Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 385
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Intervalo de ano de publicação
1.
Talanta ; 270: 125607, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38169274

RESUMO

The 239Pu, 238U, and 241Am concentrations and 239Pu/240Pu, 235U/238U, and 236U/238U atom ratios were measured in the hair and nail samples using a new method utilized TEVA, UTEVA, and DGA extraction chromatography and multi-collector ICP-MS. Samples were collected from individuals who donated their bodies to the United States Transuranium and Uranium Registries. The concentration of 239Pu ranged from 0.22 to 15.8 ng/kg. The 240Pu/239Pu isotopic ratios ranged from 0.026 to 0.127 which is consistent with weapons-grade plutonium. Concentration of uranium fell between 1.84 µg/kg and 29.5 µg/kg and 235U/238U ratios ranged from 4.8 × 10-3 to 7.6 × 10-3. Elevated 236U/238U atom ratios were measured in two cases and ranged from 5.0 × 10-6 - 2.4 × 10-5 indicating exposure to spent or reprocessed uranium material. The concentration of 241Am was measured in four hair samples and ranged from 0.02 to 0.21 ng/kg.


Assuntos
Plutônio , Urânio , Humanos , Plutônio/análise , Plutônio/química , Urânio/análise , Espectrometria de Massas/métodos , Amerício/análise , Unhas/química , Cabelo/química
2.
Chemosphere ; 350: 141049, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182083

RESUMO

From the available thermodynamic data in the literature, a review of the impact of the formation of complexes between triscarbonatoactinyl(VI) and alkaline earth(II) (Ae) is estimated under varying conditions. First, after analyzing the literature data and using the ascertained thermodynamic data available from the commissioned reviews from the Nuclear Energy Agency (Organization for the Economic Cooperation and Development) Thermochemical DataBank Project on actinides (An) U, Np, and Pu, and from recently determined AenUO2(CO3)3(4-2n)- thermodynamic functions, the formation of AenAnO2(CO3)3(4-2n)- complexes for Pu(VI) and Np(VI) are estimated using linear free energy relationships (LFERs). The data are in good agreement with the sole determination of AePuO2(CO3)32- from Jo et al. (Dalton Trans. 49, 11605), which gives a relative confidence in the LFERs, and allows the application to actual situations. From existing uranium data, first, the impact of the origin of the data on the calculated predominance is addressed under 0.1 M NaCl and atmospheric CO2(g); second, the influence of ionic strength and salinity on predominance is estimated; and finally, the influence of temperature up to 50 °C on the solubility of uraninite in a deep geological radioactive waste storage or disposal site is calculated. For neptunium and plutonium, the impact of the potential log10ß°(AenAnO2(CO3)3(4-2n)-) on Pourbaix diagrams of Pu and Np in Mg-Ca-CO3 media are estimated from Jo et al. (Dalton Trans. 49, 11605) and LFERs. Finally, the application to the speciation of Pu and Np in seawater is proposed.


Assuntos
Netúnio , Plutônio , Urânio , Urânio/química , Plutônio/química , Água do Mar
3.
Radiat Res ; 200(6): 577-586, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37956868

RESUMO

This work describes an analysis, using a previously established chelation model, of the bioassay data collected from a worker who received delayed chelation therapy following a plutonium-238 inhalation. The details of the case have already been described in two publications. The individual was treated with Ca-DTPA via multiple intravenous injections and then nebulizations beginning several months after the intake and continuing for four years. The exact date and circumstances of the intake are unknown. However, interviews with the worker suggested that the intake occurred via inhalation of a soluble plutonium compound. The worker provided daily urine and fecal bioassay samples throughout the chelation treatment protocol, including samples collected before, during, and after the administration of Ca-DTPA. Unlike the previous two publications presenting this case, the current analysis explicitly models the combined biokinetics of the plutonium-DTPA chelate. Using the previously established chelation model, it was possible to fit the data through optimizing only the intake (day and magnitude), solubility, and absorbed fraction of nebulized Ca-DTPA. This work supports the hypothesis that the efficacy of the delayed chelation treatment observed in this case results mainly from chelation of cell-internalized plutonium by Ca-DTPA (intracellular chelation). It also demonstrates the validity of the previously established chelation model. As the bioassay data were modified to ensure data anonymization, the calculation of the "true" committed effective dose was not possible. However, the treatment-induced dose inhibition (in percentage) was calculated.


Assuntos
Plutônio , Lesões por Radiação , Humanos , Plutônio/urina , Lesões por Radiação/tratamento farmacológico , Lesões por Radiação/etiologia , Quelantes/uso terapêutico , Quelantes/farmacologia , Ácido Pentético
4.
Radiat Prot Dosimetry ; 199(18): 2275-2278, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37934982

RESUMO

Since the discovery of the first reactor zone (RZ) at the Oklo uranium deposit in 1972, many isotopic studies have been performed to understand the mechanism of the operation as fission reactors and to trace the migration behaviors of fissiogenic isotopes produced in the Oklo RZs. As the representative parameters to characterize the operating conditions of RZs, neutron fluence generated in RZ, duration of RZ operation, restitution factor of 235U from α decay of 239Pu produced by neutron capture of 238U and the proportion of fission events due to 235U, 238U and 239Pu are compiled and compared with individual RZs. In particular, one of the Oklo RZs, RZ 13, shows several specific features in the view point of isotopic and nuclear characteristics. By comparison of the data between RZ13 and other RZs, fission contribution of 238U for RZ13 is found to be significantly higher than those of other RZs.


Assuntos
Plutônio , Urânio , Urânio/análise , Nêutrons Rápidos
5.
Radiat Prot Dosimetry ; 199(18): 2279-2287, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37935001

RESUMO

The first man-made nuclear reactor was developed by Fermi and collaborators at the University of Chicago and reached criticality in December 1942. This was the confirmation that men were able to use sustained fission reactions in order to produce energy. Following this success, nuclear reactors studies gave rise to several families of reactors corresponding to different orientations and technical choices. They are linked mainly to the choice of fuel (natural uranium, enriched uranium, plutonium, thorium), coolant (water, carbon dioxide, helium, sodium, ...) and moderator for slow neutron reactors (graphite, light water, heavy water). Out of all these choices, the pressurized water reactor (PWR) family is the closest to the Oklo natural reactors. Many intriguing similarities are observed and discussed in the present article. Our present-day understanding of the PWR operating conditions has been a great help for understanding the Oklo reactors.


Assuntos
Plutônio , Urânio , Humanos , Urânio/análise , Reatores Nucleares , Plutônio/análise , Tório/análise , Água
6.
Health Phys ; 125(4): 289-304, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37548561

RESUMO

ABSTRACT: Following a nuclear fission event, there likely would be a large number of contaminated persons who would seek assistance at community reception centers to be established outside the affected area. This paper provides a methodology for calculating inhalation doses to public health and other response personnel at such facilities who would be receiving and assisting potentially contaminated persons from whom particles can be resuspended. Three hypothetical facilities were considered: the Base Case is a rather small room with no forced air ventilation. The Preferred Case, which is more realistic, is a mid-sized room with an operating HVAC system with air being recirculated through a filter. The Gymnasium Case has only fresh air intake. Initial bounding calculations for the Base Case indicated the need for pre-screening of arrivals to avoid unacceptable doses to staff. The screening criterion selected was 1.67 × 10 6 Bq m -2 . Calculations are presented for radionuclide concentrations in air, dose to staff from inhalation, and how exposures and the resulting doses can be altered by air-turnover rates and the use of filters with varying efficiency. Doses are presented for various arrival times and for both plutonium- and uranium-fueled detonations. The highest calculated dose via inhalation with no respiratory protection was 0.23 mSv for the Base Case. The more important radionuclides contributing to dose with exposure starting at day D + 1 were 239 Np and 133 I. At day D + 30, 131 I and 140 Ba were the more important dosimetrically. The variable creating the highest uncertainty was the slough-off factor for resuspension of contamination from people arriving at the reception center.


Assuntos
Poluentes Radioativos do Ar , Plutônio , Urânio , Humanos , Poluentes Radioativos do Ar/análise , Software , Pessoal de Saúde
7.
Chem Biol Interact ; 378: 110488, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37054935

RESUMO

Internal exposure to plutonium can occur through inhalation for the nuclear worker, but also for the public if the radionuclide was released into the atmosphere in the context of a nuclear accident or terrorist attack. DieThylenetriaminePentaAcetic acid (DTPA) is currently still the only authorized chelator that can be used to decorporate internalized plutonium. The Linear HydrOxyPyridinOne-based ligand named 3,4,3-Li(1,2-HOPO) remains the most promising drug candidate to replace it in the hopes of improving chelating treatment. This study aimed to assess the efficacy of 3,4,3-Li(1,2-HOPO) in removing plutonium from rats exposed to the lungs, depending on the timing and route of treatment, and almost always compared to DTPA at a ten-fold higher dose used as a reference chelator. First, early intravenous injection or inhalation of 3,4,3-Li(1,2-HOPO) demonstrated superior efficacy over DTPA in preventing plutonium accumulation in liver and bone in rats exposed by injection or lung intubation. However, this superiority of 3,4,3-Li(1,2-HOPO) was much less pronounced with delayed treatment. In rats given plutonium in the lungs, the experiments also showed that 3,4,3-Li-HOPO reduced pulmonary retention of plutonium more effectively than DTPA only when the chelators were injected early but not at delayed times, while it was always the better of the two chelators when they were inhaled. Under our experimental conditions, the rapid oral administration of 3,4,3-Li(1,2-HOPO) was successful in preventing systemic accumulation of plutonium, but not in decreasing lung retention. Thus, after exposure to plutonium by inhalation, the best emergency treatment would be the rapid inhalation of a 3,4,3-Li(1,2-HOPO) aerosol to limit pulmonary retention of plutonium and prevent extrapulmonary deposition of plutonium in target systemic tissues.


Assuntos
Plutônio , Ratos , Animais , Plutônio/análise , Plutônio/farmacologia , Terapia por Quelação , Quelantes/farmacologia , Quelantes/uso terapêutico , Ácido Pentético/farmacologia , Ácido Pentético/uso terapêutico , Pulmão , Lítio/farmacologia
8.
Talanta ; 252: 123848, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36037768

RESUMO

Every accident affecting industrial or nuclear facilities emits micrometric fragments of material into the environment whose elemental and isotopic compositions are characteristic of the process or event. Particle analysis, mainly implemented in the framework of the Non Proliferation Treaty to detect clandestine nuclear activities, provides a powerful tool to identify the origin of the nuclear particulate matter and to assess the environmental impact of nuclear accidents. Initially, particle-scale isotopic analyses aimed at the determination of the U isotopic composition. Now, focus is increasingly given on Pu isotopic measurements to address its origin and potential use. Such measurements are more challenging because of isobaric interferences, including those induced by hydride ions, like 239PuH+ on 240Pu+ and 238UH+ on 239Pu+ in Mixed Oxide (MOX). Such ions are generated during ionization processes by Secondary Ion Mass Spectrometry. Based on a parametric study aiming at the measurement of uranium oxide, uranium carbide and uranium single and double hydride rates, we determined that Pu and U should be detected as elementary ions to limit the impact of such interferences, although mono-oxide ions are more abundant. Thus, we developed an analytical methodology to obtain accurate 240Pu/239Pu atomic ratios both for weapon grade Pu and MOX materials. Hydride rate is first measured in U oxide particles and then applied to correct 240Pu+ and 239Pu+ signals. The relative difference of corrected 240Pu/239Pu isotopic ratios with expected values is reduced by a factor of 4 when measuring weapon grade Pu particles and by a factor of 10-100 when measuring MOX particles containing 1 to 10 wt% of Pu. We also proposed a method to determine the Relative Sensitivity Factor (RSF) based on the decay of Pu in order to quantify the Pu content in MOX samples. The estimated lowest measurable 239Pu/238U atomic ratio in MOX particles is ∼1.6 × 10-3.


Assuntos
Plutônio , Urânio , Urânio/análise , Plutônio/análise , Espectrometria de Massa de Íon Secundário
9.
J Environ Radioact ; 255: 107048, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36274506

RESUMO

A scoping study of a commercially available resin selective for aqueous plutonium (Pu), AnaLig® Pu-02, modified with scintillator was investigated as a scheme to simultaneously concentrate and detect Pu in aquatic matrices. The extractive scintillating resin was comprised of a silica base, functionalized for plutonium extraction, grafted with plastic scintillator of polyvinyl toluene (PVT) and 2-(1-naphthyl)-4-vinyl-5- phenyloxazole (vNPO) fluor. Scintillator was incorporated onto the AnaLig® Pu-02 resin in a two-step process of silanization followed by surface-polymerization. Successful modification was facilitated by grinding the resin beads prior to silanization to expose cleaved silica surface sites appropriate for scintillator grafting. The modified resin was subjected to initial characterization of batch uptake and radioluminosity measurements where a total detection efficiency of 32.5% was observed. The modified resin was then subjected to pH 1 simulants containing environmental relevant groundwater constituents of varying concentration. Concentrations of 0.001M Fe(III) interfered with Pu uptake, while concentrations of up to 0.01M Ca(II) and 0.001 mM concentration of natural uranium and thorium had minimal influence on plutonium uptake. A translucent column packed with the modified AnaLig® Pu-02 was placed in a commercial flow-cell radiation detector for real-time detection of plutonium; a total detection efficiency of 20.4% was achieved for on-line measurements. The modification of AnaLig® Pu-02 results in a minimum detection limit capable of meeting the EPA limit for gross alpha activity in drinking water given a sufficient counting time of 15 min and approximately 300 mL of solution volume.


Assuntos
Plutônio , Monitoramento de Radiação , Urânio , Plutônio/análise , Compostos Férricos , Urânio/análise , Dióxido de Silício
10.
J Environ Radioact ; 255: 107040, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36257188

RESUMO

Activity ratios (A.R.) of 234U/238U and activity concentration of 238+234U and 239+240Pu were measured in collected seawaters and sand beach samples from various locations along of littoral of Mexican state of Veracruz. Uranium and plutonium were separated and concentrated in a liquid-liquid partition chromatography, afterwards, detected and analyzed by means of alpha spectrometric technique. The 234U/238U activity ratio (AR) ranges from 0.72 to 1.11 in sand beach and from 0.77 to 1.22 in seawater. The activity concentration was found in sea water from 0.31 to 1.94 Bq/L for 234+238U and from 15 to 137 µBq/L for 239+240Pu, in sand beach samples was found to be from 0.64 to 3.86 Bq/kg for 234+238U and from 33 to 249 µBq/kg for 239+240Pu.


Assuntos
Plutônio , Monitoramento de Radiação , Urânio , Plutônio/análise , Urânio/análise , México , Areia , Monitoramento de Radiação/métodos
11.
J Environ Radioact ; 255: 107030, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36191507

RESUMO

137Cs and 241Pu (via 241Am) concentrations were measured γ-spectrometrically on air filters from the early 1960s (mainly from 1964-66) from Vienna, Austria, and an alpine station in Salzburg, Austria. Accelerator mass spectrometry (AMS) was used to determine 240Pu/239Pu, 236U/238U and 233U/236U atom ratios as well as 236U, 239Pu and 240Pu atom concentrations. The maximum 236U/238U atom ratio of these unique undisturbed global fallout samples was (1.19 ± 0.31) × 10-5 in spring 1964. The 233U/236U atom ratios were found within (0.15-0.49) × 10-2 and indicate that the weapons tests of the early 1960s can be excluded as 233U source. The 236U/239Pu atom ratios were calculated in the range of 0.22-0.48.


Assuntos
Filtros de Ar , Plutônio , Monitoramento de Radiação , Cinza Radioativa , Urânio , Monitoramento de Radiação/métodos , Áustria , Estudos Retrospectivos , Plutônio/análise , Cinza Radioativa/análise , Urânio/análise
12.
Radiat Res ; 198(4): 357-367, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35913891

RESUMO

The release of actinides into the environment represents a significant potential public health concern. Chelation therapy utilizing diethylenetriamine pentaacetate (DTPA) is a U.S. Food and Drug Administration (FDA)-approved therapy capable of mitigating the deposition of some absorbed actinides in the body. However, the pharmacokinetic profile of DTPA is not ideal for prophylactic applications. In this study, we examine the incorporation of DTPA into a HPMA copolymer (P-DTPA) to investigate if the enhanced blood circulation time can offer superior prophylactic protection and of improving in vivo radiometal decorporation. Utilizing lutetium-177 (177Lu) as an actinide model, the performance of P-DTPA and DTPA (control) were evaluated using selectivity studies in the presence of competing biological metals, chelation and stability assays in human serum and cytotoxicity studies using human umbilical vein endothelial cells (HUVEC). The in vivo decorporation efficiency of P-DTPA relative to DTPA and untreated controls was also evaluated over two weeks in CF-1 mice. In the experimental groups, the mice were prophylactically treated with P-DTPA or DTPA (30 µmol/kg) 6 or 24 h prior to 177LuCl3 administration. The in vitro results reveal that P-DTPA gives efficient complexation yields relative to DTPA with a tolerable cytotoxicity profile and good serum stability. The in vivo decorporation studies demonstrated enhanced total excretion of the 177Lu using P-DTPA compared to DTPA in both the 6 and 24 h prophylactic treatment study arms. This enhanced decorporation effect is certainly attributable to the expected prolonged biological half-life of DTPA when grafted to the HPMA polymer.


Assuntos
Elementos da Série Actinoide , Plutônio , Animais , Quelantes/farmacologia , Descontaminação/métodos , Células Endoteliais , Humanos , Metacrilatos , Camundongos , Ácido Pentético/farmacologia , Plutônio/toxicidade , Poliaminas , Polímeros
13.
Radiat Res ; 198(4): 430-443, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35943882

RESUMO

Chelation is considered the best method for detoxification by promoting excretion of actinides (Am, Np, Pu, Th, U) from the human body after internal contamination. Chemical agents that possess carboxylic acid or hydroxypyridinonate groups play a vital role in actinide decorporation. In this review article, we provide considerable background details on the chelation chemistry of actinides with an aim to formulate better decorporation agents. Nanocarriers for pulmonary delivery represent an exciting prospect in the development of novel therapies for actinide decorporation that both reduce toxic side effects of the agent and improve its retention in the body. Recent studies have demonstrated the benefits of using a nebulizer or an inhaler to administer chelating agents for the decorporation of actinides. Effective chelation therapy with large groups of internally contaminated people can be a challenge unless both the agent and the nanocarrier are readily available from strategic national stockpiles for radiological or nuclear emergencies. Sunflower lecithin is particularly adept at alleviating the burden of administration when used to form liposomes as a nanocarrier for pulmonary delivery of diethylenetriamine-pentaacetic acid (DTPA) or hydroxypyridinone (HOPO). Better physiologically-based pharmacokinetic models must be developed for each agent in order to minimize the frequency of multiple doses that can overload the emergency response operations.


Assuntos
Elementos da Série Actinoide , Plutônio , Quelantes/farmacologia , Humanos , Lecitinas , Lipossomos , Ácido Pentético/farmacologia
14.
Health Phys ; 123(5): 348-359, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35951340

RESUMO

ABSTRACT: Anecdotal evidence indicates there may be unpublished physical and psychological events associated with the medical treatment of plutonium intakes. A thorough review was conducted of the medical and bioassay records of current and previous Los Alamos National Laboratory (LANL) employees who had experienced plutonium intakes via wound or inhalation. After finding relatively incomplete information in the medical records, the research team interviewed current LANL employees who had undergone chelation therapy and/or surgical excision. Although the dataset is not large enough to reach statistically significant conclusions, it was observed that adverse events associated with treatment appear to be more frequent and more severe than previously reported.


Assuntos
Plutônio , Bioensaio , Terapia por Quelação , Humanos , Prontuários Médicos , Plutônio/efeitos adversos , Plutônio/análise , Estudos Retrospectivos
15.
Int J Mol Sci ; 23(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35563121

RESUMO

In case of an incident in the nuclear industry or an act of war or terrorism, the dissemination of plutonium could contaminate the environment and, hence, humans. Human contamination mainly occurs via inhalation and/or wounding (and, less likely, ingestion). In such cases, plutonium, if soluble, reaches circulation, whereas the poorly soluble fraction (such as small colloids) is trapped in alveolar macrophages or remains at the site of wounding. Once in the blood, the plutonium is delivered to the liver and/or to the bone, particularly into its mineral part, mostly composed of hydroxyapatite. Countermeasures against plutonium exist and consist of intravenous injections or inhalation of diethylenetetraminepentaacetate salts. Their effectiveness is, however, mainly confined to the circulating soluble forms of plutonium. Furthermore, the short bioavailability of diethylenetetraminepentaacetate results in its rapid elimination. To overcome these limitations and to provide a complementary approach to this common therapy, we developed polymeric analogs to indirectly target the problematic retention sites. We present herein a first study regarding the decontamination abilities of polyethyleneimine methylcarboxylate (structural diethylenetetraminepentaacetate polymer analog) and polyethyleneimine methylphosphonate (phosphonate polymeric analog) directed against Th(IV), used here as a Pu(IV) surrogate, which was incorporated into hydroxyapatite used as a bone model. Our results suggest that polyethylenimine methylphosphonate could be a good candidate for powerful bone decontamination action.


Assuntos
Elementos da Série Actinoide , Plutônio , Quelantes/química , Descontaminação/métodos , Durapatita , Humanos , Plutônio/química , Polietilenoimina , Polímeros
16.
Environ Sci Pollut Res Int ; 29(57): 85777-85788, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35595889

RESUMO

The Aare river system in Switzerland, with two nuclear power plants on the banks of the river, and its intermediate lakes and reservoirs, provides a unique opportunity to analyze the contribution of different sources to the radioactive contamination. Sediment cores were collected from two lakes and a reservoir, all connected by the river Aare. In order to study the influence of the Chernobyl accident, one sediment core was collected from a lake in the southern part of Switzerland. The sediment cores were sliced and analyzed with gamma ray spectrometry. Plutonium, americium, and uranium were extracted radiochemically, and their concentrations were measured with a sector field ICP-MS. The uranium isotope ratios were further measured with a multi collector ICP-MS. The maximum 137Cs activity from the Chernobyl accident and the Pu and 137Cs activities associated to the 1963 global fallout maximum were well identified in sediments from all three lakes. High-resolution records of plutonium isotopes in the zone of the sediments corresponding to the period of maximum fallout from the atmospheric nuclear weapon testing showed distinct fingerprints, depending on the different test activities. Pu isotope ratios could be used to detect non-global fallout plutonium. The ratio 241Am/241Pu was used to determine the age of the plutonium. Despite of very low 241Pu and 241Am concentrations, the calculated plutonium production dates seemed to be reasonable for the sediment layers corresponding to the NWT tests. The calculated production date of the plutonium in the upper most 15 cm of the sediment core seemed to be younger. The reason for this could be additional non-global fallout plutonium. For the lake sediments, natural ratios for 235U/238U and enriched or depleted ratios for 234U/238U were measured, depending on the lake. A small increase of the 236U/238U ratio could be recognized for the NWT zone in all three lakes and, for Lake Lugano, a further distinct increase in the Chernobyl layer.


Assuntos
Plutônio , Cinza Radioativa , Urânio , Poluentes Radioativos da Água , Plutônio/análise , Amerício/análise , Lagos , Urânio/análise , Poluentes Radioativos da Água/análise , Suíça , Sedimentos Geológicos/química , Radioisótopos de Césio/análise , Isótopos/análise , Cinza Radioativa/análise
17.
Health Phys ; 123(3): 197-207, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35613373

RESUMO

ABSTRACT: An individual underwent an extensive diethylenetriaminepentaacetate (DTPA) chelation therapy that started several months after plutonium incorporation, most likely by inhalation of a soluble compound. After receiving multiple intravenous infusions of DTPA, the patient continued the treatment by pulmonary delivery of aerosolized DTPA. The purpose of the present work is to provide and discuss the bioassay data obtained during the DTPA aerosol therapy and compare them with those under the DTPA infusion therapy that have been largely interpreted elsewhere. As with DTPA given intravenously, each delayed DTPA inhalation increased the clearance of plutonium not only in urine but also in feces, thus demonstrating the ability to remove plutonium retained by extrapulmonary tissues. Also, the slow decline of increased plutonium urinary elimination together with enhanced fecal excretion are two features coherent with the contribution of intracellular chelation to overall decorporation. The therapeutic benefit of DTPA inhalation appeared lower than with DTPA infusion, most likely due to a lower amount of DTPA reaching the systemic compartments where plutonium chelation predominates. The results suggest that DTPA administration through aerosol could be an alternative to the invasive procedure using a needle, i.e., intravenous injection/infusion, when protracted decorporation therapy is needed following transuranic internalization. Indeed, the patient may be more inclined to undergo a chelation treatment for a longer period because taking DTPA by inhalation may make it less cumbersome and painful.


Assuntos
Plutônio , Aerossóis , Quelantes/uso terapêutico , Terapia por Quelação , Humanos , Ácido Pentético/uso terapêutico
18.
Appl Spectrosc ; 76(5): 580-589, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35108115

RESUMO

The study and development of present and future processes for the treatment/recycling of spent nuclear fuels require many steps, from design in the laboratory to setting up on an industrial scale. In all of these steps, analysis and instrumentation are key points. For scientific reasons (small-scale studies, control of phenomena, etc.) but also with regard to minimizing costs, risks, and waste, such developments are increasingly carried out on milli- or microfluidic devices. The logic is the same for the chemical analyses associated with their follow-up and interpretation. Due to this, over the last few years, opto-microfluidic analysis devices adapted to the monitoring of different processes (dissolution, liquid-liquid extraction, precipitation, etc.) have been increasingly designed and developed. In this work, we prove that photonic lab-on-a-chip (PhLoC) technology is fully suitable for all actinides concentration monitoring along the plutonium uranium refining extraction (plutonium, uranium, reduction, extraction, or Purex) process. Several PhLoC microfluidic platforms were specifically designed and used in different nuclear research and development (R&D) laboratories, to tackle actinides analysis in multiple oxidation states even in mixtures. The detection limits reached (tens of µmol·L-1) are fully compliant with on-line process monitoring, whereas a range of analyzable concentrations of three orders of magnitude can be covered with less than 150 µL of analyte. Finally, this work confirms the possibility and the potential of coupling Raman and ultraviolet-visible (UV-Vis) spectroscopies at the microfluidic scale, opening the perspective of measuring very complex mixtures.


Assuntos
Elementos da Série Actinoide , Plutônio , Urânio , Elementos da Série Actinoide/análise , Dispositivos Lab-On-A-Chip , Microfluídica , Plutônio/análise , Urânio/análise
19.
Sci Total Environ ; 806(Pt 1): 150482, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34844331

RESUMO

This work reports the first high-resolution deposition records of anthropogenic uranium (236U and 233U) in a sediment core taken at the continental slope of the Philippine Sea off Mindanao Island in the equatorial northwest Pacific Ocean. Two notable peaks were observed in both profiles of 236U and 233U concentrations, with a narrower peak in 1951-1957 corresponding to close-in Pacific Proving Grounds (PPG) signal, and a broader peak in 1960s-1980s corresponding to the global fallout from nuclear weapons testing. 236U and 233U areal cumulative inventories in the studied sediment core are (2.79 ± 0.20) ∙ 1012 atom ∙ m-2 and (3.12 ± 0.41) ∙ 1010 atom ∙ m-2, respectively, about 20-30% of reported 233U and 236U inventories from the direct global fallout deposition. The overall 233U/236U atomic ratios obtained in this work vary within (0.3-3.5) âˆ™ 10-2, with an integrated 233U/236U atomic ratio of (1.12 ± 0.17) âˆ™ 10-2. The contribution from global fallout and close-in PPG fallout to 236U in the sediment core is estimated to be about 69% and 31%, respectively. We believe the main driving process for anthropogenic uranium deposition in the Philippine sediment is continuous scavenging of dissolved 236U from the surface seawater by sinking particles.


Assuntos
Plutônio , Monitoramento de Radiação , Cinza Radioativa , Urânio , Poluentes Radioativos da Água , Oceano Pacífico , Filipinas , Plutônio/análise , Cinza Radioativa/análise , Poluentes Radioativos da Água/análise
20.
Talanta ; 240: 123152, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942475

RESUMO

To accurately determine ultra-trace Pu isotopes in small environmental samples, we explored ICP-MS/MS in NH3-He mode, and investigated mechanism of 238U interference removal and measurement sensitivity improvement for plutonium isotopes. The interference of uranium and uranium hydrides was effectively eliminated using 0.4 mL/min NH3 as reaction gas by shifting them to U(NHm)n+ and UH(NHm)n+. The overall interference of uranium was reduced to <2.4 × 10-7, while remaining excellent 239Pu sensitivity (13,900 Mcps/(mg/L)) mainly due to ion focusing effect of Pu by helium gas. On this basis, the purification of plutonium using a single AG1- × 4 column was proved to be sufficient for accurate determination of plutonium isotopes by the developed detection method, and the detection limits for the method were estimated to be 0.16 fg (0.4 µBq) for 239Pu, 0.046 fg (0.4 µBq) for 240Pu and 0.039 fg (0.15 mBq) for 241Pu. The method was validated by analyzing plutonium isotopes in certificated reference materials and reported environmental samples of only 1-2 g. The analytical results of ultra-trace Pu isotopes in small amounts (∼1 g) of lake sediments obtained by the developed method were successfully applied to sediment dating.


Assuntos
Plutônio , Urânio , Ânions , Plutônio/análise , Espectrometria de Massas em Tandem , Urânio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA