Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.868
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Cells ; 13(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474409

RESUMO

Up to a third of the world's population suffers from allergies, yet the effectiveness of available preventative measures remains, at large, poor. Consequently, the development of successful prophylactic strategies for the induction of tolerance against allergens is crucial. In proof-of-concept studies, our laboratory has previously shown that the transfer of autologous hematopoietic stem cells (HSC) or autologous B cells expressing a major grass pollen allergen, Phl p 5, induces robust tolerance in mice. However, eventual clinical translation would require safe allergen expression without the need for retroviral transduction. Therefore, we aimed to chemically couple Phl p 5 to the surface of leukocytes and tested their ability to induce tolerance. Phl p 5 was coupled by two separate techniques, either by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) or by linkage via a lipophilic anchor, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol)-maleimide (DSPE-PEG-Mal). The effectiveness was assessed in fresh and cultured Phl p 5-coupled cells by flow cytometry, image cytometry, and immunofluorescence microscopy. Chemical coupling of Phl p 5 using EDC was robust but was followed by rapid apoptosis. DSPE-PEG-Mal-mediated linkage was also strong, but antigen levels declined due to antigen internalization. Cells coupled with Phl p 5 by either method were transferred into autologous mice. While administration of EDC-coupled splenocytes together with short course immunosuppression initially reduced Phl p 5-specific antibody levels to a moderate degree, both methods did not induce sustained tolerance towards Phl p 5 upon several subcutaneous immunizations with the allergen. Overall, our results demonstrate the successful chemical linkage of an allergen to leukocytes using two separate techniques, eliminating the risks of genetic modifications. More durable surface expression still needs to be achieved for use in prophylactic cell therapy protocols.


Assuntos
Alérgenos , Hipersensibilidade , Camundongos , Animais , Imunoglobulina E/metabolismo , Pólen , Poaceae/metabolismo
2.
Plant Physiol Biochem ; 208: 108467, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38412704

RESUMO

Overgrazing and phosphorus (P) deficiency are two major factors limiting the sustainable development of grassland ecosystems. Exploring plant P utilization and acquisition strategies under grazing can provide a solid basis for determining a reasonable grazing intensity. Both foliar P allocation and root P acquisition are crucial mechanisms for plants to adapt to environmental P availability; however, their changing characteristics and correlation under grazing remain unknown. Here, we investigated foliar P fractions, root P-acquisition traits and gene expression, as well as rhizosphere and bulk soil properties of two dominant plant species, Leymus chinensis (a rhizomatous grass) and Stipa grandis (a bunchgrass), in a field grazing intensity gradient site in Inner Mongolia. Grazing induced different degrees of compensatory growth in the two dominant plant species, increased rhizosphere P availability, and alleviated plant P limitation. Under grazing, the foliar metabolite P of L. chinensis increased, whereas the nucleic acid P of S. grandis increased. Increased P fractions in L. chinensis were positively correlated with increased root exudates and rapid inorganic P absorption. For S. grandis, increased foliar P fractions were positively correlated with more fine roots, more root exudates, and up-regulated expression of genes involved in defense and P metabolism. Overall, efficient root P mobilization and uptake traits, as well as increases in leaf metabolic activity-related P fractions, supported plant compensatory growth under grazing, a process that differed between tiller types. The highest plant productivity and leaf metabolic activity-related P concentrations under medium grazing intensity clarify the underlying basis for sustainable livestock production.


Assuntos
Ecossistema , Fósforo , Plantas , Poaceae , Rizosfera , Solo , Nitrogênio/análise
3.
J Ethnobiol Ethnomed ; 20(1): 17, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350958

RESUMO

BACKGROUND: The Hani people, who reside in Yuanyang County, Honghe Hani and Yi Autonomous Prefecture, Yunnan Province, rely on rice terrace farming as their primary livelihood. They utilize plants in various traditional ritual practices. The Hani people have categorized the value of plants based on their natural attributes and have refined the ways of using different plants in specific rituals through practical observations and experiences derived from their agricultural culture. Although the plants used in these rituals hold significant cultural value, they have yet to be studied from the perspective of ethnobotany. This study aims to approach the ritual plants using ethnobotanical methods. METHODS: Ethnobotanical fieldwork was conducted in 10 villages in Yuanyang County between 2021 and 2023. Data were collected from the local Hani people through semi-structured interviews and participatory observations and 41 informants were interviewed during the field investigations. The frequency of citation (FC) and relative frequency of citation (RFC) were utilized to evaluate the relative importance of ritual plants among the local communities. RESULTS: A total of 36 plant species, belonging to 18 families and 34 genera, were recorded as being used in 11 ritual practices by the Hani people. Rosaceae, Poaceae, and Fabaceae were found to have the highest number of species. Most of the ritual plants used by the Hani people were collected from the wild. FC and RFC analysis showed that the preferred plants for Hani rituals were Rhus chinensis Mill, Oryza sativa L., Phyllostachys sulphurea (Carr.) A. et C. Riv. and Musa basjoo Siebold & Zucc. ex Iinuma. The 11 rituals are all centered around the performance of people, crops and livestock. The Hani people use plants in different rituals mainly based on their biological attributes. CONCLUSIONS: Many rituals of the Hani people are closely related to their production and livelihood, and the plants used in these rituals are deeply rooted in Hani's traditional ecological knowledge and beliefs. The Hani people's reverence for nature, respect for life, gratitude towards ancestors, and seeking blessings and disaster prevention for their families, crops, and livestock are all reflected in these rituals and their utilization of ritual plants. The Hani people showcase their agricultural culture in the Honghe Hani Rice Terraces through plant-based ritual performances. Studying ritual plants in the core area of the Hani Rice Terraces is of great significance for protecting the Hani Terrace farming culture. In the future, it is essential to pay more attention to the role of traditional knowledge in biodiversity conservation.


Assuntos
Etnobotânica , Oryza , População do Sudeste Asiático , Humanos , Etnobotânica/métodos , China , Comportamento Ritualístico , Biodiversidade , Produtos Agrícolas , Poaceae
4.
J Environ Manage ; 353: 120154, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38308992

RESUMO

Fuel-treatments targeting shrubs and fire-prone exotic annual grasses (EAGs) are increasingly used to mitigate increased wildfire risks in arid and semiarid environments, and understanding their response to natural factors is needed for effective landscape management. Using field-data collected over four years from fuel-break treatments in semiarid sagebrush-steppe, we asked 1) how the outcomes of EAG and sagebrush fuel treatments varied with site biophysical properties, climate, and weather, and 2) how predictions of fire behavior using the Fuel Characteristic Classification System fire model related to land-management objectives of maintaining fire behavior expected of low-load, dry-climate grasslands. Generalized linear mixed effect modeling with build-up model selection was used to determine best-fit models, and marginal effects plots to assess responses for each fuel type. EAG cover decreased as antecedent-fall precipitation increased and increased as antecedent-spring temperatures and surface soil clay contents increased. Herbicides targeting EAGs were less effective where pre-treatment EAG cover was >40 % and antecedent spring temperatures were >9.5 °C. Sagebrush cover was inversely related to soil clay content, especially where clay contents were >17 %. Predicted fire behavior exceeded management objectives under 1) average fire weather conditions when EAG or sagebrush cover was >50 % or >26 %, respectively, or 2) extreme fire weather conditions when EAG or sagebrush cover was >10 % or >8 %, respectively. Consideration of the strong effects of natural variability in site properties and antecedent weather can help in justifying, planning and implementing fuel-treatments.


Assuntos
Artemisia , Incêndios , Ecossistema , Argila , Tempo (Meteorologia) , Solo , Poaceae
5.
Sci Rep ; 14(1): 4090, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374335

RESUMO

Nitrogen and phosphorus resorption (NRE and PRE) is a critical nutrient conservation mechanism maintaining plant growth in already disturbed barren ecosystems. The complexity of plant nutrient resorption variations in long-term grazing regions is regulated by plant traits, nutritional utilization strategies, and soil conditions following changes in grazing patterns. Therefore, a detailed investigation into their underlying mechanism is still required. Here we investigated leaf nutrient concentration and resorption in dominant species Cleistogenes songorica (C. squarrosa) and Stipa breviflora (S. breviflora) response to 15-years continuous grazing (moderate and heavy grazing) in desert steppe. Moderate grazing enhanced green leaf N and P content in C. songorica and partially increased N content in S. breviflora. Heavy grazing consistently increased N content in C. songorica, but its P content as well as N and P content in S. breviflora were largely stable. Moderate grazing enhanced NRE but unaffected PRE in both S. breviflora and C. songorica. Heavy grazing reduced NRE and PRE in C. songorica. Although soil variables (nutrients and moisture) did not affect foliar nutrients, it's a key driver of nutrient resorption efficiency. Of all measured influence factors, soil moisture is the one most important and negatively correlated with NRE and PRE in S. breviflora. While it was not observed in C. songorica. In S. breviflora, its NRE was adversely linked with soil N, in addition, both NRE and PRE were positively associated with green leaf nutrients. Senesced leaf nutrients are the predominant factor influencing nutrient resorption efficiency in C. songorica, which were adversely associated. Overall, our results indicate significant variations in nutrient resorption efficiency patterns between the two dominant species due to divergent plant adaptation strategies to grazing and the local environment. The foliar nutritional status and soil conditions may play significant roles in regulating nutrient resorption in arid long-term grazing desert steppe.


Assuntos
Ecossistema , Isótopos de Nitrogênio , Solo , Poaceae/fisiologia , Plantas , Nitrogênio/análise , Nutrientes , Fósforo , Folhas de Planta/química
6.
J Health Popul Nutr ; 43(1): 23, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310320

RESUMO

The health of city residents is at risk due to the high rate of urbanization and the extensive use of electronics. In the context of urbanization, individuals have become increasingly disconnected from nature, resulting in elevated stress levels among adults. The goal of this study was to investigate the physical and psychological benefits of spending time in nature. The benefits of touching real grass and artificial turf (the control activity) outdoors with the palm of the hand for five minutes were measured. Blood pressure and electroencephalography (EEG) as well as State-trait Anxiety Inventory (STAI) scores, and the semantic differential scale (SDM) were used to investigate psychophysiological responses. Touching real grass was associated with significant changes in brainwave rhythms and a reduction in both systolic and diastolic blood pressure compared to touching artificial turf. In addition, SDM scores revealed that touching real grass increased relaxation, comfort, and a sense of naturalness while decreasing anxiety levels. Compared to the control group, the experimental group had higher mean scores in both meditation and attentiveness. Our findings indicate that contact with real grass may reduce physiological and psychological stress in adults.


Assuntos
População do Leste Asiático , Poaceae , Tato , Adulto , Feminino , Humanos , Pressão Sanguínea , China , População do Leste Asiático/psicologia , Estresse Psicológico/prevenção & controle , Ansiedade/prevenção & controle
7.
Clin Exp Allergy ; 54(2): 130-142, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169056

RESUMO

INTRODUCTION: Allergen-specific immunotherapy (AIT) is the only disease-modifying treatment in allergic airway diseases. Underlying immunological mechanisms and candidate biomarkers, which may be translated into predictive/surrogate measures of clinical efficacy, remain an active area of research. The aim of this study was to evaluate Pollinex Quattro (PQ) Grass AIT induced immunomodulatory mechanisms, based on transcriptome profiling of peripheral blood mononuclear cells. METHODS: 119 subjects with grass pollen induced seasonal allergic rhinitis (SAR) were randomized in a 2:2:1:1 ratio to receive a cumulative dose of PQ Grass as a conventional or extended pre-seasonal regimen, placebo, or placebo with MicroCrystalline Tyrosine. Gene expression analysis was an exploratory endpoint evaluated in a subgroup of 30 subjects randomly selected from the four treatment arms. Samples were collected at three time points: screening (baseline), before the start of the grass pollen season and at the end of the season. This study was funded by the manufacturer of PQ. RESULTS: Transcriptome analysis demonstrated that the most significant changes in gene expression, for both treatment regimens, were at the end of the grass pollen season, with the main Th1 candidate molecules (IL-12A, IFNγ) upregulated and Th2 signature cytokines downregulated (IL-4, IL-13, IL-9) (p < .05). Canonical pathways analysis demonstrated Th1, Th2, Th17 and IL-17 as the most significantly enriched pathways based on absolute value of activation z-score (IzI score ≥ 2, p < .05). Upstream regulator analysis showed pronounced inhibition of pro-inflammatory allergic molecules IgE, IL-17A, IL-17F, IL-25 (IL-17E) (IzI score ≥ 2, FDR < 0.05) and activation of pro-tolerogenic molecules IL-12A, IL-27, IL-35 (EBI3) at the end of the grass pollen season. CONCLUSION: Peripheral blood mononuclear cells transcriptome profile showed an inhibition of Th2, Th17 pro-inflammatory allergic responses and immune deviation towards Th1 responses. PQ Grass extended regimen exhibited a superior mechanistic efficacy profile in comparison with PQ conventional regimen.


Assuntos
Alérgenos , Transcriptoma , Humanos , Alergoides , Leucócitos Mononucleares , Pólen , Poaceae/genética , Dessensibilização Imunológica
8.
Environ Res ; 247: 117983, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163541

RESUMO

BACKGROUND: Grasses populate most biogeographical zones, and their diversity influences allergic sensitisation to pollen. Previously, the contribution of different Poaceae subfamilies to airborne pollen has mostly been inferred from historical herbarium records. We recently applied environmental (e)DNA metabarcoding at one subtropical site revealing that successive airborne grass pollen peaks were derived from repeated flowering of Chloridoid and Panicoid grasses over a season. This study aimed to compare spatiotemporal patterns in grass pollen exposure across seasons and climate zones. METHODS: Airborne pollen concentrations across two austral pollen seasons spanning 2017-2019 at subtropical (Mutdapilly and Rocklea, Queensland) and temperate (Macquarie Park and Richmond, New South Wales) sites, were determined with a routine volumetric impaction sampler and counting by light microscopy. Poaceae rbcL metabarcode sequences amplified from daily pollen samples collected once per week were assigned to subfamily and genus using a ribosomal classifier and compared with Atlas of Living Australia sighting records. RESULTS: eDNA analysis revealed distinct dominance patterns of grass pollen at various sites: Panicoid grasses prevailed in both subtropical Mutdapilly and temperate Macquarie Park, whilst Chloridoid grasses dominated the subtropical Rocklea site. Overall, subtropical sites showed significantly higher proportion of pollen from Chloridoid grasses than temperate sites, whereas the temperate sites showed a significantly higher proportion of pollen from Pooideae grasses than subtropical sites. Timing of airborne Pooid (spring), Panicoid and Chloridoid (late spring to autumn), and Arundinoid (autumn) pollen were significantly related to number of days from mid-winter. Proportions of eDNA for subfamilies correlated with distributions grass sighting records between climate zones. CONCLUSIONS: eDNA analysis enabled finer taxonomic discernment of Poaceae pollen records across seasons and climate zones with implications for understanding adaptation of grasslands to climate change, and the complexity of pollen exposure for patients with allergic respiratory diseases.


Assuntos
DNA Ambiental , Poaceae , Humanos , Poaceae/genética , Estações do Ano , Alérgenos/análise , Pólen/genética
9.
Neotrop Entomol ; 53(2): 455-459, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38194154

RESUMO

Bermudagrass (Cynodon dactylon (L.) Pers., Poaceae) is one of the most important pasture grasses used in milk production systems in southern Brazil, with an increasing expansion of cultivated areas in recent years. Here, we report the first occurrence of the planthopper Metadelphax propinqua (Fieber) (Hemiptera: Delphacidae) feeding on bermudagrass in Brazil. Population outbreaks of this species were observed in January/February 2023 in a commercial hay production farm in the municipality of Chapecó, Santa Catarina State, southern Brazil. Metadelphax propinqua was found in association with three cultivars of C. dactylon (Tifton 85, Jiggs, and Vaquero). The infested plants showed leaf chlorosis and a reduced plant growth rate due to sap sucking and toxin injection as well as honeydew deposition on the leaves, which led to the development of sooty mold. In addition, this delphacid species has been reported as a vector of important pathogens to bermudagrass species and other row crops. Thus, M. propinqua is a potential pest of bermudagrass in Brazil and should be monitored to assess its establishment and behavior in Brazilian pasturelands.


Assuntos
Cynodon , Hemípteros , Animais , Brasil , Poaceae , Produtos Agrícolas
10.
New Phytol ; 242(4): 1576-1588, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38173184

RESUMO

Phosphorus (P) for carbon (C) exchange is the pivotal function of arbuscular mycorrhiza (AM), but how this exchange varies with soil P availability and among co-occurring plants in complex communities is still largely unknown. We collected intact plant communities in two regions differing c. 10-fold in labile inorganic P. After a 2-month glasshouse incubation, we measured 32P transfer from AM fungi (AMF) to shoots and 13C transfer from shoots to AMF using an AMF-specific fatty acid. AMF communities were assessed using molecular methods. AMF delivered a larger proportion of total shoot P in communities from high-P soils despite similar 13C allocation to AMF in roots and soil. Within communities, 13C concentration in AMF was consistently higher in grass than in blanketflower (Gaillardia aristata Pursh) roots, that is P appeared more costly for grasses. This coincided with differences in AMF taxa composition and a trend of more vesicles (storage structures) but fewer arbuscules (exchange structures) in grass roots. Additionally, 32P-for-13C exchange ratios increased with soil P for blanketflower but not grasses. Contrary to predictions, AMF transferred proportionally more P to plants in communities from high-P soils. However, the 32P-for-13C exchange differed among co-occurring plants, suggesting differential regulation of the AM symbiosis.


Assuntos
Carbono , Micorrizas , Fósforo , Solo , Micorrizas/fisiologia , Micorrizas/metabolismo , Fósforo/metabolismo , Carbono/metabolismo , Solo/química , Brotos de Planta/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Isótopos de Carbono , Plantas/metabolismo , Plantas/microbiologia , Meio Ambiente , Poaceae/metabolismo
11.
Sci Total Environ ; 916: 170324, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266725

RESUMO

Bamboo heat treatment will cause plenty of release of volatile organic compounds (VOCs) into the atmosphere which are important precursors for ozone (O3) formation. In this study, dewaxed bamboo was heat-treated at 180 °C for 2 h to investigate the emission characteristics and the formation pathways of VOCs during heat treatment by removing different main components. The results showed that aldehydes (22.61%-57.54%) and esters (14.64%-38.88%) are the primary VOCs released during heat treatment. These compounds mainly originate from the degradation of hemicellulose, lignin, cellulose, and the linkage bonds between them in bamboo. During the bamboo heat treatment, the degradation of CO, CH, and CO bonds in hemicellulose results in the release of 5-hydroxymethylfurfural, 3-furfural, and 1-(+)-ascorbic acid 2,6-dihexadecanoate. The breakage of benzene ring group and the CO and CH bonds of lignin leading to the emission of VOCs including m-Formylphenol, Vanillin, and Syringaldehyde. The degradation of aliphatic CH, CC, and CO bonds in the amorphous region of cellulose contributes to an enhanced release of alcohols, olefins, and alkanes. It is calculated that acids (28.92%-59.47%), esters (10.10%-22.03%) and aldehydes (17.88%-39.91%) released during heat treatment contributed more to Ozone Formation Potential (OFP).


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Lignina , Temperatura Alta , Celulose , Aldeídos , Ozônio/análise , Poaceae , Monitoramento Ambiental/métodos , China
12.
Glob Chang Biol ; 30(1): e17104, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273555

RESUMO

Globally pervasive increases in atmospheric CO2 and nitrogen (N) deposition could have substantial effects on plant communities, either directly or mediated by their interactions with soil nutrient limitation. While the direct consequences of N enrichment on plant communities are well documented, potential interactions with rising CO2 and globally widespread phosphorus (P) limitation remain poorly understood. We investigated the consequences of simultaneous elevated CO2 (eCO2 ) and N and P additions on grassland biodiversity, community and functional composition in P-limited grasslands. We exposed soil-turf monoliths from limestone and acidic grasslands that have received >25 years of N additions (3.5 and 14 g m-2 year-1 ) and 11 (limestone) or 25 (acidic) years of P additions (3.5 g m-2 year-1 ) to eCO2 (600 ppm) for 3 years. Across both grasslands, eCO2 , N and P additions significantly changed community composition. Limestone communities were more responsive to eCO2 and saw significant functional shifts resulting from eCO2 -nutrient interactions. Here, legume cover tripled in response to combined eCO2 and P additions, and combined eCO2 and N treatments shifted functional dominance from grasses to sedges. We suggest that eCO2 may disproportionately benefit P acquisition by sedges by subsidising the carbon cost of locally intense root exudation at the expense of co-occurring grasses. In contrast, the functional composition of the acidic grassland was insensitive to eCO2 and its interactions with nutrient additions. Greater diversity of P-acquisition strategies in the limestone grassland, combined with a more functionally even and diverse community, may contribute to the stronger responses compared to the acidic grassland. Our work suggests we may see large changes in the composition and biodiversity of P-limited grasslands in response to eCO2 and its interactions with nutrient loading, particularly where these contain a high diversity of P-acquisition strategies or developmentally young soils with sufficient bioavailable mineral P.


Assuntos
Dióxido de Carbono , Pradaria , Dióxido de Carbono/análise , Fósforo , Plantas , Poaceae , Nitrogênio , Solo/química , Carbonato de Cálcio
13.
Chemosphere ; 351: 141101, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38171396

RESUMO

Waterborne pathogenic viruses present unrelenting challenges to the global health and wastewater treatment industry. Phytoremediation offers promising solutions for wastewater treatment through plant-based technologies. This study investigated antiviral mechanisms in-vivo using bacteriophages MS2 and T4 as surrogates for effective herbs screened in-vitro from three embryophytes (Ocimum basilicum, Mentha sp., Plectranthus amboinicus), two macrophytes (Eichhornia crassipes, Pistia stratiotes) and a perennial grass (Cyperus rotundas). In-silico virtual screening predicted antiviral phytochemicals for further antiviral potency assessment. Results suggested in-vitro antiviral activities of embryophytes and macrophytes were higher (43-62%) than grass (21-26%). O. basilicum (OB, 57-62%) and P. stratiotes (PS, 59-60%) exhibited the highest antiviral activities. In-vivo tests showed notable virus reduction (>60%) in culture solution, attributed to rhizofiltration (66-74%) and phytoinactivation/phytodegradation (63-84%). In-silico analysis identified rutin as a primary antiviral phytochemical for MS2 (-9.7 kcal/mol) and T4 (-10.9 kcal/mol), correlating with dose-response inactivation (∼58-62%). In-vivo tests suggested additional phytocompounds may contribute to viral inactivation, presenting new opportunities for herb-based wastewater treatment solutions. Consequently, this study not only demonstrates the antiviral capabilities of OB and PS but also introduces an innovative approach for addressing viral contaminants in water.


Assuntos
Araceae , Eichhornia , Poluentes Químicos da Água , Biodegradação Ambiental , Poluentes Químicos da Água/análise , Plantas/metabolismo , Eichhornia/metabolismo , Araceae/metabolismo , Poaceae/metabolismo , Levivirus , Antivirais/farmacologia
14.
Neuropsychologia ; 192: 108733, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37956956

RESUMO

Researchers from multiple disciplines have studied the simulation of actions through motor imagery, action observation, or their combination. Procedures used in these studies vary considerably between research groups, and no standardized approach to reporting experimental protocols has been proposed. This has led to under-reporting of critical details, impairing the assessment, replication, synthesis, and potential clinical translation of effects. We provide an overview of issues related to the reporting of information in action simulation studies, and discuss the benefits of standardized reporting. We propose a series of checklists that identify key details of research protocols to include when reporting action simulation studies. Each checklist comprises A) essential methodological details, B) essential details that are relevant to a specific mode of action simulation, and C) further points that may be useful on a case-by-case basis. We anticipate that the use of these guidelines will improve the understanding, reproduction, and synthesis of studies using action simulation, and enhance the translation of research using motor imagery and action observation to applied and clinical settings.


Assuntos
Imagens, Psicoterapia , Imaginação , Humanos , Imagens, Psicoterapia/métodos , Poaceae
15.
J Anim Physiol Anim Nutr (Berl) ; 108(1): 111-125, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37602531

RESUMO

Hydrolysable tannins (HT) show potential as silage additive for autumn herbage silages, high in (rumen degradable) protein, as they may reduce proteolysis. Additionally, they have abilities to form pH-reversible tannin-protein complexes, non-degradable in the rumen but degradable in the abomasum and intestines of ruminants. Therefore they can improve milk N efficiency and shift N excretions from urine to faeces, possibly mitigating the environmental impact of ruminants. In this study, two small bunker silos were filled with autumn grass. One was treated with 20 g/kg DM HT extract (TAN) (TannoSan-L), the other with 8 mg/kg DM inoculant containing lactic acid bacteria (INO) (Bonsilage Fit G). Secondly, micro-silos (2.75 L) were filled with four treatments; (1) grass without additive (CON) (n = 5); (2) TAN (n = 5); (3) INO (n = 5); and (4) TAN + INO (n = 5). The bunker silos were used in a cross-over feeding experiment with periods of 4 weeks involving 22 lactating Holstein cows (average ± SD: 183 ± 36.3 days in milk, 665 ± 71.0 kg body weight, and 33.8 ± 3.91 kg/day milk yield). The HT dose was insufficient to reduce proteolysis or alter chemical composition and nutritional value in the micro- and bunker silages. Including grass silage added with TAN (3.2 g HT/kg DM) in the diet, did not affect feed intake nor fat and protein corrected milk yield in comparison to feeding the grass silage added with INO in a similar diet. The TAN-fed cows had an increased faecal N excretion and decreased apparent total-tract N and organic matter digestibility, but no improvement in the cows' N utilization could be confirmed in milk and blood urea levels. Overall, feeding an autumn grass silage treated with 20 g/kg chestnut HT extract did not affect the performance of dairy cows in comparison to feeding an autumn grass silage treated with a lactic acid bacteria inoculant.


Assuntos
Inoculantes Agrícolas , Lactobacillales , Feminino , Bovinos , Animais , Poaceae/metabolismo , Silagem/análise , Taninos/farmacologia , Lactação , Inoculantes Agrícolas/metabolismo , Fermentação , Ácido Láctico/metabolismo , Digestão , Leite/química , Dieta/veterinária , Taninos Hidrolisáveis/análise , Taninos Hidrolisáveis/metabolismo , Taninos Hidrolisáveis/farmacologia , Rúmen/metabolismo , Extratos Vegetais/farmacologia , Ruminantes , Valor Nutritivo , Zea mays/metabolismo
16.
Environ Res ; 243: 117808, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38043901

RESUMO

Pollen allergies pose a considerable global public health concern. Allergy risk can vary significantly within plant families, yet some key pollen allergens can only be identified to family level by current optical methods. Pollen information with greater taxonomic resolution is therefore required to best support allergy prevention and self-management. We used environmental DNA (eDNA) metabarcoding to deepen taxonomic insights into the seasonal composition of airborne pollen in cool temperate Australia, a region with high rates of allergic respiratory disease. In Hobart, Tasmania, we collected routine weekly air samples from December 2018 until October 2020 and sequenced the internal transcribed spacer 2 (ITS2) and chloroplastic tRNA-Leucine tRNA-Phenylalanine intergenic spacer (trnL-trnF) regions in order to address the following questions: a) What is the genus-level diversity of known and potential aeroallergens in Hobart, in particular, in the families Poaceae, Cupressaceae and Myrtaceae? b) How do the atmospheric concentrations of these taxa change over time, and c) Does trnL-trnF enhance resolution of biodiversity when used in addition to ITS2? Our results suggest that individuals in the region are exposed to temperate grasses including Poa and Bromus in the peak grass pollen season, however low levels of exposure to the subtropical grass Cynodon may occur in autumn and winter. Within Cupressaceae, both metabarcodes showed that exposure is predominantly to pollen from the introduced genera Cupressus and Juniperus. Only ITS2 detected the native genus, Callitris. Both metabarcodes detected Eucalyptus as the major Myrtaceae genus, with trnL-trnF exhibiting primer bias for this family. These findings help refine our understanding of allergy triggers in Tasmania and highlight the utility of multiple metabarcodes in aerobiome studies.


Assuntos
Pólen , Rinite Alérgica Sazonal , Humanos , Estações do Ano , Alérgenos/análise , Poaceae , Austrália , RNA de Transferência
17.
Tree Physiol ; 44(1)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38035777

RESUMO

Moso bamboo typically grows in phosphorus (P)-deficient soil that limits its growth and development. In this study, 10 Moso bamboo genotypes (Ph-1 to Ph-10) were evaluated for their responses to P deficiency during the seedling stage by growing them in both P-sufficient and P-deficient conditions. Adaptive responses to low P (LP) conditions were observed in the majority of genotypes. Under P deficiency conditions, the total biomass decreased in several genotypes, but at the same time, the root-to-shoot ratio increased. Principal component analysis identified two main comprehensive traits (PC1 and PC2) related to the root volume and surface area and P concentration and accumulation. Based on the analysis, two genotypes (Ph-6 and Ph-10) were identified with significantly different levels of tolerance to P deficiency. The results revealed that the genotype Ph-10 responded to P deficiency by significantly increasing the root surface area and volume, while simultaneously reducing the number of root cortex cells when compared with the genotype Ph-6, which showed the lowest tolerance (intolerant). The genotype Ph-10 exhibited a robust response to external LP conditions, marked by elevated expression levels of PHOSPHATE TRANSPORTERs and SYG1/PHO81/XPR1s. In situ Polymerase Chain Reaction (PCR) analysis also revealed distinct tissue-specific expression patterns of the genes in the roots, particularly highlighting the differences between Ph-6 and Ph-10. The results provide a foundation for elucidating the mechanism of LP tolerance, thus potentially contributing to developing high P-use efficiency in Moso bamboo species.


Assuntos
Poaceae , Plântula , Poaceae/genética , Poaceae/metabolismo , Plântula/metabolismo , Genótipo , Fósforo/metabolismo , Solo , Regulação da Expressão Gênica de Plantas
18.
Sci Total Environ ; 912: 168791, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38000742

RESUMO

Excessive nitrogen (N) inputs shift grassland productivity from nitrogen (N) to phosphorus (P) limitation. However, how plant nutrient concentrations and stoichiometric dynamics at community and species level responding to variable soil N and P availability, and their roles in regulating net primary productivity in meadow steppe remain unclear. To address this issue, we carried out an experiment with fifteen treatments consisting of factorial combinations of N (0, 1.55, 4.65,13.95, 27.9 g N m-2 yr-1) and P (0, 5.24,10.48 g P m-2 yr-1) for three years in a meadow steppe in Inner Mongolia. We examined concentrations and stoichiometry of C (carbon), N, P in plants and soils, and their associations with plant primary productivity. Results revealed mean community N:P ratios for shoots (12.89 ± 0.98) did not exceed 14 within the control treatment, indicating that plant growth was primarily N-limited in this ecosystem. Shoot N:P ratios were significantly increased by N addition (>16 when N application rate above 4.65 g N m-2 yr-1), shifting the community from N- to P-limited whereas significantly reduced by P addition (N:P ratios <14), further aggravating N limitation. N addition increased leaf-N concentrations whereas decreased leaf C:N ratios of all four species, but only the values for two graminoid species were significantly influenced by P addition. Leaf-P concentrations significantly increased for graminoids but significantly decreased for forbs with the application of N. VPA analysis revealed that aboveground components, especially in grass leaves, explained more variation in aboveground net primary productivity (ANPP) and belowground net primary productivity (BNPP) than root and soil components. For grasses, leaf-N concentrations showed high association with ANPP, while leaf-P concentrations were associated with BNPP. These results highlight that N and P depositions could affect the leaf-nutrient concentrations of dominant grasses, and thereby potentially alter net primary productivity in meadow steppe.


Assuntos
Ecossistema , Poaceae , Fósforo/análise , Pradaria , Nitrogênio/análise , Plantas , Solo , Biomassa
19.
J Anim Physiol Anim Nutr (Berl) ; 108(2): 338-345, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37882147

RESUMO

The effects of the addition of molasses (5 and 10% of dry matter: DM basis; M5 and M10 respectively) with or without urea (2%; U2, U2 + M5 and U2 + M10) on chemical and mineral composition, silage quality, microbial populations, buffering capacity and fermentation/digestion characteristics of common reed (Phragmites australis) ensiled under anaerobic conditions were investigated. The additives changed the silage quality of common reed compared with the control. Crude protein content was significantly (p < 0.0001) increased in urea-containing silages, whereas ash-free neutral detergent fibre concentration decreased in M10 compared with the control (p = 0.05). Treatment with 2% urea (U2) resulted in the reduction of most measured minerals with a severe decrease in iron concentration. The amount of gas produced after 96 h of incubation was, respectively, higher for U2, M10, U2M10, U2M5 and M5 compared with the control (p < 0.0001). Although the greatest in vitro dry matter digestibility and in vitro organic matter digestibility (96 h) were observed in U2 (p < 0.0001), no significant differences were found between U2 and M10. Supplementation with 10% molasses (M10) significantly increased lactic acid concentration, aerobic stability and total bacteria compared with other treatments (p < 0.0001). Moreover, DM loss (p = 0.0004), total yeast and mould (p < 0.0001) were significantly decreased as a result of 10% molasses treatment. Overall, it can be suggested that treating silage with 10% molasses (M10) has the potential to efficiently improve the nutritive value of common reed.


Assuntos
Poaceae , Silagem , Animais , Silagem/análise , Fermentação , Carboidratos , Ureia
20.
Sci Total Environ ; 912: 169740, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38160820

RESUMO

Biological N fixation (BNF) is an important N input process for terrestrial ecosystems. Long-term N application increases the availability of N, but may also lead to phosphorus (P) deficiency or an imbalance between N and P. Here, we performed a 5-year N application experiment in a subtropical Phyllostachys heterocycla forest in site and a P application experiment in vitro to investigate the effect of N application on the BNF rate and its regulatory factor. The BNF rate, nifH gene, free-living diazotrophic community composition and plant properties were measured. We found that N application suppressed the BNF rate and nifH gene abundance, whereas the BNF rate in soils with added P was significantly higher overall than that in soils without added P. Moreover, we identified a key diazotrophic assembly (Mod#2), primarily comprising Bradyrhizobium, Geobacter, Desulfovibrio, Anaeromyxobacter, and Pseudodesulfovibrio, which explained 77 % of the BNF rate variation. There was a significant positive correlation between the Mod#2 abundance and soil available P, and the random forest results showed that soil available P is the most important factor affecting the Mod#2 abundance. Our findings highlight the importance of soil P availability in regulating the activities of key diazotrophs, and thus increasing P supply may help to promote N accumulation and primary productivity through facilitating the BNF process in forest ecosystems.


Assuntos
Ecossistema , Fixação de Nitrogênio , Fixação de Nitrogênio/fisiologia , Nitrogênio/análise , Fósforo , Microbiologia do Solo , Solo , Poaceae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA