Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Planta ; 249(6): 1963-1975, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30900084

RESUMO

MAIN CONCLUSION: Plastid genome engineering is an effective method to generate drought-resistant potato plants accumulating glycine betaine in plastids. Glycine betaine (GB) plays an important role under abiotic stress, and its accumulation in chloroplasts is more effective on stress tolerance than that in cytosol of transgenic plants. Here, we report that the codA gene from Arthrobacter globiformis, which encoded choline oxidase to catalyze the conversion of choline to GB, was successfully introduced into potato (Solanum tuberosum) plastid genome by plastid genetic engineering. Two independent plastid-transformed lines were isolated and confirmed as homoplasmic via Southern-blot analysis, in which the mRNA level of codA was much higher in leaves than in tubers. GB accumulated in similar levels in both leaves and tubers of codA-transplastomic potato plants (referred to as PC plants). The GB content was moderately increased in PC plants, and compartmentation of GB in plastids conferred considerably higher tolerance to drought stress compared to wild-type (WT) plants. Higher levels of relative water content and chlorophyll content under drought stress were detected in the leaves of PC plants compared to WT plants. Moreover, PC plants presented a significantly higher photosynthetic performance as well as antioxidant enzyme activities during drought stress. These results suggested that biosynthesis of GB by chloroplast engineering was an effective method to increase drought tolerance.


Assuntos
Oxirredutases do Álcool/metabolismo , Arthrobacter/enzimologia , Betaína/metabolismo , Solanum tuberosum/enzimologia , Oxirredutases do Álcool/genética , Arthrobacter/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cloroplastos/enzimologia , Cloroplastos/genética , Secas , Engenharia Genética , Fotossíntese , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Plastídeos/enzimologia , Plastídeos/genética , Solanum tuberosum/genética , Solanum tuberosum/fisiologia , Estresse Fisiológico
2.
Plant Cell Physiol ; 60(6): 1239-1249, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30796840

RESUMO

Malonyl-acyl carrier protein (ACP) is a key building block for the synthesis of fatty acids, which are important components of cell membranes, storage oils and lipid-signaling molecules. Malonyl CoA-ACP malonyltransferase (MCAMT) catalyzes the production of malonyl-ACP and CoA from malonyl-CoA and ACP. Here, we report that MCAMT plays a critical role in cell division and has the potential to increase the storage oil content in Arabidopsis. The quantitative real-time PCR and MCAMT promoter:GUS analyses showed that MCAMT is predominantly expressed in shoot and root apical meristems, leaf hydathodes and developing embryos. The fluorescent signals of MCAMT:eYFP were observed in both chloroplasts and mitochondria of tobacco leaf protoplasts. In particular, the N-terminal region (amino acid residues 1-30) of MCAMT was required for mitochondrial targeting. The Arabidopsis mcamt-1 and -2 mutants exhibited an embryo-lethal phenotype because of the arrest of embryo development at the globular stage. The transgenic Arabidopsis expressing antisense MCAMT RNA showed growth retardation caused by the defects in cell division. The overexpression of MCAMT driven by the promoter of the senescence-associated 1 (SEN1) gene, which is predominantly expressed in developing seeds, increased the seed yield and storage oil content of Arabidopsis. Taken together, the plastidial and mitochondrial MCAMT is essential for Arabidopsis cell division and is a novel genetic resource useful for enhancing storage oil content in oilseed crops.


Assuntos
Proteína de Transporte de Acila S-Maloniltransferase/metabolismo , Proteínas de Arabidopsis/metabolismo , Divisão Celular , Mitocôndrias/enzimologia , Óleos de Plantas/metabolismo , Plastídeos/enzimologia , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Mitocôndrias/metabolismo , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Nicotiana
3.
J Exp Bot ; 69(8): 1913-1924, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29538769

RESUMO

The importance of a plastidial soluble inorganic pyrophosphatase (psPPase) and an ATP/ADP translocator (NTT) for starch composition and tuber formation in potato (Solanum tuberosum) was evaluated by individual and simultaneous down-regulation of the corresponding endogenous genes. Starch and amylose content of the transgenic lines were considerably lower, and granule size substantially smaller, with down-regulation of StpsPPase generating the most pronounced effects. Single-gene down-regulation of either StpsPPase or StNTT resulted in increased tuber numbers per plant and higher fresh weight yield. In contrast, when both genes were inhibited simultaneously, some lines developed only a few, small and distorted tubers. Analysis of metabolites revealed altered amounts of sugar intermediates, and a substantial increase in ADP-glucose content of the StpsPPase lines. Increased amounts of intermediates of vitamin C biosynthesis were also observed. This study suggests that hydrolysis of pyrophosphate (PPi) by action of a psPPase is vital for functional starch accumulation in potato tubers and that no additional mechanism for consuming, hydrolysing, or exporting PPi exists in the studied tissue. Additionally, it demonstrates that functional PPi hydrolysis in combination with efficient ATP import is essential for tuber formation and development.


Assuntos
Pirofosfatase Inorgânica/metabolismo , Translocases Mitocondriais de ADP e ATP/metabolismo , Proteínas de Plantas/metabolismo , Tubérculos/crescimento & desenvolvimento , Plastídeos/enzimologia , Solanum tuberosum/enzimologia , Amido/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação da Expressão Gênica de Plantas , Pirofosfatase Inorgânica/genética , Translocases Mitocondriais de ADP e ATP/genética , Proteínas de Plantas/genética , Tubérculos/enzimologia , Tubérculos/genética , Tubérculos/metabolismo , Plastídeos/genética , Solanum tuberosum/genética , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/metabolismo
4.
New Phytol ; 217(2): 896-908, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28990194

RESUMO

Diverse natural products are synthesized in plants by specialized metabolic enzymes, which are often lineage-specific and derived from gene duplication followed by functional divergence. However, little is known about the contribution of primary metabolism to the evolution of specialized metabolic pathways. Betalain pigments, uniquely found in the plant order Caryophyllales, are synthesized from the aromatic amino acid l-tyrosine (Tyr) and replaced the otherwise ubiquitous phenylalanine-derived anthocyanins. This study combined biochemical, molecular and phylogenetic analyses, and uncovered coordinated evolution of Tyr and betalain biosynthetic pathways in Caryophyllales. We found that Beta vulgaris, which produces high concentrations of betalains, synthesizes Tyr via plastidic arogenate dehydrogenases (TyrAa /ADH) encoded by two ADH genes (BvADHα and BvADHß). Unlike BvADHß and other plant ADHs that are strongly inhibited by Tyr, BvADHα exhibited relaxed sensitivity to Tyr. Also, Tyr-insensitive BvADHα orthologs arose during the evolution of betalain pigmentation in the core Caryophyllales and later experienced relaxed selection and gene loss in lineages that reverted from betalain to anthocyanin pigmentation, such as Caryophyllaceae. These results suggest that relaxation of Tyr pathway regulation increased Tyr production and contributed to the evolution of betalain pigmentation, highlighting the significance of upstream primary metabolic regulation for the diversification of specialized plant metabolism.


Assuntos
Betalaínas/biossíntese , Vias Biossintéticas/genética , Caryophyllales/genética , Evolução Molecular , Pigmentação/genética , Tirosina/metabolismo , Antocianinas/metabolismo , Beta vulgaris/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Filogenia , Plastídeos/enzimologia , Prefenato Desidrogenase/genética , Prefenato Desidrogenase/metabolismo , Spinacia oleracea/enzimologia , Spinacia oleracea/genética
5.
Plant Biotechnol J ; 14(11): 2158-2167, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27133096

RESUMO

Despite a strong interest in microalgal oil production, our understanding of the biosynthetic pathways that produce algal lipids and the genes involved in the biosynthetic processes remains incomplete. Here, we report that Chlamydomonas reinhardtii Cre09.g398289 encodes a plastid-targeted 2-lysophosphatidic acid acyltransferase (CrLPAAT1) that acylates the sn-2 position of a 2-lysophosphatidic acid to form phosphatidic acid, the first common precursor of membrane and storage lipids. In vitro enzyme assays showed that CrLPAAT1 prefers 16:0-CoA to 18:1-CoA as an acyl donor. Fluorescent protein-tagged CrLPAAT1 was localized to the plastid membrane in C. reinhardtii cells. Furthermore, expression of CrLPAAT1 in plastids led to a > 20% increase in oil content under nitrogen-deficient conditions. Taken together, these results demonstrate that CrLPAAT1 is an authentic plastid-targeted LPAAT in C. reinhardtii, and that it may be used as a molecular tool to genetically increase oil content in microalgae.


Assuntos
Aciltransferases/genética , Chlamydomonas/enzimologia , Microalgas/química , Microalgas/genética , Plastídeos/enzimologia , Microalgas/metabolismo , Óleos de Plantas/metabolismo
6.
Biochim Biophys Acta ; 1861(9 Pt B): 1282-1293, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27060488

RESUMO

Triacylglycerol (TAG), a major source of biodiesel production, accumulates in nitrogen-starved Chlamydomonas reinhardtii. However, the metabolic pathway of starch-to-TAG conversion remains elusive because an enzyme that affects the starch degradation is unknown. Here, we isolated a new class of mutant bgal1, which expressed an overaccumulation of starch granules and defective photosynthetic growth. The bgal1 was a null mutant of a previously uncharacterized ß-galactosidase-like gene (Cre02.g119700), which decreased total ß-galactosidase activity 40% of the wild type. Upon nitrogen starvation, the bgal1 mutant showed decreased TAG accumulation mainly due to the reduced flux of de novo TAG biosynthesis evidenced by increased unsaturation of fatty acid composition in TAG and reduced TAG accumulation by additional supplementation of acetate to the culture media. Metabolomic analysis of the bgal1 mutant showed significantly reduced levels of metabolites following the hydrolysis of starch and substrates for TAG accumulation, whereas metabolites in TCA cycle were unaffected. Upon nitrogen starvation, while levels of glucose 6-phosphate, fructose 6-phosphate and acetyl-CoA remained lower, most of the other metabolites in glycolysis were increased but those in the TCA cycle were decreased, supporting TAG accumulation. We suggest that BGAL1 may be involved in the degradation of starch, which affects TAG accumulation in nitrogen-starved C. reinhardtii. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.


Assuntos
Proteínas de Algas/genética , Chlamydomonas reinhardtii/metabolismo , Ácidos Graxos/biossíntese , Triglicerídeos/biossíntese , beta-Galactosidase/genética , Acetilcoenzima A/metabolismo , Chlamydomonas reinhardtii/genética , Ácidos Graxos/metabolismo , Lipídeos/biossíntese , Lipídeos/genética , Mutação , Nitrogênio/metabolismo , Fotossíntese/genética , Plastídeos/enzimologia , Amido/biossíntese , Amido/metabolismo , Inanição , Triglicerídeos/genética , beta-Galactosidase/metabolismo
7.
Plant Cell ; 27(2): 432-47, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25670766

RESUMO

To investigate the effect of increased plastid transketolase on photosynthetic capacity and growth, tobacco (Nicotiana tabacum) plants with increased levels of transketolase protein were produced. This was achieved using a cassette composed of a full-length Arabidopsis thaliana transketolase cDNA under the control of the cauliflower mosaic virus 35S promoter. The results revealed a major and unexpected effect of plastid transketolase overexpression as the transgenic tobacco plants exhibited a slow-growth phenotype and chlorotic phenotype. These phenotypes were complemented by germinating the seeds of transketolase-overexpressing lines in media containing either thiamine pyrophosphate or thiamine. Thiamine levels in the seeds and cotyledons were lower in transketolase-overexpressing lines than in wild-type plants. When transketolase-overexpressing plants were supplemented with thiamine or thiamine pyrophosphate throughout the life cycle, they grew normally and the seed produced from these plants generated plants that did not have a growth or chlorotic phenotype. Our results reveal the crucial importance of the level of transketolase activity to provide the precursor for synthesis of intermediates and to enable plants to produce thiamine and thiamine pyrophosphate for growth and development. The mechanism determining transketolase protein levels remains to be elucidated, but the data presented provide evidence that this may contribute to the complex regulatory mechanisms maintaining thiamine homeostasis in plants.


Assuntos
Arabidopsis/enzimologia , Nicotiana/genética , Plastídeos/enzimologia , Tiamina/farmacologia , Transcetolase/metabolismo , Aminoácidos Aromáticos/metabolismo , Carboidratos/química , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Cotilédone/efeitos dos fármacos , Cotilédone/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Teste de Complementação Genética , Germinação/efeitos dos fármacos , Modelos Biológicos , Fenótipo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Propanóis/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sementes/efeitos dos fármacos , Sementes/metabolismo , Ácido Chiquímico/metabolismo , Tiamina Pirofosfato/farmacologia , Nicotiana/efeitos dos fármacos , Nicotiana/crescimento & desenvolvimento , Xilose/análogos & derivados , Xilose/farmacologia
8.
Plant Physiol ; 164(2): 596-611, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24381067

RESUMO

ADP-glucose pyrophosphorylase (AGPase) provides the nucleotide sugar ADP-glucose and thus constitutes the first step in starch biosynthesis. The majority of cereal endosperm AGPase is located in the cytosol with a minor portion in amyloplasts, in contrast to its strictly plastidial location in other species and tissues. To investigate the potential functions of plastidial AGPase in maize (Zea mays) endosperm, six genes encoding AGPase large or small subunits were characterized for gene expression as well as subcellular location and biochemical activity of the encoded proteins. Seven transcripts from these genes accumulate in endosperm, including those from shrunken2 and brittle2 that encode cytosolic AGPase and five candidates that could encode subunits of the plastidial enzyme. The amino termini of these five polypeptides directed the transport of a reporter protein into chloroplasts of leaf protoplasts. All seven proteins exhibited AGPase activity when coexpressed in Escherichia coli with partner subunits. Null mutations were identified in the genes agpsemzm and agpllzm and shown to cause reduced AGPase activity in specific tissues. The functioning of these two genes was necessary for the accumulation of normal starch levels in embryo and leaf, respectively. Remnant starch was observed in both instances, indicating that additional genes encode AGPase large and small subunits in embryo and leaf. Endosperm starch was decreased by approximately 7% in agpsemzm- or agpllzm- mutants, demonstrating that plastidial AGPase activity contributes to starch production in this tissue even when the major cytosolic activity is present.


Assuntos
Endosperma/enzimologia , Glucose-1-Fosfato Adenililtransferase/genética , Folhas de Planta/enzimologia , Proteínas de Plantas/genética , Subunidades Proteicas/genética , Zea mays/embriologia , Zea mays/enzimologia , Alelos , Endosperma/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Loci Gênicos , Glucose-1-Fosfato Adenililtransferase/metabolismo , Mutação/genética , Tamanho do Órgão/genética , Extratos Vegetais/metabolismo , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Plastídeos/enzimologia , Subunidades Proteicas/metabolismo , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Amido/metabolismo , Frações Subcelulares/enzimologia , Terminologia como Assunto , Zea mays/genética
9.
Plant Physiol ; 163(3): 1164-78, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24058165

RESUMO

This work contributes to unraveling the role of the phosphorylated pathway of serine (Ser) biosynthesis in Arabidopsis (Arabidopsis thaliana) by functionally characterizing genes coding for the first enzyme of this pathway, 3-phosphoglycerate dehydrogenase (PGDH). We identified two Arabidopsis plastid-localized PGDH genes (3-PGDH and EMBRYO SAC DEVELOPMENT ARREST9 [EDA9]) with a high percentage of amino acid identity with a previously identified PGDH. All three genes displayed a different expression pattern indicating that they are not functionally redundant. pgdh and 3-pgdh mutants presented no drastic visual phenotypes, but eda9 displayed delayed embryo development, leading to aborted embryos that could be classified as early curled cotyledons. The embryo-lethal phenotype of eda9 was complemented with an EDA9 complementary DNA under the control of a 35S promoter (Pro-35S:EDA9). However, this construct, which is poorly expressed in the anther tapetum, did not complement mutant fertility. Microspore development in eda9.1eda9.1 Pro-35S:EDA9 was arrested at the polarized stage. Pollen from these lines lacked tryphine in the interstices of the exine layer, displayed shrunken and collapsed forms, and were unable to germinate when cultured in vitro. A metabolomic analysis of PGDH mutant and overexpressing plants revealed that all three PGDH family genes can regulate Ser homeostasis, with PGDH being quantitatively the most important in the process of Ser biosynthesis at the whole-plant level. By contrast, the essential role of EDA9 could be related to its expression in very specific cell types. We demonstrate the crucial role of EDA9 in embryo and pollen development, suggesting that the phosphorylated pathway of Ser biosynthesis is an important link connecting primary metabolism with development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Família Multigênica , Fosfoglicerato Desidrogenase/metabolismo , Plastídeos/enzimologia , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Isoenzimas/classificação , Isoenzimas/genética , Isoenzimas/metabolismo , Metabolômica/métodos , Microscopia Confocal , Dados de Sequência Molecular , Mutação , Fosfoglicerato Desidrogenase/classificação , Fosfoglicerato Desidrogenase/genética , Fosforilação , Filogenia , Componentes Aéreos da Planta/enzimologia , Componentes Aéreos da Planta/genética , Componentes Aéreos da Planta/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Pólen/enzimologia , Pólen/genética , Pólen/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/enzimologia , Sementes/genética , Sementes/metabolismo , Homologia de Sequência de Aminoácidos , Serina/genética , Serina/metabolismo
10.
Metab Eng ; 20: 198-211, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24060453

RESUMO

Two geraniol synthases (GES), from Valeriana officinalis (VoGES) and Lippia dulcis (LdGES), were isolated and were shown to have geraniol biosynthetic activity with Km values of 32 µM and 51 µM for GPP, respectively, upon expression in Escherichia coli. The in planta enzymatic activity and sub-cellular localization of VoGES and LdGES were characterized in stable transformed tobacco and using transient expression in Nicotiana benthamiana. Transgenic tobacco expressing VoGES or LdGES accumulate geraniol, oxidized geraniol compounds like geranial, geranic acid and hexose conjugates of these compounds to similar levels. Geraniol emission of leaves was lower than that of flowers, which could be related to higher levels of competing geraniol-conjugating activities in leaves. GFP-fusions of the two GES proteins show that VoGES resides (as expected) predominantly in the plastids, while LdGES import into to the plastid is clearly impaired compared to that of VoGES, resulting in both cytosolic and plastidic localization. Geraniol production by VoGES and LdGES in N. benthamiana was nonetheless very similar. Expression of a truncated version of VoGES or LdGES (cytosolic targeting) resulted in the accumulation of 30% less geraniol glycosides than with the plastid targeted VoGES and LdGES, suggesting that the substrate geranyl diphosphate is readily available, both in the plastids as well as in the cytosol. The potential role of GES in the engineering of the TIA pathway in heterologous hosts is discussed.


Assuntos
Proteínas de Cloroplastos/biossíntese , Citosol/enzimologia , Lippia/enzimologia , Monoéster Fosfórico Hidrolases/biossíntese , Plastídeos/enzimologia , Valeriana/enzimologia , Monoterpenos Acíclicos , Proteínas de Cloroplastos/genética , Lippia/genética , Monoéster Fosfórico Hidrolases/genética , Plastídeos/genética , Especificidade da Espécie , Terpenos/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Valeriana/genética
12.
Sci Rep ; 2: 955, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23233874

RESUMO

Studies of photosynthetic eukaryotes have revealed that the evolution of plastids from cyanobacteria involved the recruitment of non-cyanobacterial proteins. Our phylogenetic survey of >100 Arabidopsis nuclear-encoded plastid enzymes involved in amino acid biosynthesis identified only 21 unambiguous cyanobacterial-derived proteins. Some of the several non-cyanobacterial plastid enzymes have a shared phylogenetic origin in the three Plantae lineages. We hypothesize that during the evolution of plastids some enzymes encoded in the host nuclear genome were mistargeted into the plastid. Then, the activity of those foreign enzymes was sustained by both the plastid metabolites and interactions with the native cyanobacterial enzymes. Some of the novel enzymatic activities were favored by selective compartmentation of additional complementary enzymes. The mosaic phylogenetic composition of the plastid amino acid biosynthetic pathways and the reduced number of plastid-encoded proteins of non-cyanobacterial origin suggest that enzyme recruitment underlies the recompartmentation of metabolic routes during the evolution of plastids.


Assuntos
Aminoácidos/biossíntese , Arabidopsis/metabolismo , Vias Biossintéticas/genética , Cianobactérias/enzimologia , Plastídeos/enzimologia , Arabidopsis/enzimologia , Arabidopsis/genética , Evolução Biológica , Cianobactérias/genética , Cianobactérias/metabolismo , Evolução Molecular , Genes Bacterianos , Genoma de Planta , Fotossíntese/genética , Filogenia , Plastídeos/genética , Plastídeos/metabolismo
13.
J Plant Physiol ; 169(16): 1597-606, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22770419

RESUMO

Carbohydrate starvation of Vicia faba root meristems leads to readjustment of carbohydrate metabolism and blocks the cell cycle in two principal control points (PCP1/2). The cell cycle reactivation is possible after sucrose provision, although with a delay of about 12h. During this period, the cells are sensitive to 6-dimethylaminopurine (6-DMAP) and okadaic acid (OA), inhibitors of protein kinases and phosphatases, respectively. The aim of the present study was to investigate whether those inhibitors are involved in inhibition of cell cycle revival through interference with the activities of two sucrose-cleaving enzymes: sucrose synthase (SuSy; EC 2.4.1.13) and invertase (INV; EC 3.2.1.26). In sugar-starved cells, the in situ activity of both enzymes decreased significantly. Following supplementation of root meristems with sugar, INV remained inactive, but SuSy activity increased. Despite the lack of INV activity, glucose was present in meristem cells, but its content was low in cells treated with OA. In the latter case, the size of plastids was reduced, they had less starch, and Golgi structures were affected. In sugar-starved cells, SuSy activity was induced more by exogenous sucrose than by glucose. The sucrose-induced activity was strongly inhibited by OA (less by 6-DMAP) at early stages of regeneration, but not at the stages preceding DNA replication or mitotic activities. The results indicate that prolongation of regeneration and a marked decrease in the number of cells resuming proliferation (observed in previous studies) and resulting from the action of inhibitors, are correlated with the process of SuSy activation at the beginning of regeneration from sugar starvation.


Assuntos
Metabolismo dos Carboidratos , Inibidores Enzimáticos/farmacologia , Glucosiltransferases/metabolismo , Meristema/enzimologia , Vicia faba/enzimologia , Adenina/análogos & derivados , Adenina/farmacologia , Carboidratos/deficiência , Ciclo Celular , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucose/metabolismo , Glucosiltransferases/antagonistas & inibidores , Meristema/efeitos dos fármacos , Meristema/ultraestrutura , Ácido Okadáico/farmacologia , Fosforilação , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/ultraestrutura , Plastídeos/efeitos dos fármacos , Plastídeos/enzimologia , Plastídeos/ultraestrutura , Polissacarídeos/metabolismo , Amido/metabolismo , Sacarose/metabolismo , Vicia faba/efeitos dos fármacos , Vicia faba/ultraestrutura , beta-Frutofuranosidase/antagonistas & inibidores , beta-Frutofuranosidase/metabolismo
14.
Plant Cell ; 24(4): 1579-95, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22534126

RESUMO

The immutans (im) variegation mutant of Arabidopsis thaliana is caused by an absence of PTOX, a plastid terminal oxidase bearing similarity to mitochondrial alternative oxidase (AOX). In an activation tagging screen for suppressors of im, we identified one suppression line caused by overexpression of AOX2. AOX2 rescued the im defect by replacing the activity of PTOX in the desaturation steps of carotenogenesis. Similar results were obtained when AOX1a was reengineered to target the plastid. Chloroplast-localized AOX2 formed monomers and dimers, reminiscent of AOX regulation in mitochondria. Both AOX2 and AOX1a were present in higher molecular weight complexes in plastid membranes. The presence of these proteins did not generally affect steady state photosynthesis, aside from causing enhanced nonphotochemical quenching in both lines. Because AOX2 was imported into chloroplasts using its own transpeptide, we propose that AOX2 is able to function in chloroplasts to supplement PTOX activity during early events in chloroplast biogenesis. We conclude that the ability of AOX1a and AOX2 to substitute for PTOX in the correct physiological and developmental contexts is a striking example of the capacity of a mitochondrial protein to replace the function of a chloroplast protein and illustrates the plasticity of the photosynthetic apparatus.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Plastídeos/enzimologia , Arabidopsis/genética , Carotenoides/biossíntese , Clorofila/metabolismo , Clorofila A , Cromatografia Líquida de Alta Pressão , Ativação Enzimática , Ensaios Enzimáticos , Éxons/genética , Fluorescência , Genes Supressores , Proteínas de Fluorescência Verde/metabolismo , Membranas Intracelulares/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Oxirredutases/química , Oxirredutases/genética , Fotossíntese , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plasmídeos/genética , Multimerização Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Relação Estrutura-Atividade , Frações Subcelulares/enzimologia , Supressão Genética
15.
FEBS J ; 279(11): 1953-66, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22429449

RESUMO

The plant genome encodes at least two distinct and evolutionary conserved plastidial starch-related dikinases that phosphorylate a low percentage of glucosyl residues at the starch granule surface. Esterification of starch favours the transition of highly ordered α-glucans to a less ordered state and thereby facilitates the cleavage of interglucose bonds by hydrolases. Metabolically most important is the phosphorylation at position C6, which is catalysed by the glucan, water dikinase (GWD). The reactions mediated by recombinant wild-type GWD from Arabidopsis thaliana (AtGWD) and from Solanum tuberosum (StGWD) were studied. Two mutated proteins lacking the conserved histidine residue that is indispensible for glucan phosphorylation were also included. The wild-type GWDs consume approximately 20% more ATP than is required for glucan phosphorylation. Similarly, although incapable of phosphorylating α-glucans, the two mutated dikinase proteins are capable of degrading ATP. Thus, consumption of ATP and phosphorylation of α-glucans are not strictly coupled processes but, to some extent, occur as independent phosphotransfer reactions. As revealed by incubation of the GWDs with [γ-(33) P]ATP, the consumption of ATP includes the transfer of the γ-phosphate group to the GWD protein but this autophosphorylation does not require the conserved histidine residue. Thus, the GWD proteins possess two vicinal phosphorylation sites, both of which are transiently phosphorylated. Following autophosphorylation at both sites, native dikinases flexibly use various terminal phosphate acceptors, such as water, α-glucans, AMP and ADP. A model is presented describing the complex phosphotransfer reactions of GWDs as affected by the availability of the various acceptors.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Glucanos/metabolismo , Fosfotransferases (Aceptores Pareados)/metabolismo , Plastídeos/enzimologia , Solanum tuberosum/enzimologia , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/genética , Biocatálise , Histidina/metabolismo , Cinética , Fosforilação , Fosfotransferases (Aceptores Pareados)/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Água/metabolismo
16.
J Exp Bot ; 63(8): 3011-29, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22378944

RESUMO

Parenchyma cells from tubers of Solanum tuberosum L. convert several externally supplied sugars to starch but the rates vary largely. Conversion of glucose 1-phosphate to starch is exceptionally efficient. In this communication, tuber slices were incubated with either of four solutions containing equimolar [U-¹4C]glucose 1-phosphate, [U-¹4C]sucrose, [U-¹4C]glucose 1-phosphate plus unlabelled equimolar sucrose or [U-¹4C]sucrose plus unlabelled equimolar glucose 1-phosphate. C¹4-incorporation into starch was monitored. In slices from freshly harvested tubers each unlabelled compound strongly enhanced ¹4C incorporation into starch indicating closely interacting paths of starch biosynthesis. However, enhancement disappeared when the tubers were stored. The two paths (and, consequently, the mutual enhancement effect) differ in temperature dependence. At lower temperatures, the glucose 1-phosphate-dependent path is functional, reaching maximal activity at approximately 20 °C but the flux of the sucrose-dependent route strongly increases above 20 °C. Results are confirmed by in vitro experiments using [U-¹4C]glucose 1-phosphate or adenosine-[U-¹4C]glucose and by quantitative zymograms of starch synthase or phosphorylase activity. In mutants almost completely lacking the plastidial phosphorylase isozyme(s), the glucose 1-phosphate-dependent path is largely impeded. Irrespective of the size of the granules, glucose 1-phosphate-dependent incorporation per granule surface area is essentially equal. Furthermore, within the granules no preference of distinct glucosyl acceptor sites was detectable. Thus, the path is integrated into the entire granule biosynthesis. In vitro C¹4C-incorporation into starch granules mediated by the recombinant plastidial phosphorylase isozyme clearly differed from the in situ results. Taken together, the data clearly demonstrate that two closely but flexibly interacting general paths of starch biosynthesis are functional in potato tuber cells.


Assuntos
Ciclo do Carbono , Solanum tuberosum/citologia , Solanum tuberosum/metabolismo , Amido/metabolismo , Ciclo do Carbono/efeitos dos fármacos , Isótopos de Carbono , Misturas Complexas , Glucanos/metabolismo , Glucofosfatos/farmacologia , Isoenzimas/metabolismo , Tubérculos/citologia , Tubérculos/efeitos dos fármacos , Tubérculos/fisiologia , Tubérculos/ultraestrutura , Plantas Geneticamente Modificadas , Plastídeos/efeitos dos fármacos , Plastídeos/enzimologia , Polissacarídeos/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/fisiologia , Solubilidade/efeitos dos fármacos , Amido/ultraestrutura , Amido Fosforilase/metabolismo , Sintase do Amido/metabolismo , Sacarose/farmacologia , Temperatura
17.
PLoS One ; 7(12): e51248, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23284672

RESUMO

BACKGROUND: Glucose-6-phosphate is imported into the amyloplast of potato tubers and thought to constitute the precursor for starch synthesis in potato tubers. However, recently it was shown that glucose-1-phosphate can also be imported into the amyloplast and incorporated into starch via an ATP independent mechanism under special conditions. Nonetheless, glucose-6-phosphate is believed to be the quantitatively important precursor for starch synthesis in potato. PRINCIPAL FINDING: Potato tubers of the high yielding cv Kuras had low gene expression of plastidial phophoglucomutase (PGM) and normal levels of transcripts for other enzymes involved in starch metabolism in comparison with medium and low yielding cultivars as determined by DeepSAGE transcriptome profiling. The decrease in PGM activity in Kuras was confirmed by measuring the enzyme activity from potato tuber extracts. Contrary to expectations, this combination lead to a higher level of intracellular glucose-1-phosphate (G1P) in Kuras suggesting that G1P is directly imported into plastids and can be quantitatively important for starch synthesis under normal conditions in high yielding cultivars. SIGNIFICANCE: This could open entirely new possibilities for metabolic engineering of the starch metabolism in potato via the so far uncharacterized G1P transporter. The perspectives are to increase yield and space efficiency of this important crop. In the light of the increasing demands imposed on agriculture to support a growing global population this presents an exciting new possibility.


Assuntos
Perfilação da Expressão Gênica , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Amido/biossíntese , Citosol/enzimologia , Citosol/metabolismo , Glucose-6-Fosfato/metabolismo , Glucofosfatos/metabolismo , Hexoses/química , Hexoses/metabolismo , Hidroliases/metabolismo , Espaço Intracelular/metabolismo , Plastídeos/enzimologia , Plastídeos/metabolismo , Solanum tuberosum/citologia , Solanum tuberosum/crescimento & desenvolvimento , Sacarose/química , Sacarose/metabolismo
18.
Planta ; 235(4): 807-18, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22071556

RESUMO

Plastid genome transformation offers an attractive methodology for transgene expression in plants, but for potato, only expression of gfp transgene (besides the selective gene aadA) has been published. We report here successful expression of ß-glucuronidase in transplastomic Solanum tuberosum (var. Desiree) plants, with accumulation levels for the recombinant protein of up to 41% of total soluble protein in mature leaves. To our knowledge, this is the highest expression level reported for a heterologous protein in S. tuberosum. Accumulation of the recombinant protein in soil-grown minitubers was very low, as described in previous reports. Interestingly, microtubers developed in vitro showed higher accumulation of ß-glucuronidase. As light exposure during their development could be the trigger for this high accumulation, we analyzed the effect of light on ß-glucuronidase accumulation in transplastomic tubers. Exposure to light for 8 days increased ß-glucuronidase accumulation in soil-grown tubers, acting as a light-inducible expression system for recombinant protein accumulation in tuber plastids. In this paper we show that plastid transformation in potato allows the highest recombinant protein accumulation in foliar tissue described so far for this food crop. We also demonstrate that in tubers high accumulation is possible and depends on light exposure. Because tubers have many advantages as protein storage organs, these results could lead to new recombinant protein production schemes based on potato.


Assuntos
Glucuronidase/biossíntese , Proteínas de Plantas/biossíntese , Plastídeos/enzimologia , Plastídeos/genética , Solanum tuberosum/enzimologia , Solanum tuberosum/genética , Regulação da Expressão Gênica de Plantas , Glucuronidase/genética , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Tubérculos/enzimologia , Tubérculos/genética , Plantas Geneticamente Modificadas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Nicotiana/enzimologia , Nicotiana/genética , Transgenes
19.
Biosci Biotechnol Biochem ; 75(9): 1740-5, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21897044

RESUMO

Nucleoside diphosphate kinase (NDPK) is a ubiquitous enzyme that catalyzes the transfer of the γ-phosphoryl group from a nucleoside triphosphate to a nucleoside diphosphate. In this study, we examined the subcellular localization, tissue-specific gene expression, and enzymatic characteristics of three rice NDPK isozymes (OsNDPK1-OsNDPK3). Sequence comparison of the three OsNDPKs suggested differential subcellular localization. Transient expression of green fluorescence protein-fused proteins in onion cells indicated that OsNDPK2 and OsNDPK3 are localized to plastid and mitochondria respectively, while OsNDPK1 is localized to the cytosol. Expression analysis indicated that all the OsNDPKs are expressed in the leaf, leaf sheath, and immature seeds, except for OsNDPK1, in the leaf sheath. Recombinant OsNDPK2 and OsNDPK3 showed lower optimum pH and higher stability under acidic pH than OsNDPK1. In ATP formation, all the OsNDPKs displayed lower K(m) values for the second substrate, ADP, than for the first substrate, NTP, and showed lowest and highest K(m) values for GTP and CTP respectively.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Isoenzimas/metabolismo , Núcleosídeo-Difosfato Quinase/metabolismo , Cebolas/enzimologia , Oryza/enzimologia , Proteínas Recombinantes de Fusão/metabolismo , Difosfato de Adenosina/metabolismo , Clonagem Molecular , Citosol/enzimologia , Estabilidade Enzimática , Escherichia coli , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Concentração de Íons de Hidrogênio , Isoenzimas/química , Isoenzimas/genética , Cinética , Microscopia de Fluorescência , Mitocôndrias/enzimologia , Núcleosídeo-Difosfato Quinase/química , Núcleosídeo-Difosfato Quinase/genética , Cebolas/citologia , Cebolas/genética , Oryza/genética , Folhas de Planta/enzimologia , Plasmídeos , Plastídeos/enzimologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Sementes/enzimologia , Especificidade por Substrato , Transformação Bacteriana
20.
Plant Physiol ; 152(4): 1830-41, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20107025

RESUMO

Plant metabolism is highly coordinated with development. However, an understanding of the whole picture of metabolism and its interactions with plant development is scarce. In this work, we show that the deficiency in the plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPCp) leads to male sterility in Arabidopsis (Arabidopsis thaliana). Pollen from homozygous gapcp double mutant plants (gapcp1gapcp2) displayed shrunken and collapsed forms and were unable to germinate when cultured in vitro. The pollen alterations observed in gapcp1gapcp2 were attributed to a disorganized tapetum layer. Accordingly, the expression of several of the genes involved in tapetum development was down-regulated in gapcp1gapcp2. The fertility of gapcp1gapcp2 was rescued by transforming this mutant with a construct carrying the GAPCp1 cDNA under the control of its native promoter (pGAPCp1::GAPCp1c). However, the GAPCp1 or GAPCp2 cDNA under the control of the 35S promoter (p35S::GAPCp), which is poorly expressed in the tapetum, did not complement the mutant fertility. Mutant GAPCp isoforms deficient in the catalytic activity of the enzyme were unable to complement the sterile phenotype of gapcp1gapcp2, thus confirming that both the expression and catalytic activity of GAPCp in anthers are necessary for mature pollen development. A metabolomic study in flower buds indicated that the most important difference between the sterile (gapcp1gapcp2, gapcp1gapcp2-p35S::GAPCp) and the fertile (wild-type plants, gapcp1gapcp2-pGAPCp1::GAPCp1c) lines was the increase in the signaling molecule trehalose. This work corroborates the importance of plastidial glycolysis in plant metabolism and provides evidence for the crucial role of GAPCps in pollen development. It additionally brings new insights into the complex interactions between metabolism and development.


Assuntos
Arabidopsis/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Plastídeos/enzimologia , Pólen/metabolismo , Arabidopsis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA