Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.329
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0296607, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626075

RESUMO

Tinnitus is a common annoying symptom without effective and accepted treatment. In this controlled experimental study, photobiomodulation therapy (PBMT), which uses light to modulate and repair target tissue, was used to treat sodium salicylate (SS)-induced tinnitus in a rat animal model. Here, PBMT was performed simultaneously on the peripheral and central regions involved in tinnitus. The results were evaluated using objective tests including gap pre-pulse inhibition of acoustic startle (GPIAS), auditory brainstem response (ABR) and immunohistochemistry (IHC). Harmful neural plasticity induced by tinnitus was detected by doublecortin (DCX) protein expression, a known marker of neural plasticity. PBMT parameters were 808 nm wavelength, 165 mW/cm2 power density, and 99 J/cm2 energy density. In the tinnitus group, the mean gap in noise (GIN) value of GPIAS test was significantly decreased indicated the occurrence of an additional perceived sound like tinnitus and also the mean ABR threshold and brainstem transmission time (BTT) were significantly increased. In addition, a significant increase in DCX expression in the dorsal cochlear nucleus (DCN), dentate gyrus (DG) and the parafloccular lobe (PFL) of cerebellum was observed in the tinnitus group. In PBMT group, a significant increase in the GIN value, a significant decrease in the ABR threshold and BTT, and also significant reduction of DCX expression in the DG were observed. Based on our findings, PBMT has the potential to be used in the management of SS-induced tinnitus.


Assuntos
Núcleo Coclear , Terapia com Luz de Baixa Intensidade , Zumbido , Ratos , Animais , Salicilato de Sódio/farmacologia , Zumbido/induzido quimicamente , Zumbido/radioterapia , Plasticidade Neuronal/fisiologia
2.
J Psychiatry Neurosci ; 49(1): E59-E76, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359933

RESUMO

BACKGROUND: Transcranial magnetic stimulation (TMS) is a noninvasive neurostimulation modality that has been used to study human synaptic plasticity. Leveraging work in ex vivo preparations, mechanistically informed pharmacological adjuncts to TMS have been used to improve our fundamental understanding of TMS-induced synaptic plasticity. METHODS: We systematically reviewed the literature pairing pharmacological adjuncts with TMS plasticity-induction protocols in humans. We searched MEDLINE, PsycINFO, and Embase from 2013 to Mar. 10, 2023. Studies published before 2013 were extracted from a previous systematic review. We included studies using repetitive TMS, theta-burst stimulation, paired associative stimulation, and quadripulse stimulation paradigms in healthy and clinical populations. RESULTS: Thirty-six studies met our inclusion criteria (28 in healthy and 8 in clinical populations). Most pharmacological agents have targeted the glutamatergic N-methyl-d-aspartate (NMDA; 15 studies) or dopamine receptors (13 studies). The NMDA receptor is necessary for TMS-induced plasticity; however, sufficiency has not been shown across protocols. Dopaminergic modulation of TMS-induced plasticity appears to be dose-dependent. The GABAergic, cholinergic, noradrenergic, and serotonergic neurotransmitter systems have small evidence bases supporting modulation of TMS-induced plasticity, as do voltage-gated calcium and sodium channels. Studies in clinical populations suggest that pharmacological adjuncts to TMS may rescue motor cortex plasticity, with implications for therapeutic applications of TMS and a promising clinical trial in depression. LIMITATIONS: This review is limited by the predominance in the literature of studies with small sample sizes and crossover designs. CONCLUSION: Pharmacologically enhanced TMS largely parallels findings from ex vivo preparations. As this area expands and novel targets are tested, adequately powered samples in healthy and clinical populations will inform the mechanisms of TMS-induced plasticity in health and disease.


Assuntos
Córtex Motor , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Plasticidade Neuronal/fisiologia , Dopamina , Cálcio , Potencial Evocado Motor/fisiologia
3.
J Neurosci ; 44(11)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38316559

RESUMO

Transcranial focused ultrasound stimulation (tFUS) is a noninvasive neuromodulation technique, which can penetrate deeper and modulate neural activity with a greater spatial resolution (on the order of millimeters) than currently available noninvasive brain stimulation methods, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). While there are several studies demonstrating the ability of tFUS to modulate neuronal activity, it is unclear whether it can be used for producing long-term plasticity as needed to modify circuit function, especially in adult brain circuits with limited plasticity such as the thalamocortical synapses. Here we demonstrate that transcranial low-intensity focused ultrasound (LIFU) stimulation of the visual thalamus (dorsal lateral geniculate nucleus, dLGN), a deep brain structure, leads to NMDA receptor (NMDAR)-dependent long-term depression of its synaptic transmission onto layer 4 neurons in the primary visual cortex (V1) of adult mice of both sexes. This change is not accompanied by large increases in neuronal activity, as visualized using the cFos Targeted Recombination in Active Populations (cFosTRAP2) mouse line, or activation of microglia, which was assessed with IBA-1 staining. Using a model (SONIC) based on the neuronal intramembrane cavitation excitation (NICE) theory of ultrasound neuromodulation, we find that the predicted activity pattern of dLGN neurons upon sonication is state-dependent with a range of activity that falls within the parameter space conducive for inducing long-term synaptic depression. Our results suggest that noninvasive transcranial LIFU stimulation has a potential for recovering long-term plasticity of thalamocortical synapses in the postcritical period adult brain.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Córtex Visual , Masculino , Feminino , Camundongos , Animais , Tálamo/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Visual/fisiologia , Sinapses
4.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38212291

RESUMO

Plasticity from auditory experience shapes the brain's encoding and perception of sound. However, whether such long-term plasticity alters the trajectory of short-term plasticity during speech processing has yet to be investigated. Here, we explored the neural mechanisms and interplay between short- and long-term neuroplasticity for rapid auditory perceptual learning of concurrent speech sounds in young, normal-hearing musicians and nonmusicians. Participants learned to identify double-vowel mixtures during ~ 45 min training sessions recorded simultaneously with high-density electroencephalography (EEG). We analyzed frequency-following responses (FFRs) and event-related potentials (ERPs) to investigate neural correlates of learning at subcortical and cortical levels, respectively. Although both groups showed rapid perceptual learning, musicians showed faster behavioral decisions than nonmusicians overall. Learning-related changes were not apparent in brainstem FFRs. However, plasticity was highly evident in cortex, where ERPs revealed unique hemispheric asymmetries between groups suggestive of different neural strategies (musicians: right hemisphere bias; nonmusicians: left hemisphere). Source reconstruction and the early (150-200 ms) time course of these effects localized learning-induced cortical plasticity to auditory-sensory brain areas. Our findings reinforce the domain-general benefits of musicianship but reveal that successful speech sound learning is driven by a critical interplay between long- and short-term mechanisms of auditory plasticity, which first emerge at a cortical level.


Assuntos
Córtex Auditivo , Percepção da Fala , Humanos , Fala , Percepção da Fala/fisiologia , Córtex Auditivo/fisiologia , Aprendizagem , Eletroencefalografia , Plasticidade Neuronal/fisiologia , Estimulação Acústica
5.
WIREs Mech Dis ; 16(1): e1632, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37833830

RESUMO

Neural circuits in the brain, primarily in the hypothalamus, are paramount to the homeostatic control of feeding and energy utilization. They integrate hunger, satiety, and body adiposity cues from the periphery and mediate the appropriate behavioral and physiological responses to satisfy the energy demands of the animal. Notably, perturbations in central homeostatic circuits have been linked to the etiology of excessive feeding and obesity. Considering the ever-changing energy requirements of the animal and required adaptations, it is not surprising that brain-feeding circuits remain plastic in adulthood and are subject to changes in synaptic strength as a consequence of nutritional status. Indeed, synapse density, probability of presynaptic transmitter release, and postsynaptic responses in hypothalamic energy balance centers are tailored to behavioral and physiological responses required to sustain survival. Mounting evidence supports key roles of astrocytes facilitating some of this plasticity. Here we discuss these synaptic plasticity mechanisms and the emerging roles of astrocytes influencing energy and glucose balance control in health and disease. This article is categorized under: Cancer > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology.


Assuntos
Astrócitos , Hipotálamo , Animais , Astrócitos/metabolismo , Hipotálamo/metabolismo , Plasticidade Neuronal/fisiologia , Sistema Nervoso Central/metabolismo , Sinapses/metabolismo , Obesidade/metabolismo
6.
Elife ; 122023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37796249

RESUMO

Experience-dependent plasticity in the adult visual system is generally thought of as a cortical process. However, several recent studies have shown that perceptual learning or monocular deprivation can also induce plasticity in the adult dorsolateral geniculate nucleus (dLGN) of the thalamus. How plasticity in the thalamus and cortex interact in the adult visual system is ill-understood. To assess the influence of thalamic plasticity on plasticity in primary visual cortex (V1), we made use of our previous finding that during the critical period ocular dominance (OD) plasticity occurs in dLGN and requires thalamic synaptic inhibition. Using multielectrode recordings we find that this is also true in adult mice, and that in the absence of thalamic inhibition and plasticity, OD plasticity in adult V1 is absent. To study the influence of V1 on thalamic plasticity, we silenced V1 and show that during the critical period, but not in adulthood, the OD shift in dLGN is partially caused by feedback from V1. We conclude that during adulthood the thalamus plays an unexpectedly dominant role in experience-dependent plasticity in V1. Our findings highlight the importance of considering the thalamus as a potential source of plasticity in learning events that are typically thought of as cortical processes.


Assuntos
Dominância Ocular , Córtex Visual , Camundongos , Animais , Tálamo/fisiologia , Córtex Visual/fisiologia , Corpos Geniculados/fisiologia , Inibição Psicológica , Plasticidade Neuronal/fisiologia
7.
Curr Biol ; 33(16): 3465-3477.e5, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37543035

RESUMO

Regional brain activity often decreases from baseline levels in response to external events, but how neurons develop such negative responses is unclear. To study this, we leveraged the negative response that develops in the primary motor cortex (M1) after classical fear learning. We trained mice with a fear conditioning paradigm while imaging their brains with standard two-photon microscopy. This enabled monitoring changes in neuronal responses to the tone with synaptic resolution through learning. We found that M1 layer 5 pyramidal neurons (L5 PNs) developed negative tone responses within an hour after conditioning, which depended on the weakening of their dendritic spines that were active during training. Blocking this form of anti-Hebbian plasticity using an optogenetic manipulation of CaMKII activity disrupted negative tone responses and freezing. Therefore, reducing the strength of spines active at the time of memory encoding leads to negative responses of L5 PNs. In turn, these negative responses curb M1's capacity for promoting movement, thereby aiding freezing. Collectively, this work provides a mechanistic understanding of how area-specific negative responses to behaviorally relevant cues can be achieved.


Assuntos
Córtex Motor , Camundongos , Animais , Espinhas Dendríticas/fisiologia , Congelamento , Células Piramidais/fisiologia , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia
8.
Brain Behav ; 13(9): e3174, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37522806

RESUMO

INTRODUCTION: Tuina is currently one of the popular complementary and alternative methods of rehabilitation therapy. Tuina can improve patients' pain and mobility function. However, the underlying physiological mechanism remains largely unknown, which might limit its further popularization in clinical practice. The aim of this study is to explore the short-term and long-term changes in brain functional activity following Tuina intervention for peripheral nerve injury repair. METHODS: A total of 16 rats were equally divided into the intervention group and the control group. Rats in the intervention group received Tuina therapy applying on the gastrocnemius muscle of the right side for 4 months following sciatic nerve transection and immediate repair, while the control group received nerve transection and repair only. The block-design functional magnetic resonance imaging scan was applied in both groups at 1 and 4 months after the surgery. During the scan, both the injured and intact hindpaw was electrically stimulated according to a "boxcar" paradigm. RESULTS: When stimulating the intact hindpaw, the intervention group exhibited significantly lower activation in the somatosensory area, limbic/paralimbic areas, pain-regulation areas, and basal ganglia compared to the control group, with only the prefrontal area showing higher activation. After 4 months of sciatic nerve injury, the control group exhibited decreased motor cortex activity compared to the activity observed at 1 month, and the intervention group demonstrated stronger bilateral motor cortex activity compared to the control group. CONCLUSION: Tuina therapy on the gastrocnemius muscle of rats with sciatic nerve injury can effectively alleviate pain and maintain the motor function of the affected limb. In addition, Tuina therapy reduced the activation level of pain-related brain regions and inhibited the decreased activity of the motor cortex caused by nerve injury, reflecting the impact of peripheral stimulation on brain plasticity.


Assuntos
Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Ratos , Animais , Traumatismos dos Nervos Periféricos/terapia , Nervo Isquiático/lesões , Plasticidade Neuronal/fisiologia , Dor
9.
Cell Transplant ; 32: 9636897231177357, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37291807

RESUMO

Obesity has been linked to cognitive impairment through systemic low-grade inflammation. High fat and sugar diets (HFSDs) also induce systemic inflammation, either by induced Toll-like receptor 4 response, or by causing dysbiosis. This study aimed to evaluate the effect of symbiotics supplementation on spatial and working memory, butyrate concentration, neurogenesis, and electrophysiological recovery of HFSD-fed rats. In a first experiment, Sprague-Dawley male rats were given HFSD for 10 weeks, after which they were randomized into 2 groups (n = 10 per group): water (control), or Enterococcus faecium + inulin (symbiotic) administration, for 5 weeks. In the fifth week, spatial and working memory was analyzed through the Morris Water Maze (MWM) and Eight-Arm Radial Maze (RAM) tests, respectively, with 1 week apart between tests. At the end of the study, butyrate levels from feces and neurogenesis at hippocampus were determined. In a second experiment with similar characteristics, the hippocampus was extracted to perform electrophysiological studies. Symbiotic-supplemented rats showed a significantly better memory, butyrate concentrations, and neurogenesis. This group also presented an increased firing frequency in hippocampal neurons [and a larger N-methyl-d-aspartate (NMDA)/α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) current ratio] suggesting an increase in NMDA receptors, which in turn is associated with an enhancement in long-term potentiation and synaptic plasticity. Therefore, our results suggest that symbiotics could restore obesity-related memory impairment and promote synaptic plasticity.


Assuntos
Agave , Memória Espacial , Ratos , Animais , Masculino , Agave/metabolismo , Inulina/farmacologia , Inulina/uso terapêutico , Ratos Sprague-Dawley , Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Aprendizagem em Labirinto/fisiologia , Obesidade/terapia , Suplementos Nutricionais , Inflamação
10.
Mol Metab ; 73: 101745, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37268247

RESUMO

BACKGROUND: Neuroplasticity refers to the brain's ability to undergo functional and structural changes in response to diverse challenges. Converging evidence supports the notion that exercise serves as a metabolic challenge, triggering the release of multiple factors both in the periphery and within the brain. These factors actively contribute to plasticity in the brain, and in turn, regulate energy and glucose metabolism. SCOPE OF REVIEW: The primary focus of this review is to explore the impact of exercise-induced plasticity in the brain on metabolic homeostasis, with an emphasis on the role of the hypothalamus in this process. Additionally, the review provides an overview of various factors induced by exercise that contribute to energy balance and glucose metabolism. Notably, these factors exert their effects, at least in part, through actions within the hypothalamus and more broadly in the central nervous system. MAJOR CONCLUSIONS: Exercise elicits both transient and sustained changes in metabolism, accompanied by changes in neural activity within specific brain regions. Importantly, the contribution of exercise-induced plasticity and the underlying mechanisms by which neuroplasticity influences the effects of exercise are not well understood. Recent work has begun to overcome this gap in knowledge by examining the complex interactions of exercise-induced factors which alter neural circuit properties to influence metabolism.


Assuntos
Exercício Físico , Hipotálamo , Hipotálamo/metabolismo , Exercício Físico/fisiologia , Encéfalo/metabolismo , Plasticidade Neuronal/fisiologia , Glucose/metabolismo
11.
Phytomedicine ; 116: 154888, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37257329

RESUMO

BACKGROUND: Zhi-Zi-Chi-Tang (ZZCT) is an effective traditional Chinese medicinal formula. ZZCT has been used for the treatment of depression for centuries. Its clinical efficacy in relieving depression has been confirmed. However, the molecular mechanisms of ZZCT regarding neuroplasticity in the pathogenesis of depression have not yet been elucidated. PURPOSE: The present study aimed to examine the effects of ZZCT on neuroplasticity in mice exposed to chronic unpredictable mild stress (CUMS), and to explore the underlying molecular mechanisms. METHODS: For this purpose, a murine model of depression was established using the CUMS procedure. Following the intragastric administration of ZZCT or fluoxetine, classic behavioral experiments were performed to observe the efficacy of ZZCT as an antidepressant. Immunofluorescence was used to label and quantify microtubule-associated protein (MAP2) and postsynaptic density protein (PSD95) in the hippocampus. Golgi staining was applied to visualize the dendritic spine density of neurons in the hippocampi. Isolated hippocampal slices were prepared to induce long-term potentiation (LTP) in the CA1 area. The hippocampal protein expression levels of glycogen synthase kinase-3ß (GSK-3ß), p-GSK-3ß (Ser9), cAMP response element binding protein (CREB), p-CREB (Ser133), brain-derived neurotrophic factor (BDNF) and 14-3-3ζ were detected using western blot analysis. The interaction of 14-3-3ζ and p-GSK-3ß (Ser9) was examined using co-immunoprecipitation. LV-shRNA was used to knockdown 14-3-3ζ by an intracerebroventricular injection. RESULTS: ZZCT (6 g/kg) and fluoxetine (20 mg/kg) alleviated depressive-like behavior, restored hippocampal MAP2+ PSD95+ intensity, and reversed the dendritic spine density of hippocampal neurons and LTP in the CA1 region of mice exposed to CUMS. Both low and high doses of ZZCT (3 and 6 g/kg) significantly promoted the binding of 14-3-3ζ to p-GSK-3ß (Ser9) in the hippocampus, and ZZCT (6 g/kg) significantly promoted the phosphorylation of GSK-3ß Ser9 and CREB Ser133 in the hippocampus. ZZCT (3 and 6 g/kg) upregulated hippocampal BDNF expression in mice exposed to CUMS. LV-sh14-3-3ξ reduced the antidepressant effects of ZZCT. CONCLUSION: ZZCT exerted antidepressant effects against CUMS-stimulated depressive-like behavior mice. The knockdown of 14-3-3ζ using lentivirus confirmed that 14-3-3ζ was involved in the ZZCT-mediated antidepressant effects through GSK-3ß/CREB/BDNF signaling. On the whole, these results suggest that the antidepressant effects of ZZCT are attributed to restoring damage by neuroplasticity enhancement via the 14-3-3ζ/GSK-3ß/CREB/BDNF signaling pathway.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Fluoxetina , Camundongos , Animais , Glicogênio Sintase Quinase 3 beta/metabolismo , Fluoxetina/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/farmacologia , Antidepressivos/farmacologia , Plasticidade Neuronal/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hipocampo , Estresse Psicológico/tratamento farmacológico , Depressão/tratamento farmacológico , Depressão/metabolismo , Modelos Animais de Doenças
12.
Neural Plast ; 2023: 1474841, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37179843

RESUMO

Purpose: To explore the therapeutic efficiency of acupuncture and the related molecular mechanism of neural plasticity in depression. Methods: Chronic unpredictable mild stress- (CUMS-) induced rats were established for the depression animal model. There were a total of four rat groups, including the control group, the CUMS group, the CUMS+acupuncture group, and the CUMS+fluoxetine group. The acupuncture group and the fluoxetine group were given a 3-week treatment after the modeling intervention. The researcher performed the open-field, elevated plus maze, and sucrose preference tests to evaluate depressive behaviors. The number of nerve cells, dendrites' length, and the prefrontal cortex's spine density were detected using Golgi staining. The prefrontal cortex expression, such as BDNF, PSD95, SYN, and PKMZ protein, was detected using the western blot and RT-PCR. Results: Acupuncture could alleviate depressive-like behaviors and promote the recovery of the neural plasticity functions in the prefrontal cortex, showing the increasing cell numbers, prolonging the length of the dendrites, and enhancing the spine density. The neural plasticity-related proteins in the prefrontal cortex, including BDNF, PSD95, SYN, and PKMZ, were all downregulated in the CUMS-induced group; however, these effects could be partly reversed after being treated by acupuncture and fluoxetine (P < 0.05). Conclusion: Acupuncture can ameliorate depressive-like behaviors by promoting the recovery of neural plasticity functions and neural plasticity-related protein upregulation in the prefrontal cortex of CUMS-induced depressed rats. Our study provides new insights into the antidepressant approach, and further studies are warranted to elucidate the mechanisms of acupuncture involved in depression treatment.


Assuntos
Terapia por Acupuntura , Fluoxetina , Ratos , Animais , Fluoxetina/farmacologia , Depressão/etiologia , Depressão/terapia , Depressão/metabolismo , Ratos Sprague-Dawley , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Córtex Pré-Frontal , Plasticidade Neuronal/fisiologia , Estresse Psicológico/metabolismo , Hipocampo/metabolismo , Modelos Animais de Doenças
13.
Cell Rep ; 42(4): 112287, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36952349

RESUMO

During the visual critical period (CP), sensory experience refines the structure and function of visual circuits. The basis of this plasticity was long thought to be limited to cortical circuits, but recently described thalamic plasticity challenges this dogma and demonstrates greater complexity underlying visual plasticity. Yet how visual experience modulates thalamic neurons or how the thalamus modulates CP timing is incompletely understood. Using a larval zebrafish, thalamus-centric ocular dominance model, we show functional changes in the thalamus and a role of inhibitory signaling to establish CP timing using a combination of functional imaging, optogenetics, and pharmacology. Hemisphere-specific changes in genetically defined thalamic neurons correlate with changes in visuomotor behavior, establishing a role of thalamic plasticity in modulating motor performance. Our work demonstrates that visual plasticity is broadly conserved and that visual experience leads to neuron-level functional changes in the thalamus that require inhibitory signaling to establish critical period timing.


Assuntos
Córtex Visual , Peixe-Zebra , Animais , Córtex Visual/fisiologia , Tálamo/fisiologia , Período Crítico Psicológico , Neurônios , Plasticidade Neuronal/fisiologia
14.
J Neurosci ; 43(4): 584-600, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36639912

RESUMO

High-throughput anatomic data can stimulate and constrain new hypotheses about how neural circuits change in response to experience. Here, we use fluorescence-based reagents for presynaptic and postsynaptic labeling to monitor changes in thalamocortical synapses onto different compartments of layer 5 (L5) pyramidal (Pyr) neurons in somatosensory (barrel) cortex from mixed-sex mice during whisker-dependent learning (Audette et al., 2019). Using axonal fills and molecular-genetic tags for synapse identification in fixed tissue from Rbp4-Cre transgenic mice, we found that thalamocortical synapses from the higher-order posterior medial thalamic nucleus showed rapid morphologic changes in both presynaptic and postsynaptic structures at the earliest stages of sensory association training. Detected increases in thalamocortical synaptic size were compartment specific, occurring selectively in the proximal dendrites onto L5 Pyr and not at inputs onto their apical tufts in L1. Both axonal and dendritic changes were transient, normalizing back to baseline as animals became expert in the task. Anatomical measurements were corroborated by electrophysiological recordings at different stages of training. Thus, fluorescence-based analysis of input- and target-specific synapses can reveal compartment-specific changes in synapse properties during learning.SIGNIFICANCE STATEMENT Synaptic changes underlie the cellular basis of learning, experience, and neurologic diseases. Neuroanatomical methods to assess synaptic plasticity can provide critical spatial information necessary for building models of neuronal computations during learning and experience but are technically and fiscally intensive. Here, we describe a confocal fluorescence microscopy-based analytical method to assess input, cell type, and dendritic location-specific synaptic plasticity in a sensory learning assay. Our method not only confirms prior electrophysiological measurements but allows us to predict functional strength of synapses in a pathway-specific manner. Our findings also indicate that changes in primary sensory cortices are transient, occurring during early learning. Fluorescence-based synapse identification can be an efficient and easily adopted approach to study synaptic changes in a variety of experimental paradigms.


Assuntos
Neurônios , Células Piramidais , Camundongos , Animais , Fluorescência , Neurônios/fisiologia , Tálamo/fisiologia , Dendritos/fisiologia , Sinapses/fisiologia , Camundongos Transgênicos , Plasticidade Neuronal/fisiologia , Córtex Somatossensorial/fisiologia
15.
J Physiol ; 601(2): 335-353, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36515167

RESUMO

Layer V neurons in the primary motor cortex (M1) are important for motor skill learning. Since pretreatment of either CNQX or APV in rat M1 layer V impaired rotor rod learning, we analysed training-induced synaptic plasticity by whole-cell patch-clamp technique in acute brain slices. Rats trained for 1 day showed a decrease in small inhibitory postsynaptic current (mIPSC) frequency and an increase in the paired-pulse ratio of evoked IPSCs, suggesting a transient decrease in presynaptic GABA release in the early phase. Rats trained for 2 days showed an increase in miniature excitatory postsynaptic current (mEPSC) amplitudes/frequency and elevated AMPA/NMDA ratios, suggesting a long-term strengthening of AMPA receptor-mediated excitatory synapses. Importantly, rotor rod performance in trained rats was correlated with the mean mEPSC amplitude and the frequency obtained from that animal. In current-clamp analysis, 1-day-trained rats transiently decreased the current-induced firing rate, while 2-day-trained rats returned to pre-training levels, suggesting dynamic changes in intrinsic properties. Furthermore, western blot analysis of layer V detected decreased phosphorylation of Ser408-409 in GABAA receptor ß3 subunits in 1-day-trained rats, and increased phosphorylation of Ser831 in AMPA receptor GluA1 subunits in 2-day-trained rats. Finally, live-imaging analysis of Thy1-YFP transgenic mice showed that the training rapidly recruited a substantial number of spines for long-term plasticity in M1 layer V neurons. Taken together, these results indicate that motor training induces complex and diverse plasticity in M1 layer V pyramidal neurons. KEY POINTS: Here we examined motor training-induced synaptic and intrinsic plasticity of layer V pyramidal neurons in the primary motor cortex. The training reduced presynaptic GABA release in the early phase, but strengthened AMPA receptor-mediated excitatory synapses in the later phase: acquired motor performance after training correlated with the strength of excitatory synapses rather than inhibitory synapses. As to the intrinsic property, the training transiently decreased the firing rate in the early phase, but returned to pre-training levels in the later phase. Western blot analysis detected decreased phosphorylation of Ser408-409 in GABAA receptor ß3 subunits in the acute phase, and increased phosphorylation of Ser831 in AMPA receptor GluA1 subunits in the later phase. Live-imaging analysis of Thy1-YFP transgenic mice showed rapid and long-term spine plasticity in M1 layer V neurons, suggesting training-induced increases in self-entropy per spine.


Assuntos
Córtex Motor , Receptores de GABA-A , Camundongos , Ratos , Animais , Receptores de GABA-A/metabolismo , Receptores de AMPA/metabolismo , Córtex Motor/fisiologia , Células Piramidais/fisiologia , Sinapses/fisiologia , Plasticidade Neuronal/fisiologia , Ácido gama-Aminobutírico , Camundongos Transgênicos
16.
Eur J Neurosci ; 57(1): 201-212, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36382537

RESUMO

L-dopa variably influences transcranial magnetic stimulation (TMS) parameters of motor cortex (M1) excitability and plasticity in Parkinson's disease (PD). In patients OFF dopaminergic medication, impaired M1 plasticity and defective GABA-A-ergic inhibition can be restored by boosting gamma (γ) oscillations via transcranial alternating current stimulation (tACS) during intermittent theta-burst stimulation (iTBS). However, it is unknown whether L-dopa modifies the beneficial effects of iTBS-γ-tACS on M1 in PD. In this study, a PD patients group underwent combined iTBS-γ-tACS and iTBS-sham-tACS, each performed both OFF and ON dopaminergic therapy (four sessions in total). Motor evoked potentials (MEPs) elicited by single TMS pulses and short-interval intracortical inhibition (SICI) were assessed before and after iTBS-tACS. We also evaluated possible SICI changes during γ-tACS delivered alone in OFF and ON conditions. The amplitude of MEP elicited by single TMS pulses and the degree of SICI inhibition significantly increased after iTBS-γ-tACS. The amount of change produced by iTBS-γ-tACS was similar in patients OFF and ON therapy. Finally, γ-tACS (delivered alone) modulated SICI during stimulation and this effect did not depend on the dopaminergic condition of patients. In conclusion, boosting cortical γ oscillatory activity via tACS during iTBS improved M1 plasticity and enhanced GABA-A-ergic transmission in PD patients to the same extent regardless of dopaminergic state. These results suggest a lack of interaction between L-dopa and γ-tACS effects at the M1 level. The possible neural substrate underlying iTBS-γ tACS effects, that is, γ-resonant GABA-A-ergic interneurons activity, may explain our findings.


Assuntos
Córtex Motor , Doença de Parkinson , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Doença de Parkinson/terapia , Levodopa/farmacologia , Levodopa/uso terapêutico , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana/métodos , Potencial Evocado Motor/fisiologia , Dopamina , Ácido gama-Aminobutírico , Plasticidade Neuronal/fisiologia
17.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1711-1714, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086188

RESUMO

An important brain re-wiring, the so-called cross-modal plasticity, occurs during progression of retinal degenerative diseases to compensate for lack of visual input. The visual cortex does not go 'unused', instead it is devoted to processing other sensory modalities. In this study we recorded, in the visual cortex, visual- and auditory-evoked potentials in an anesthetized murine model of retinal degeneration. The latency to the first peak of the recorded local field potentials was used to assess the speed of the response. Visual responses occurred significantly faster in the control group. Conversely, auditory responses appeared significantly faster in animals with retinal degeneration. This suggests the compensatory neural rewiring is optimizing the performance of other sensory modalities, hearing in this case. This phenomenon may play an important role in visual neuro-rehabilitation. Whether or not it can promote or deter the interpretation of artificially encoded neural signals from a visual prosthesis remains to be studied.


Assuntos
Córtex Auditivo , Surdez , Degeneração Retiniana , Próteses Visuais , Estimulação Acústica , Animais , Córtex Auditivo/fisiologia , Mapeamento Encefálico , Camundongos , Plasticidade Neuronal/fisiologia , Estimulação Luminosa , Córtex Visual Primário , Ratos
18.
Ann N Y Acad Sci ; 1517(1): 176-190, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36114664

RESUMO

Although there is strong evidence for the positive effects of musical training on auditory perception, processing, and training-induced neuroplasticity, there is still little knowledge on the auditory and neurophysiological short-term plasticity through listening training. In a sample of 37 adolescents (20 musicians and 17 nonmusicians) that was compared to a control group matched for age, gender, and musical experience, we conducted a 2-week active listening training (AULOS: Active IndividUalized Listening OptimizationS). Using magnetoencephalography and psychoacoustic tests, the short-term plasticity of auditory evoked fields and auditory skills were examined in a pre-post design, adapted to the individual neuro-auditory profiles. We found bilateral, but more pronounced plastic changes in the right auditory cortex. Moreover, we observed synchronization of the auditory evoked P1, N1, and P2 responses and threefold larger amplitudes of the late P2 response, similar to the reported effects of musical long-term training. Auditory skills and thresholds benefited largely from the AULOS training. Remarkably, after training, the mean thresholds improved by 12 dB for bone conduction and by 3-4 dB for air conduction. Thus, our findings indicate a strong positive influence of active listening training on neural auditory processing and perception in adolescence, when the auditory system is still developing.


Assuntos
Córtex Auditivo , Música , Adolescente , Humanos , Recém-Nascido , Percepção Auditiva/fisiologia , Córtex Auditivo/fisiologia , Magnetoencefalografia , Plasticidade Neuronal/fisiologia , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica
19.
Brain Res Bull ; 188: 1-10, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35850188

RESUMO

The anterior nucleus of the paraventricular thalamus (aPVT) integrates various synaptic inputs and conveys information to the downstream brain regions for arousal and pain regulation. Recent studies have indicated that the PVT plays a crucial role in the regulation of chronic pain, but the plasticity mechanism of neuronal excitability and synaptic inputs for aPVT neurons in neuropathic pain remains unclear. Here, we report that spinal nerve ligation (SNL) significantly increased the neuronal excitability and reset the excitatory/inhibitory (E/I) synaptic inputs ratio of aPVT neurons in mice. SNL significantly increased the membrane input resistance, firing frequency, and the half-width of action potential. Additionally, SNL enlarged the area of afterdepolarization and prolonged the rebound low-threshold spike following a hyperpolarized current injection. Further results indicate that an inwardly rectifying current density was decreased in SNL animals. SNL also decreased the amplitude, but not the frequency of spontaneous excitatory postsynaptic currents (sEPSCs), nor the amplitude or frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) of aPVT neurons. Moreover, SNL disrupted the E/I synaptic ratio, caused a decrease in weighted tau and half-width of averaged sIPSCs, but did not change these physiological properties of averaged sEPSCs. Finally, pharmacological activation of the GABAA receptor at aPVT could effective relieve SNL-induced mechanical allodynia in mice. These results reveal the plasticity of intrinsic neuronal excitability and E/I synaptic balance in the aPVT neurons after nerve injury and it may play an important role in the development of pain sensitization.


Assuntos
Neuralgia , Nervos Espinhais , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Camundongos , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Tálamo
20.
Sci Rep ; 12(1): 10845, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773272

RESUMO

More than 10% of the population suffers from tinnitus, which is a phantom auditory condition that is coded within the brain. A new neuromodulation approach to treat tinnitus has emerged that combines sound with electrical stimulation of somatosensory pathways, supported by multiple animal studies demonstrating that bimodal stimulation can elicit extensive neural plasticity within the auditory brain. More recently, in a large-scale clinical trial, bimodal neuromodulation combining sound and tongue stimulation drove significant reductions in tinnitus symptom severity during the first 6 weeks of treatment, followed by diminishing improvements during the second 6 weeks of treatment. The primary objective of the large-scale randomized and double-blinded study presented in this paper was to determine if background wideband noise as used in the previous clinical trial was necessary for bimodal treatment efficacy. An additional objective was to determine if adjusting the parameter settings after 6 weeks of treatment could overcome treatment habituation effects observed in the previous study. The primary endpoint at 6-weeks involved within-arm and between-arm comparisons for two treatment arms with different bimodal neuromodulation settings based on two widely used and validated outcome instruments, Tinnitus Handicap Inventory and Tinnitus Functional Index. Both treatment arms exhibited a statistically significant reduction in tinnitus symptoms during the first 6-weeks, which was further reduced significantly during the second 6-weeks by changing the parameter settings (Cohen's d effect size for full treatment period per arm and outcome measure ranged from - 0.7 to - 1.4). There were no significant differences between arms, in which tongue stimulation combined with only pure tones and without background wideband noise was sufficient to reduce tinnitus symptoms. These therapeutic effects were sustained up to 12 months after the treatment ended. The study included two additional exploratory arms, including one arm that presented only sound stimuli during the first 6 weeks of treatment and bimodal stimulation in the second 6 weeks of treatment. This arm revealed the criticality of combining tongue stimulation with sound for treatment efficacy. Overall, there were no treatment-related serious adverse events and a high compliance rate (83.8%) with 70.3% of participants indicating benefit. The discovery that adjusting stimulation parameters overcomes previously observed treatment habituation can be used to drive greater therapeutic effects and opens up new opportunities for optimizing stimuli and enhancing clinical outcomes for tinnitus patients with bimodal neuromodulation.


Assuntos
Zumbido , Estimulação Acústica , Animais , Método Duplo-Cego , Humanos , Plasticidade Neuronal/fisiologia , Ruído , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA