Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Cell Rep ; 42(8): 112903, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37515772

RESUMO

The choroid plexus (CP) is a source of trophic factors for the developing and mature brain. Insulin is produced in epithelial cells of the CP (EChPs), and its secretion is stimulated by Htr2c-mediated signaling. We modulated insulin expression in EChPs with intracerebroventricular injections of AAV5. Insulin overexpression in CP decelerates food intake, whereas its knockdown has the opposite effect. Insulin overexpression also results in reduced anxious behavior. Transcriptomic changes in the hypothalamus, especially in synapse-related processes, are also seen in mice overexpressing insulin in CP. Last, activation of Gq signaling in CP leads to acute Akt phosphorylation in neurons of the arcuate nucleus, indicating a direct action of CP-derived insulin on the hypothalamus. Taken together, our findings signify that CP is a relevant source of insulin in the central nervous system and that CP-derived insulin should be taken into consideration in future work pertaining to insulin actions in the brain.


Assuntos
Plexo Corióideo , Insulina , Camundongos , Animais , Insulina/metabolismo , Plexo Corióideo/metabolismo , Encéfalo , Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo
2.
PLoS Genet ; 19(1): e1010558, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36626371

RESUMO

Copper (Cu) has a multifaceted role in brain development, function, and metabolism. Two homologous Cu transporters, Atp7a (Menkes disease protein) and Atp7b (Wilson disease protein), maintain Cu homeostasis in the tissue. Atp7a mediates Cu entry into the brain and activates Cu-dependent enzymes, whereas the role of Atp7b is less clear. We show that during postnatal development Atp7b is necessary for normal morphology and function of choroid plexus (ChPl). Inactivation of Atp7b causes reorganization of ChPl' cytoskeleton and cell-cell contacts, loss of Slc31a1 from the apical membrane, and a decrease in the length and number of microvilli and cilia. In ChPl lacking Atp7b, Atp7a is upregulated but remains intracellular, which limits Cu transport into the brain and results in significant Cu deficit, which is reversed only in older animals. Cu deficiency is associated with down-regulation of Atp7a in locus coeruleus and catecholamine imbalance, despite normal expression of dopamine-ß-hydroxylase. In addition, there are notable changes in the brain lipidome, which can be attributed to inhibition of diacylglyceride-to-phosphatidylethanolamine conversion. These results identify the new role for Atp7b in developing brain and identify metabolic changes that could be exacerbated by Cu chelation therapy.


Assuntos
Cobre , Síndrome dos Cabelos Torcidos , Camundongos , Animais , ATPases Transportadoras de Cobre , Cobre/metabolismo , Plexo Corióideo/metabolismo , Síndrome dos Cabelos Torcidos/metabolismo , Encéfalo/metabolismo
3.
Int J Mol Sci ; 22(16)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445563

RESUMO

Choroid plexus (CP) sequesters cadmium and other metals, protecting the brain from these neurotoxins. These metals can induce cellular stress and modulate homeostatic functions of CP, such as solute transport. We previously showed in primary cultured neonatal rat CP epithelial cells (CPECs) that cadmium induced cellular stress and stimulated choline uptake at the apical membrane, which interfaces with cerebrospinal fluid in situ. Here, in CPECs, we characterized the roles of glutathione (GSH) and Zinc supplementation in the adaptive stress response to cadmium. Cadmium increased GSH and decreased the reduced GSH-to-oxidized GSH (GSSG) ratio. Heat shock protein-70 (Hsp70), heme oxygenase (HO-1), and metallothionein (Mt-1) were induced along with the catalytic and modifier subunits of glutamate cysteine ligase (GCL), the rate-limiting enzyme in GSH synthesis. Inhibition of GCL by l-buthionine sulfoximine (BSO) enhanced stress protein induction and stimulation of choline uptake by cadmium. Zinc alone did not induce Hsp70, HO-1, or GCL subunits, or modulate choline uptake. Zinc supplementation during cadmium exposure attenuated stress protein induction and stimulation of choline uptake; this effect persisted despite inhibition of GSH synthesis. These data indicated up-regulation of GSH synthesis promotes adaptation to cadmium-induced cellular stress in CP, but Zinc may confer cytoprotection independent of GSH.


Assuntos
Cádmio/toxicidade , Colina/metabolismo , Plexo Corióideo/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Glutationa/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Zinco/administração & dosagem , Animais , Animais Recém-Nascidos , Plexo Corióideo/metabolismo , Plexo Corióideo/patologia , Suplementos Nutricionais , Epitélio/metabolismo , Epitélio/patologia , Ratos , Ratos Sprague-Dawley
4.
Commun Biol ; 4(1): 260, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637884

RESUMO

Neuroinflammation is a key component of virtually all neurodegenerative diseases, preceding neuronal loss and associating directly with cognitive impairment. Neuroinflammatory signals can originate and be amplified at barrier tissues such as brain vasculature, surrounding meninges and the choroid plexus. We designed a high content screening system to target inflammation in human brain-derived cells of the blood-brain barrier (pericytes and endothelial cells) to identify inflammatory modifiers. Screening an FDA-approved drug library we identify digoxin and lanatoside C, members of the cardiac glycoside family, as inflammatory-modulating drugs that work in blood-brain barrier cells. An ex vivo assay of leptomeningeal and choroid plexus explants confirm that these drugs maintain their function in 3D cultures of brain border tissues. These results suggest that cardiac glycosides may be useful in targeting inflammation at border regions of the brain and offer new options for drug discovery approaches for neuroinflammatory driven degeneration.


Assuntos
Anti-Inflamatórios/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Plexo Corióideo/efeitos dos fármacos , Digoxina/farmacologia , Células Endoteliais/efeitos dos fármacos , Inflamação/tratamento farmacológico , Lanatosídeos/farmacologia , Meninges/efeitos dos fármacos , Pericitos/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Células Cultivadas , Plexo Corióideo/metabolismo , Plexo Corióideo/patologia , Avaliação Pré-Clínica de Medicamentos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Ensaios de Triagem em Larga Escala , Humanos , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Meninges/metabolismo , Meninges/patologia , Pericitos/metabolismo , Pericitos/patologia , Técnicas de Cultura de Tecidos
5.
Mediators Inflamm ; 2018: 9150207, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30402044

RESUMO

The study was designed to examine whether the administration of neostigmine (0.5 mg/animal), a peripheral inhibitor of acetylcholinesterase (AChE), during an immune/inflammatory challenge provoked by intravenous injection of bacterial endotoxin-lipopolysaccharide (LPS; 400 ng/kg)-attenuates the synthesis of proinflammatory cytokines in the ovine preoptic area (POA), the hypothalamic structure playing an essential role in the control of the reproduction process, and in the choroid plexus (CP), a multifunctional organ sited at the interface between the blood and cerebrospinal fluid in the ewe. Neostigmine suppressed (p < 0.05) LPS-stimulated synthesis of cytokines such as interleukin- (IL-) 1ß, IL-6, and tumor necrosis factor (TNF) α in the POA, and this effect was similar to that induced by the treatment with systemic AChE inhibitor-donepezil (2.5 mg/animal). On the other hand, both AChE inhibitors did not influence the gene expression of these cytokines and their corresponding receptors in the CP. It was found that this structure seems to not express the neuronal acetylcholine (ACh) receptor subunit alpha-7, required for anti-inflammatory action of ACh. The mechanism of action involves inhibition of the proinflammatory cytokine synthesis on the periphery as well as inhibition of their de novo synthesis rather in brain microvessels and not in the CP. In conclusion, it is suggested that the AChE inhibitors incapable of reaching brain parenchyma might be used in the treatment of neuroinflammatory processes induced by peripheral inflammation.


Assuntos
Plexo Corióideo/metabolismo , Citocinas/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Neostigmina/uso terapêutico , Área Pré-Óptica/metabolismo , Animais , Inibidores da Colinesterase/uso terapêutico , Plexo Corióideo/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Feminino , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Interleucina-1beta/sangue , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Área Pré-Óptica/efeitos dos fármacos , Ovinos , Fator de Necrose Tumoral alfa/metabolismo
6.
J Chem Neuroanat ; 94: 1-7, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30118754

RESUMO

The eusocial Damaraland mole-rat (Fukomys damarensis) represents an extreme example of reproductive skew, in that reproduction is completely blocked in female subordinate group members. It is thought that in these animals normal GnRH secretion from the hypothalamus is disrupted. Prolactin, a peptide hormone secreted from the anterior pituitary gland, has been implicated in a wide variety of functions. Well documented in rodents is its role in mediating lactational infertility. Elevated circulating prolactin levels, such as during lactation, are associated with reduced GnRH release into the portal blood and with a reduction in the frequency and amplitude of LH pulses. The present study aimed at investigating whether such a mechanism could act in reproductively suppressed female Damaraland mole-rats. By means of in situ hybridisation we studied the distribution and gene expression of the prolactin receptor (Prlr) in wild-caught female Damaraland mole-rats with different reproductive status. Substantial Prlr expression was found in several brain regions, with highest levels in the choroid plexus and moderate expression in the preoptic and tuberal hypothalamus. While in reproductive and non-reproductive females plasma prolactin levels were very low and not significantly different, quantification of the Prlr hybridisation signal revealed significant differences in relation to reproductive status. Reproductively suppressed females had increased expression of Prlr in the choroid plexus and in the arcuate nucleus (ARC) when compared to reproductive females. This suggests higher local prolactin levels in the brain of suppressed females. Together with previous findings, it could indicate that prolactin inhibits ARC kisspeptin neurons, which then would lead to reduced activation of GnRH neurons in such females.


Assuntos
Plexo Corióideo/metabolismo , Hipotálamo/metabolismo , Prolactina/sangue , Receptores da Prolactina/metabolismo , Reprodução/fisiologia , Animais , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Ratos-Toupeira , Neurônios/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores da Prolactina/genética
7.
Chronobiol Int ; 35(2): 270-279, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29172740

RESUMO

The suprachiasmatic nucleus (SCN) of the hypothalamus is considered the master circadian oscillator in mammals. However, extra-SCN structures in the brain also display daily rhythms. Recently, we have demonstrated that the choroid plexus (CP) expresses core clock genes that are subjected to circadian regulation in a sex-dependent manner. By using CP explants cultured from female knock-in mice carrying the Period-luciferase transgene, we show that CP exhibits endogenous circadian rhythms of PERIOD2::LUCIFERASE expression. Furthermore, we demonstrate that estrogen declines following ovariectomy modulates the daily rhythm expression of Bmal1, Per1 and Per2 in female rat CP, corroborating data obtained in experiments where rat CP epithelial cell (CPEC) cultures were incubated with 17ß-estradiol (E2). The molecular mechanism underlying these effects was also investigated, and we provide evidence that the estrogen receptor (ER) mediates the response of clock genes to E2. In conclusion, our study proves that the CP harbors a circadian oscillator that is modulated by estrogens and demonstrates that E2 regulation occurs through an estrogen-receptor-dependent mechanism.


Assuntos
Plexo Corióideo/metabolismo , Ritmo Circadiano/fisiologia , Estrogênios/metabolismo , Proteínas Circadianas Period/metabolismo , Animais , Feminino , Hipotálamo/metabolismo , Luciferases/metabolismo , Camundongos Transgênicos , Neurônios/metabolismo , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiologia
8.
PLoS One ; 11(11): e0166416, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27893788

RESUMO

Prolactin (PRL) is well characterized for its roles in initiation and maintenance of lactation, and it also suppresses stress-induced responses. Feeding a high-fat diet (HFD) disrupts activity of the hypothalamic-pituitary-adrenal (HPA) axis. Whether PRL regulates HPA axis activation under HFD feeding is not clear. Male and female wildtype (WT) and PRL knockout (KO) mice were fed either a standard low-fat diet (LFD) or HFD for 12 weeks. Circulating corticosterone (CORT) levels were measured before, during, and after mice were subjected to an acute restraint stress or remained in their home cages as no stress controls. HFD feeding increased leptin levels, but the increase was lower in KO than in WT mice. All stressed female groups and only LFD-fed stressed males had elevated CORT levels compared to their no stress same-sex counterparts regardless of genotype. These results indicated that HFD consumption blunted the HPA axis response to acute stress in males but not females. Additionally, basal hypothalamic CRH content was lower in HFD than LFD males, but was similar among female groups. Furthermore, although basal CORT levels were similar among KO and WT groups, CORT levels were higher in KO mice than their WT counterparts during stress, suggesting that loss of PRL led to greater HPA axis activation. Basal PRL receptor mRNA levels in the choroid plexus were higher in HFD than LFD same-sex counterparts, suggesting activation of central PRL's action by HFD feeding in both males and females. Current results confirmed PRL's roles in suppression of the stress-induced HPA axis activation. Although HFD feeding activated central PRL's action in both sexes, only the male HPA axis was dampened by HFD feeding.


Assuntos
Dieta Hiperlipídica , Prolactina/genética , Estresse Fisiológico , Animais , Composição Corporal , Peso Corporal , Plexo Corióideo/metabolismo , Corticosterona/sangue , Dieta com Restrição de Gorduras , Ingestão de Energia , Feminino , Hipotálamo/metabolismo , Leptina/sangue , Masculino , Camundongos , Camundongos Knockout , Prolactina/deficiência , RNA Mensageiro/metabolismo , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo
9.
PLoS One ; 10(3): e0119493, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25774914

RESUMO

In the current study, we tested the in vivo effects of Yy1 gene dosage on the Peg3 imprinted domain with various breeding schemes utilizing two sets of mutant alleles. The results indicated that a half dosage of Yy1 coincides with the up-regulation of Peg3 and Zim1, suggesting a repressor role of Yy1 in this imprinted domain. This repressor role of Yy1 is consistent with the observations derived from previous in vitro studies. The current study also provided an unexpected observation that the maternal allele of Peg3 is also normally expressed, and thus the expression of Peg3 is bi-allelic in the specific areas of the brain, including the choroid plexus, the PVN (Paraventricular Nucleus) and the SON (Supraoptic Nucleus) of the hypothalamus. The exact roles of the maternal allele of Peg3 in these cell types are currently unknown, but this new finding confirms the previous prediction that the maternal allele may be functional in specific cell types based on the lethality associated with the homozygotes for several mutant alleles of the Peg3 locus. Overall, these results confirm the repressor role of Yy1 in the Peg3 domain and also provide a new insight regarding the bi-allelic expression of Peg3 in mouse brain.


Assuntos
Encéfalo/metabolismo , Proteínas de Transporte/genética , Dosagem de Genes , Fatores de Transcrição Kruppel-Like/genética , Proteínas do Tecido Nervoso/genética , Fator de Transcrição YY1/genética , Alelos , Animais , Plexo Corióideo/metabolismo , Proteínas de Ligação a DNA , Impressão Genômica , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Mutação , Especificidade de Órgãos , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Supraóptico/metabolismo , Regulação para Cima
10.
Amino Acids ; 47(5): 1053-63, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25691144

RESUMO

TFF3 is a member of the trefoil factor family (TFF) predominantly secreted by mucous epithelia. Minute amounts are also expressed in the immune system and the brain. In the latter, particularly the hypothalamo-pituitary axis has been investigated in detail in the past. Functionally, cerebral TFF3 has been reported to be involved in several processes such as fear, depression, learning and object recognition, and opiate addiction. Furthermore, TFF3 has been linked with neurodegenerative and neuropsychiatric disorders (e.g., Alzheimer's disease, schizophrenia, and alcoholism). Here, using immunohistochemistry, a systematic survey of the TFF3 localization in the adult human brain is presented focusing on extrahypothalamic brain areas. In addition, the distribution of TFF3 in the developing human brain is described. Taken together, neurons were identified as the predominant cell type to express TFF3, but to different extent; TFF3 was particularly enriched in various midbrain and brain stem nuclei. Besides, TFF3 immunostaining staining was observed in oligodendroglia and the choroid plexus epithelium. The wide cerebral distribution should help to explain its multiple effects in the CNS.


Assuntos
Plexo Corióideo/metabolismo , Mesencéfalo/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , Peptídeos/genética , Aborto Espontâneo , Adulto , Tonsila do Cerebelo/química , Tonsila do Cerebelo/metabolismo , Mapeamento Encefálico , Cerebelo/química , Cerebelo/metabolismo , Córtex Cerebral/química , Córtex Cerebral/metabolismo , Plexo Corióideo/química , Feminino , Feto , Expressão Gênica , Hipocampo/química , Hipocampo/metabolismo , Humanos , Hipotálamo/química , Hipotálamo/metabolismo , Imuno-Histoquímica , Masculino , Mesencéfalo/química , Pessoa de Meia-Idade , Neurônios/química , Oligodendroglia/química , Especificidade de Órgãos , Peptídeos/metabolismo , Hipófise/química , Hipófise/metabolismo , Neuro-Hipófise/química , Neuro-Hipófise/metabolismo , Fator Trefoil-3 , Substância Branca/química , Substância Branca/metabolismo
11.
FASEB J ; 28(8): 3579-88, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24760755

RESUMO

Selenoprotein P (Sepp1) and its receptor, apolipoprotein E receptor 2 (apoER2), account for brain retaining selenium better than other tissues. The primary sources of Sepp1 in plasma and brain are hepatocytes and astrocytes, respectively. ApoER2 is expressed in varying amounts by tissues; within the brain it is expressed primarily by neurons. Knockout of Sepp1 or apoER2 lowers brain selenium from ∼120 to ∼50 ng/g and leads to severe neurodegeneration and death in mild selenium deficiency. Interactions of Sepp1 and apoER2 that protect against this injury have not been characterized. We studied Sepp1, apoER2, and brain selenium in knockout mice. Immunocytochemistry showed that apoER2 mediates Sepp1 uptake at the blood-brain barrier. When Sepp1(-/-) or apoER2(-/-) mice developed severe neurodegeneration caused by mild selenium deficiency, brain selenium was ∼35 ng/g. In extreme selenium deficiency, however, brain selenium of ∼12 ng/g was tolerated when both Sepp1 and apoER2 were intact in the brain. These findings indicate that tandem Sepp1-apoER2 interactions supply selenium for maintenance of brain neurons. One interaction is at the blood-brain barrier, and the other is within the brain. We postulate that Sepp1 inside the blood-brain barrier is taken up by neurons via apoER2, concentrating brain selenium in them.


Assuntos
Barreira Hematoencefálica/fisiologia , Encéfalo/metabolismo , Proteínas Relacionadas a Receptor de LDL/fisiologia , Degeneração Neural/prevenção & controle , Selênio/metabolismo , Selenoproteína P/fisiologia , Animais , Animais Congênicos , Transporte Biológico , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Capilares/metabolismo , Plexo Corióideo/embriologia , Plexo Corióideo/crescimento & desenvolvimento , Plexo Corióideo/metabolismo , Endocitose , Células Endoteliais/metabolismo , Feminino , Proteínas Relacionadas a Receptor de LDL/deficiência , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Neural/etiologia , Degeneração Neural/metabolismo , Neurônios/metabolismo , Gravidez , Selênio/administração & dosagem , Selênio/deficiência , Selênio/farmacocinética , Selenoproteína P/deficiência
12.
Brain Res ; 1557: 12-25, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24530433

RESUMO

PAT4, the fourth member of the SLC36/proton dependent amino acid transporter (PAT) family, is a high-affinity, low capacity electroneutral transporter of neutral amino acids like proline and tryptophan. It has also been associated with the function of mTORC1, a complex in the mammalian target of rapamycin (mTOR) pathway. We performed in situ hybridization and immunohistological analysis to determine the expression profile of PAT4, as well as an RT-PCR study on tissue from mice exposed to leucine. We performed a phylogenetic analysis to determine the evolutionary origin of PAT4. The in situ hybridization and the immunohistochemistry on mouse brain sections and hypothalamic cells showed abundant PAT4 expression in the mouse brain intracellularly in both inhibitory and excitatory neurons, partially co-localizing with lysosomal markers and epithelial cells lining the ventricles. Its location in epithelial cells around the ventricles indicates a transport of substrates across the blood brain barrier. Phylogenetic analysis showed that PAT4 belongs to an evolutionary old family most likely predating animals, and PAT4 is the oldest member of that family.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Encéfalo/metabolismo , Plexo Corióideo/metabolismo , Células Epiteliais/metabolismo , Neurônios/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Animais , Western Blotting , Encéfalo/irrigação sanguínea , Membrana Celular/metabolismo , Expressão Gênica , Hipocampo/irrigação sanguínea , Hipocampo/metabolismo , Hipotálamo/irrigação sanguínea , Hipotálamo/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Leucina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
13.
Artigo em Chinês | MEDLINE | ID: mdl-25579025

RESUMO

OBJECTIVE: To investigate the effects of lead exposure on the copper concentration in the brain and serum and the expression of copper transporters in the choroid plexus among rats. METHODS: Sixty specific pathogen-free Sprague-Dawley rats were randomly divided into a control group and three lead-exposed groups, with 8 mice in each group. The lead-exposed groups were orally administrated with 500 (low-dose group)), 1 000 (middle-dose group), and 2 000 mg/L (high-dose group) lead acetate in drinking water for eight weeks. And the rats in control group were given 2 000 mg/L sodium acetate in drinking water. The content of lead and copper in the serum, hippocampus, cortex, choroid plexus, bones, and cerebrospinal fluid (CSF) was determined by inductively coupled plasma-mass spectrometry (ICP-MS). Confocal and real-time PCR methods were applied to measure the expression of copper transporters including copper transporter 1 (Ctr1), antioxidant protein 1 (ATX1), and Cu ATPase (ATP7A). RESULTS: Compared with the control group, the lead-exposed groups showed significantly higher lead concentrations in the serum, cortex, hippocampus, choroid plexus, CSF, and bones (P < 0.05) and significantly higher copper concentrations in the CSF, choroid plexus, serum, and hippocampus (P < 0.05). Confocal images showed that Ctr1 protein was expressed in the cytoplasm and cell membrane of choroid plexus in control group. However, Ctr1 migrated to CSF surface microvilli after lead exposure. Ctr1 fluorescence intensity gradually increased with increasing dose of lead, except that the middle-dose group had a higher Ctr1 fluorescence intensity than the high-dose group. In addition, the middle- and high-dose groups showed a lower ATX1 fluorescence intensity compared with the control group. Real-time PCR data indicated that the three lead-exposed groups showed significantly higher mRNA levels of Ctr1 and ATP7A compared with the control group (P < 0.05). CONCLUSION: Copper homeostasis in the choroid plexus is affected by lead exposure to induce copper homeostasis disorders in brain tissue, which may be one of the mechanisms of lead neurotoxicity.


Assuntos
Proteínas de Transporte de Cátions/efeitos dos fármacos , Plexo Corióideo/efeitos dos fármacos , Cobre/metabolismo , Compostos Organometálicos/toxicidade , Adenosina Trifosfatases , Animais , Encéfalo , Plexo Corióideo/metabolismo , Transportador de Cobre 1 , Homeostase , RNA Mensageiro , Ratos , Ratos Sprague-Dawley
14.
Neurobiol Aging ; 34(11): 2613-22, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23796662

RESUMO

Anti-amyloid beta (Aß) immunotherapy provides potential benefits in Alzheimer's disease patients. Nevertheless, strategies based on Aß1-42 peptide induced encephalomyelitis and possible microhemorrhages. These outcomes were not expected from studies performed in rodents. It is critical to determine if other animal models better predict side effects of immunotherapies. Mouse lemur primates can develop amyloidosis with aging. Here we used old lemurs to study immunotherapy based on Aß1-42 or Aß-derivative (K6Aß1-30). We followed anti-Aß40 immunoglobulin G and M responses and Aß levels in plasma. In vivo magnetic resonance imaging and histology were used to evaluate amyloidosis, neuroinflammation, vasogenic edema, microhemorrhages, and brain iron deposits. The animals responded mainly to the Aß1-42 immunogen. This treatment induced immune response and increased Aß levels in plasma and also microhemorrhages and iron deposits in the choroid plexus. A complementary study of untreated lemurs showed iron accumulation in the choroid plexus with normal aging. Worsening of iron accumulation is thus a potential side effect of Aß-immunization at prodromal stages of Alzheimer's disease, and should be monitored in clinical trials.


Assuntos
Hemorragia Cerebral/induzido quimicamente , Hemorragia Cerebral/patologia , Plexo Corióideo/metabolismo , Imunização/efeitos adversos , Ferro/metabolismo , Adjuvantes Imunológicos/administração & dosagem , Fatores Etários , Peptídeos beta-Amiloides/sangue , Peptídeos beta-Amiloides/toxicidade , Animais , Hemorragia Cerebral/imunologia , Cheirogaleidae , Plexo Corióideo/efeitos dos fármacos , Modelos Animais de Doenças , Processamento de Imagem Assistida por Computador , Imunoglobulinas/sangue , Imageamento por Ressonância Magnética , Fragmentos de Peptídeos/efeitos adversos , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/toxicidade , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Polissacarídeos Bacterianos/imunologia , Estatística como Assunto , Fatores de Tempo
15.
J Med Food ; 16(6): 504-10, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23735000

RESUMO

Aquaporin-1 (AQP1) is a water channel that is highly expressed on the apical side of the choroid plexus epithelium (CP) and thought to be one of the major pathways for the high water permeability of this structure. Blockade of AQP1 in the CP reduce the production of cerebrospinal fluid (CSF). Downregulation of AQP1 might be protective against some neurological disorders correlated with increased intracranial pressure and/or poor drainage of CSF. Curcumin, the major constituent of the rhizome of Curcuma longa, has been shown to inhibit potassium channels, Na⁺-K⁺ ATPase, as well as AQP3 in some cells. We therefore speculated that curcumin might be a useful tool to inhibit and/or decrease AQP1, and thus might be useful in the regulation of CSF production in pathophysiological conditions, including traumatic brain injury, hydrocephalus, stroke, systemic hyponatremia, acute cerebral edema, and hypertension. Choroidal epithelial cells of the lateral ventricle of Wistar rats were isolated and grown in in-vitro cultures for 24 h. Curcumin was then added to the medium at different concentrations, and the cell viability tested by the (3,4,5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide assay. Additional wells of cells were tested for AQP1 protein expression using immunocytochemistry, immunoblotting, and flow cytometry. Our results showed that curcumin treatment decreases AQP1 expression in rat choroid epithelium cells in a dose-dependent manner. We conclude that curcumin may be a useful tool to regulate CSF production in pathophysiological conditions such as hydrocephalus, systemic hyponatremia, hypertension, and other neurological conditions.


Assuntos
Aquaporina 1/genética , Plexo Corióideo/citologia , Curcumina/farmacologia , Regulação para Baixo/efeitos dos fármacos , Animais , Aquaporina 1/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Plexo Corióideo/efeitos dos fármacos , Plexo Corióideo/metabolismo , Feminino , Masculino , Ratos , Ratos Wistar
16.
Histol Histopathol ; 28(7): 925-32, 2013 07.
Artigo em Inglês | MEDLINE | ID: mdl-23354845

RESUMO

The p73 proteins are present in different kinds of cells of the central nervous system, such as the choroid plexus, circumventricular structures and neuroepithelium. It has been reported that spontaneously hypertensive rats show ventricular dilation, changes in cerebrospinal fluid proteins and variations in the circumventricular structures such as the organum vasculosum of the lamina terminalis and the choroid plexus, which are altered in ventricular dilation. The aim of the present work is to study p73 expression in the organum vasculosum of the lamina terminalis and the choroid plexus and its variations in high blood pressure. Brains from control Wistar-Kyoto rats and spontaneously hypertensive rats were used. The organum vasculosum of the lamina terminalis and the choroid plexus were processed by immunohistochemistry and western blot with anti-TAp73. We found weaker markings in the organum vasculosum of the lamina terminalis and stronger markings in the choroid plexus of the hypertensive than the control rats. Therefore, hypertension in the spontaneously hypertensive rats produces alterations in choroid plexus protein p73 expression that is similar to that described for other circumventricular organs, but it is different in the organum vasculosum of the lamina terminalis. We can conclude that the functional balance between p73, organum vasculosum of the lamina terminalis and choroid plexus, which is probably necessary to maintain the normal functioning of these structures, is altered by the hypertension found in these rats.


Assuntos
Plexo Corióideo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Hipotálamo/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Perfilação da Expressão Gênica , Hipertensão/metabolismo , Immunoblotting , Imuno-Histoquímica , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Proteína Tumoral p73
17.
Am J Physiol Regul Integr Comp Physiol ; 299(1): R222-33, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20427723

RESUMO

We evaluated the effects of intracerebroventricular (icv) infusion of Na(+)-rich artificial cerebrospinal fluid (aCSF), with or without the mineralocorticoid receptor (MR) blocker spironolactone, on epithelial Na(+) channel (ENaC) subunits and regulators, such as MR, serum/glucocorticoid-inducible kinase 1, neural precursor cells expressed developmentally downregulated 4-like gene, 11beta-hydroxylase, and aldosterone synthase, in brain regions of Wistar rats. The effects of icv infusion of the amiloride analog benzamil on brain tissue and CSF Na(+) concentration ([Na(+)]) were also assessed. In the choroid plexus and ependyma of the anteroventral third ventricle, ENaC subunits are present in apical and basal membranes. Na(+)-rich aCSF increased beta-ENaC mRNA and immunoreactivity in the choroid plexus and increased alpha- and beta-ENaC immunoreactivities in the ependyma. Na(+)-rich aCSF increased alpha- and beta-ENaC-gold-labeled particles in the microvilli of the choroid plexus and in basolateral membranes of the ependyma. Spironolactone only prevented the increase in beta-ENaC immunoreactivity in the choroid plexus and ependyma. In the supraoptic nucleus, paraventricular nucleus, and subfornical organ, Na(+)-rich aCSF did not affect mRNA expression levels of the studied genes. Benzamil significantly increased CSF [Na(+)] in the control, but not Na(+)-rich, aCSF group. In contrast, benzamil prevented the increase in hypothalamic tissue [Na(+)] by Na(+)-rich aCSF. These results suggest that CSF Na(+) upregulates ENaC expression in the brain epithelia, but not in the neurons of hypothalamic nuclei. ENaC in the choroid plexus and ependyma appear to contribute to regulation of Na(+) homeostasis in the brain.


Assuntos
Encéfalo/metabolismo , Canais Epiteliais de Sódio/metabolismo , Sódio , Amilorida/análogos & derivados , Animais , Transporte Biológico/efeitos dos fármacos , Plexo Corióideo/metabolismo , Citocromo P-450 CYP11B2/metabolismo , Canais Epiteliais de Sódio/genética , Epitélio/metabolismo , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Hipotálamo/metabolismo , Masculino , Núcleo Hipotalâmico Paraventricular/metabolismo , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar , Receptores de Mineralocorticoides , Sódio/líquido cefalorraquidiano , Sódio/metabolismo , Sódio/farmacologia , Sódio na Dieta/farmacologia , Espironolactona/metabolismo , Espironolactona/farmacologia
18.
Neuroendocrinology ; 84(5): 339-45, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17164538

RESUMO

The choroid plexus (CP) epithelium is one of the extrahypothalamic sources of arginine vasopressin (AVP). However, it is unclear whether the regulation of choroidal AVP synthesis in response to pathophysiological stimuli, such as hyperosmotic stress, is similar to that observed in the hypothalamus. In the present study, rats chronically implanted with cisterna magna cannulas, enabling the collection of cerebrospinal fluid (CSF) in freely moving animals, were subjected to salt loading. CSF osmolality increased from the baseline normonatremic levels ranging between 292 +/- 0.5 and 295 +/- 2 to 309 +/- 4 mosm/kg H(2)O at 2 days of hypernatremia. This elevated CSF osmolality was maintained at a relatively stable level until the end of a 10-day observation period. Changes in choroidal and hypothalamic AVP expression in response to hyperosmotic stress were assessed by semiquantitative reverse-transcriptase polymerase chain reaction. An increase in hypothalamic AVP expression was accompanied by augmented AVP synthesis in the CP. Compared to normonatremia, choroidal levels of AVP mRNA increased 5- and 10-fold at 2 and 5 days of salt loading, respectively. Salt loading also resulted in increased hypothalamic expression of the alpha-II, beta(1), and beta(2) subunits of voltage-gated Na(+) channels. Similarly, the choroidal mRNA levels for the alpha-II and beta(1) subunits increased approximately 2-fold after 5 days of salt loading; however, no changes in the beta(2) subunit expression were found in the CPs of hypernatremic rats. These experiments support the hypothesis that the regulation of choroidal AVP synthesis is similar to that observed in the hypothalamus. It is also suggested that the increased expression of voltage-gated Na(+) channels found in the hypothalamus and CP after salt loading may play a role in the adaptation of AVP-producing cells to chronic hypernatremia.


Assuntos
Arginina Vasopressina/genética , Plexo Corióideo/metabolismo , Hipernatremia/genética , Canais de Sódio/genética , Animais , Arginina Vasopressina/biossíntese , Regulação da Expressão Gênica , Hipernatremia/metabolismo , Hipotálamo/metabolismo , Ativação do Canal Iônico , Masculino , Subunidades Proteicas/biossíntese , Subunidades Proteicas/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Canais de Sódio/biossíntese , Fatores de Tempo
19.
Neurobiol Dis ; 24(1): 89-100, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16887359

RESUMO

Heme oxygenase-1 (HO-1) mRNA and protein levels are diminished in Alzheimer disease (AD) blood, cerebrospinal fluid (CSF) and choroid plexus. Herein, the presence of a heme oxygenase-1 suppressor (HOS) factor was ascertained by astroglial bioassay, biochemical techniques and immunofluorescence confocal microscopy. We report significantly augmented plasma HOS activity in AD patients relative to healthy elderly and neurological controls. The HOS factor was determined to be a 50-100 kDa heat-labile, heparin-binding glycoprotein that is unrelated to antioxidant ingestion, plasma total antioxidant capacity, circulating cortisol levels or apolipoprotein E epsilon4 carrier status. HOS bioactivity was recapitulated by exogenous alpha(1)-antitrypsin. alpha(1)-antitrypsin levels were significantly increased in AD plasma and correlated with HOS activity and MMSE scores. alpha(1)-antitrypsin immunodepletion attenuated HOS activity of AD plasma. In AD brain, alpha(1)-antitrypsin immunoreactivity was augmented and co-distributed with HO-1. HOS activity of alpha(1)-antitrypsin may curtail HO-1-dependent derangement of cerebral iron homeostasis and account for diminished HO-1 expression in AD peripheral tissues.


Assuntos
Doença de Alzheimer/sangue , Doença de Alzheimer/genética , Heme Oxigenase-1/genética , Heme Oxigenase-1/fisiologia , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/fisiologia , Idoso , Animais , Antioxidantes/metabolismo , Northern Blotting , Encéfalo/patologia , Plexo Corióideo/metabolismo , Cromatografia de Afinidade , Transtornos Cognitivos/sangue , Transtornos Cognitivos/genética , Transtornos Cognitivos/metabolismo , DNA Complementar/biossíntese , DNA Complementar/genética , Imunofluorescência , Genes Supressores , Humanos , Hidrocortisona/sangue , Microscopia Confocal , Pessoa de Meia-Idade , Testes Neuropsicológicos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley
20.
J Pharmacol Exp Ther ; 314(2): 855-61, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15894718

RESUMO

The purpose of this study was to investigate the carrier-mediated elimination of cephalosporins from the cerebrospinal fluid (CSF) via the choroid plexus. Cefaclor and cefalexin are structural analogs with similar lipophilicity, differing by only one functional group (cefaclor, -Cl; cephalexin, -CH(3)), and they are substrates of rat peptide transporter PEPT2 with similar transport activities. However, cefaclor was cleared from the CSF more rapidly than cefalexin after intracerebroventricular administration (the elimination rate constants were 0.11 and 0.050 min(-1), respectively). The elimination of cefaclor from the CSF was inhibited by benzylpenicillin, but not by glycylsarcosine (GlySar), whereas GlySar, but not benzylpenicillin, had an inhibitory effect on the elimination of cefalexin from the CSF. The uptake of cefaclor by the freshly isolated rat choroid plexus was saturable, with a K(m) value of 250 muM, and the uptake clearance corresponding to saturable components accounts for the major part of the in vivo clearance from the CSF (17 versus 26 mul/min, respectively). The uptake of cefaclor by the choroid plexus was inhibited by benzylpenicillin, but not by GlySar. However, the inhibitory effect of benzylpenicillin was weaker than expected from its own K(m) value, and furthermore, organic anion transporter (Oat)3 substrates (cimetidine or p-aminohippurate) had no effect. These results suggest that cefaclor and cefalexin are eliminated from the CSF by different transporters, and rapid elimination of cefaclor from the CSF is accounted for by a benzylpenicillin-sensitive mechanism distinct from Oat3. A slight modification of a single chemical group of cephalosporins can greatly affect the contribution of the transporters involved, and their duration in the CSF.


Assuntos
Cefaclor/líquido cefalorraquidiano , Cefalosporinas/líquido cefalorraquidiano , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Penicilina G/farmacologia , Penicilinas/farmacologia , Animais , Cefaclor/farmacocinética , Cefalexina/líquido cefalorraquidiano , Cefalexina/farmacocinética , Cefalosporinas/farmacocinética , Plexo Corióideo/efeitos dos fármacos , Plexo Corióideo/metabolismo , Cromatografia Líquida de Alta Pressão , DNA Complementar/genética , Depressão Química , Dipeptídeos/farmacologia , Injeções Intraventriculares , Células LLC-PK1 , Masculino , Ratos , Ratos Sprague-Dawley , Análise Espectral , Suínos , Simportadores/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA