 N86Y alleles in Brazzaville, Republic of Congo. It also raises concern on the imminent emergence of resistance against artemether-lumefantrine in this setting. This study underscores the importance to regular artemether-lumefantrine efficacy monitoring to inform the malaria control programme of the Republic of Congo.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Lumefantrina/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/genética , Adolescente , Adulto , Congo , Feminino , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Mutação , Plasmodium falciparum/efeitos dos fármacos , Polimorfismo de Fragmento de Restrição , Gravidez , Adulto Jovem
17.
ACS Infect Dis ; 6(4): 613-628, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32078764

RESUMO

Most phenotypic screens aiming to discover new antimalarial chemotypes begin with low cost, high-throughput tests against the asexual blood stage (ABS) of the malaria parasite life cycle. Compounds active against the ABS are then sequentially tested in more difficult assays that predict whether a compound has other beneficial attributes. Although applying this strategy to new chemical libraries may yield new leads, repeated iterations may lead to diminishing returns and the rediscovery of chemotypes hitting well-known targets. Here, we adopted a different strategy to find starting points, testing ∼70,000 open source small molecules from the Global Health Chemical Diversity Library for activity against the liver stage, mature sexual stage, and asexual blood stage malaria parasites in parallel. In addition, instead of using an asexual assay that measures accumulated parasite DNA in the presence of compound (SYBR green), a real time luciferase-dependent parasite viability assay was used that distinguishes slow-acting (delayed death) from fast-acting compounds. Among 382 scaffolds with the activity confirmed by dose response (<10 µM), we discovered 68 novel delayed-death, 84 liver stage, and 68 stage V gametocyte inhibitors as well. Although 89% of the evaluated compounds had activity in only a single life cycle stage, we discovered six potent (half-maximal inhibitory concentration of <1 µM) multistage scaffolds, including a novel cytochrome bc1 chemotype. Our data further show the luciferase-based assays have higher sensitivity. Chemoinformatic analysis of positive and negative compounds identified scaffold families with a strong enrichment for activity against specific or multiple stages.


Assuntos
Antimaláricos/isolamento & purificação , Descoberta de Drogas , Estágios do Ciclo de Vida/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Antimaláricos/química , Antimaláricos/farmacologia , Quimioinformática/métodos , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Plasmodium falciparum/genética , Bibliotecas de Moléculas Pequenas/química
18.
Sci Rep ; 9(1): 17336, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31758015

RESUMO

Histone deacetylase (HDAC) enzymes are targets for the development of antimalarial drugs with a different mode of action to established antimalarials. Broad-spectrum HDAC-inhibitors show high potency against Plasmodium falciparum, but displayed some toxicity towards human cells. Inhibitors of human HDAC6 are new drug candidates with supposed reduced toxicity to human cells and favorable activities against laboratory P. falciparum strains. We investigated the potency of 12 peptoid-based HDAC-inhibitors against asexual stages of P. falciparum clinical isolates. Parasites representing different genetic backgrounds were isolated from adults and children with uncomplicated malaria in Gabon. Clinical studies on (non-HDAC-inhibitors) antimalarials, moreover, found lower drug efficacy in children, mainly attributed to acquired immunity with age in endemic areas. Therefore, we compared the in vitro sensitivity profiles of adult- and child-derived isolates to antimalarials (HDAC and standard drugs). All HDAC-inhibitors showed 50% inhibitory concentrations at nanomolar ranges with higher activities than the FDA approved reference HDAC-inhibitor SAHA. We propose peptoid-based HDAC6-inhibitors to be lead structures for further development as antimalarial chemotherapeutics. Our results further suggest no differences in activity of the tested antimalarials between P. falciparum parasites isolated from children and adults.


Assuntos
Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Malária Falciparum/parasitologia , Peptoides/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Adulto , Pré-Escolar , Avaliação Pré-Clínica de Medicamentos , Gabão , Genótipo , Desacetilase 6 de Histona/química , Humanos , Concentração Inibidora 50 , Malária Falciparum/tratamento farmacológico , Pessoa de Meia-Idade , Testes de Sensibilidade Parasitária , Plasmodium falciparum/genética , Adulto Jovem
19.
Am J Chin Med ; 47(6): 1325-1343, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31488031

RESUMO

Artemisinin and its analogues (ARTs) are currently the most effective anti-malarial drugs, but the precise mechanism of action is still highly controversial. Effects of ARTs on Plasmodium genes expression are studied in our Lab. The overexpression of an interesting amidotransferase, NADH-dependent glutamate synthase (NADH-GltS) was found in treated by dihydroartemisinin (DHA). The increased expression occurred not only from global transcriptomics analysis on the human malaria parasite Plasmodium falciparum (P. falciparum) 3D7 and gene expression screening on all of iron-sulphur cluster proteins from P.f. 3D7 in vitro but also from Plasmodium berghei (P. berghei) ANKA in mice. Influence of DHA on NADH-GltS was specifically at trophozoite stage of P. falciparum and in a dose-dependent manner below the effective doses. L-glutamine (Gln) and L-glutamate (Glu) are the substrate and product of NADH-GltS respectively. Azaserine (Aza) is specific inhibitor for NADH-GltS. Experimental data showed that Glu levels were significantly decreasing with DHA dose increasing but NADH-GltS enzyme activities were still remained at higher levels in parasites, and appropriate amount of exogenous Glu could significantly reduce anti-malarial action of DHA but excessive amount lost the above effect. Aza alone could inhibit proliferation of P. falciparum and had an additive effect in combination with DHA. Those results could suggest that: Glutamate depletion is one of the anti-malarial actions of DHA; overexpression of NADH-GltS would be a feedback pattern of parasite itself due to glutamate depletion, but not a direct action of DHA; the "feedback pattern" is one of protective strategies of Plasmodium to interfere with the anti-malarial actions of DHA; and specific inhibitor for NADH-GltS as a new type of anti-malarial agents or new partner in ACT might provide a potential.


Assuntos
Antimaláricos , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Expressão Gênica/efeitos dos fármacos , Glutamato Sintase (NADH)/genética , Glutamato Sintase (NADH)/metabolismo , Malária/tratamento farmacológico , Fitoterapia , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Animais , Azasserina/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Glutamato Sintase (NADH)/antagonistas & inibidores , Ácido Glutâmico/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Plasmodium falciparum/fisiologia
20.
Chin J Nat Med ; 17(5): 331-336, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31171267

RESUMO

The cornerstone of antimalarial treatment, artemisinin, has reduced malaria associated morbidity and mortality worldwide. However, Plasmodium falciparum parasites with reduced sensitivity to artemisinin have emerged, and this threatens malaria control and elimination efforts. In this minireview, we describe the initial development of artemisinin as an antimalarial drug, its use both historically and currently, and our current understanding of its mode of action and the mechanisms by which malaria parasites achieve resistance.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Resistência a Medicamentos , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Resistência a Medicamentos/genética , Humanos , Malária Falciparum/tratamento farmacológico , Mutação , Plasmodium falciparum/genética , Proteínas de Protozoários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA