Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Fitoterapia ; 175: 105952, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614405

RESUMO

Three new xanthone derivatives irpexols A-C (1-3) and five known xanthones including three dimeric ones were successfully isolated from Irpex laceratus A878, an endophytic fungus of the family Irpicaceae from the medicinal plant Pogostemon cablin (Blanco) Bentham (Lamiaceae). The structures of these compounds were elucidated by extensive spectroscopic analyses including ultraviolet-visible spectroscopy (UV), infrared spectroscopy (IR), mass spectrometry (MS), and nuclear magnetic resonance (NMR). All of the three new compounds (1-3) share a de-aromatic and highly­oxygenated xanthone skeleton. In addition, the cytotoxic activity of compounds 1-8 were evaluated against SF-268, MCF-7, HepG2, and A549 tumor cell lines. The results revealed that compound 6 showed moderate cytotoxic activity with the IC50 values ranging from 24.83 to 45.46 µM, while the IC50 values of the positive control adriamycin was ranging from 1.11 to 1.44 µM.


Assuntos
Endófitos , Xantonas , Xantonas/isolamento & purificação , Xantonas/farmacologia , Xantonas/química , Estrutura Molecular , Humanos , Endófitos/química , Linhagem Celular Tumoral , Pogostemon/química , Antineoplásicos/farmacologia , Antineoplásicos/isolamento & purificação , Antineoplásicos/química , China
2.
J Tradit Chin Med ; 44(2): 260-267, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504532

RESUMO

OBJECTIVE: To explore the anti-inflammatory components and mechanism of the non-volatile ingredients of patchouli. METHODS: High performance liquid chromatography-heated electron spray ionization-high resolution mass spectroscope (HPLC-HESI-HRMS) was used to analyze the chemical constituents of the non-volatile ingredients of patchouli. The anti-inflammatory activity of ingredients was evaluated using lipopolysaccharide (LPS) induced RAW264.7 cell inflammation model, and the anti-inflammatory mechanism was investigated using multivariate statistical analysis of cell metabolomics. RESULTS: The non-volatile ingredients of patchouli were characterized by HPLC-HESI-HRMS, and 36 flavonoids and 18 other components were identified. These ingredients of patchouli not only had a good protective effect on the LPS-induced inflammation model of RAW264.7 cells, but also regulated the expression levels of arginine, L-leucine, cholesterol, fructose and sorbitol by down-regulating arginine metabolism, aminoacyl-tRNA biosynthesis, polyol/sorbitol pathway, so as to reduce inflammation and reduce cell damage. CONCLUSION: The non-volatile ingredients of patchouli had good anti-inflammatory effect and exerted its curative effect by regulating endogenous metabolic pathway to reduce inflammatory response.


Assuntos
Lipopolissacarídeos , Pogostemon , Humanos , Cromatografia Líquida de Alta Pressão , Elétrons , Anti-Inflamatórios/farmacologia , Metabolômica , Inflamação , Pogostemon/química , Arginina , Sorbitol
3.
Arch Microbiol ; 206(2): 75, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261081

RESUMO

Patchouli (Pogostemon cablin), a highly valued medicinal plant, suffers significant economic losses following infection with Broad bean wilt virus 2 (BBWV-2) and Peanut stripe virus (PStV). In this study, a field-based isothermal technique called reverse transcription loop-mediated isothermal amplification (RT-LAMP) was established for an early and specific detection of BBWV-2 and PStV. The oligo primers were designed to target the coat protein genes of PStV and BBWV-2. The reaction conditions, such as temperature and time duration, were optimized to 65 °C for 60 min. The LAMP amplicons positive for PStV and BBWV-2 revealed characteristic ladder-type bands following agarose gel electrophoresis. Further, a colorimetric assay using a metal ion-based indicator (Hydroxy-naphthol blue, HNB) was conducted to visualize the amplified products with the naked eye, thus facilitating accessibility to field practices. The assay developed in this study was found to be virus specific, and was 100 times more sensitive than RT-PCR. Thus, the RT-LAMP assay established in this study is quick, reliable, and cost-effective for the accurate identification of BBWV-2 and PStV. It will facilitate the screening of patchouli planting materials.  Further, it may reduce the risk of virus spread and could be helpful in phytosanitary programs.


Assuntos
Fabavirus , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Pogostemon , Potyvirus , Transcrição Reversa
4.
Fitoterapia ; 173: 105751, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37977303

RESUMO

Three new α-pyrone derivatives cytospotones A-C (1-3) and a new cyclohexenone derivative cytospotone D (4) together with four known α-pyrones were isolated from the endophytic fungus Cytospora sp. A879 of Pogostemon cablin (Blanco) Benth. The structures of 1-4 were elucidated primarily by spectroscopic methods (1D, 2D NMR and HRESIMS), ECD spectra analyses, and ECD calculations. Furthermore, the four new compounds (1-4) were evaluated for their anti-inflammatory and α-glucosidase inhibitory activities. The results showed that compound 1 had moderate inhibitory effect on LPS-induced NO production in RAW 264.7 macrophages.


Assuntos
Ascomicetos , Pogostemon , Estrutura Molecular , Ascomicetos/química , Espectroscopia de Ressonância Magnética , Pironas
5.
Molecules ; 28(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37764451

RESUMO

Before use as medicines, most traditional Chinese medicine (TCM) plants are processed and decocted. During processing, there may be some changes in pesticide residues in TCM. In recent years, reports have studied the changes of pesticides during the processes of boiling, drying and peeling of TCM materials but have rarely involved special processing methods for TCM, such as ethanol extraction and volatile oil extraction. The changes of carbendazim, carbofuran, pyridaben and tebuconazole residues in common processing methods for P. cablin products were systemically assessed in this study. After each processing step, the pesticides were quantitated by UPLC-MS/MS. The results showed amount decreases in various pesticides to different extents after each processing procedure. Processing factor (PF) values for the four pesticides after decoction, 75% ethanol extraction and volatile oil extraction were 0.02~0.75, 0.40~0.98 and 0~0.02, respectively, which indicated that residual pesticide concentrations may depend on the processing technique. A risk assessment according to the hazard quotient with PF values showed that residual pesticide amounts in P. cablin were substantially lower than levels potentially posing a health risk. Overall, these findings provide insights into the safety assessment of P. cablin.


Assuntos
Óleos Voláteis , Resíduos de Praguicidas , Praguicidas , Pogostemon , Cromatografia Líquida , Espectrometria de Massas em Tandem , Resíduos de Praguicidas/análise , Óleos Voláteis/química
6.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446145

RESUMO

As an important medicinal and aromatic plant, patchouli is distributed throughout most of Asia. However, current research on patchouli's genetic diversity is limited and lacks genome-wide studies. Here, we have collected seven representative patchouli accessions from different localities and performed whole-genome resequencing on them. In total, 402,650 single nucleotide polymorphisms (SNPs) and 153,233 insertions/deletions (INDELs) were detected. Based on these abundant genetic variants, patchouli accessions were primarily classified into the Chinese group and the Southeast Asian group. However, the accession SP (Shipai) collected from China formed a distinct subgroup within the Southeast Asian group. As SP has been used as a genuine herb in traditional Chinese medicine, its unique molecular markers have been subsequently screened and verified. For 26,144 specific SNPs and 16,289 specific INDELs in SP, 10 of them were validated using Polymerase Chain Reaction (PCR) following three different approaches. Further, we analyzed the effects of total genetic variants on genes involved in the sesquiterpene synthesis pathway, which produce the primary phytochemical compounds found in patchouli. Eight genes were ultimately investigated and a gene encoding nerolidol synthetase (PatNES) was chosen and confirmed through biochemical assay. In accession YN, genetic variants in PatNES led to a loss of synthetase activity. Our results provide valuable information for understanding the diversity of patchouli germplasm resources.


Assuntos
Pogostemon , Pogostemon/genética , Análise de Sequência de DNA , Polimorfismo de Nucleotídeo Único , Genoma de Planta , Ásia
7.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2316-2324, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37282860

RESUMO

Patchoulol is an important sesquiterpenoid in the volatile oil of Pogostemon cablin, and is also considered to be the main contributing component to the pharmacological efficacy and fragrance of P. cablin oil, which has antibacterial, antitumor, antioxidant, and other biological activities. Currently, patchoulol and its essential oil blends are in high demand worldwide, but the traditional plant extraction method has many problems such as wasting land and polluting the environment. Therefore, there is an urgent need for a new method to produce patchoulol efficiently and at low cost. To broaden the production method of patchouli and achieve the heterologous production of patchoulol in Saccharomyces cerevisiae, the patchoulol synthase(PS) gene from P. cablin was codon optimized and placed under the inducible strong promoter GAL1 to transfer into the yeast platform strain YTT-T5, thereby obtaining strain PS00 with the production of(4.0±0.3) mg·L~(-1) patchoulol. To improve the conversion rate, this study used protein fusion method to fuse SmFPS gene from Salvia miltiorrhiza with PS gene, leading to increase the yield of patchoulol to(100.9±7.4) mg·L~(-1) by 25-folds. By further optimizing the copy number of the fusion gene, the yield of patchoulol was increased by 90% to(191.1±32.7) mg·L~(-1). By optimizing the fermentation process, the strain was able to achieve a patchouli yield of 2.1 g·L~(-1) in a high-density fermentation system, which was the highest yield so far. This study provides an important basis for the green production of patchoulol.


Assuntos
Óleos Voláteis , Pogostemon , Sesquiterpenos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sesquiterpenos/metabolismo , Óleos Voláteis/metabolismo
8.
Molecules ; 28(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37110702

RESUMO

As is well known, plant products have been increasingly utilized in the pharmaceutical industry in recent years. By combining conventional techniques and modern methodology, the future of phytomedicines appears promising. Pogostemon Cablin (patchouli) is an important herb used frequently in the fragrance industries and has various therapeutic benefits. Traditional medicine has long used the essential oil of patchouli (P. cablin) as a flavoring agent recognized by the FDA. This is a gold mine for battling pathogens in China and India. In recent years, this plant has seen a significant surge in use, and approximately 90% of the world's patchouli oil is produced by Indonesia. In traditional therapies, it is used for the treatment of colds, fever, vomiting, headaches, and stomachaches. Patchouli oil is used in curing many diseases and in aromatherapy to treat depression and stress, soothe nerves, regulate appetite, and enhance sexual attraction. More than 140 substances, including alcohols, terpenoids, flavonoids, organic acids, phytosterols, lignins, aldehydes, alkaloids, and glycosides, have been identified in P. cablin. Pachypodol (C18H16O7) is an important bioactive compound found in P. cablin. Pachypodol (C18H16O7) and many other biologically essential chemicals have been separated from the leaves of P. cablin and many other medicinally significant plants using repeated column chromatography on silica gel. Pachypodol's bioactive potential has been shown by a variety of assays and methodologies. It has been found to have a number of biological activities, including anti-inflammatory, antioxidant, anti-mutagenic, antimicrobial, antidepressant, anticancer, antiemetic, antiviral, and cytotoxic ones. The current study, which is based on the currently available scientific literature, intends to close the knowledge gap regarding the pharmacological effects of patchouli essential oil and pachypodol, a key bioactive molecule found in this plant.


Assuntos
Óleos Voláteis , Plantas Medicinais , Pogostemon , Quercetina , Óleos Voláteis/farmacologia , Óleos Voláteis/química
9.
J Med Food ; 26(4): 255-261, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37071615

RESUMO

Patchouli alcohol (PA) is a tricyclic sesquiterpene and the dominant bioactive component in oil extracted from the aerial parts of Pogostemon cablin (patchouli). It has been reported to possess diverse health-beneficial activities, including anti-inflammatory, antiobese, and anticancer activities. However, preclinical studies are required to explore the possibility of developing PA as a promising functional and promising drug for the prevention and treatment of human diseases. In this study, we used animal models to examine whether PA shows benefits in inflammation-induced colorectal cancer and obesity-induced diabetes. ApcMin/+ mice for colorectal cancer model were treated PA 0, 25 and 50 mg/kg body weight three times a week for 6 weeks along with 2% dextran sulfate sodium (DSS) in drinking water for 1 week. High-fat diet (HFD)-induced obesity mice were treated with PA 0, 25, and 50 mg/kg bodyweight three times a week for 8 weeks. Oral administration of PA to ApcMin/+ mice treated with DSS significantly suppressed formation and development of tumors in both small and large intestines. In cell culture using Caco-2 human colorectal cancer cells, treatment of culture media with PA suppressed proliferation and induced G1-phase growth arrest. In a mouse model of HFD-induced obesity, glucose tolerance tests indicated the same orally administered dose of PA to significantly reduce blood glucose. In vitro assays in differentiated C2C12 myocytes further demonstrated PA to significantly enhance glucose uptake and increase phosphorylation of 5' adenosine monophosphate-activated protein kinase and protein kinase B. This study demonstrates that PA might possess health beneficial effects on colorectal cancer and obesity-induced diabetes.


Assuntos
Neoplasias Colorretais , Diabetes Mellitus , Pogostemon , Sesquiterpenos , Camundongos , Humanos , Animais , Células CACO-2 , Obesidade/complicações , Obesidade/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/prevenção & controle , Diabetes Mellitus/tratamento farmacológico
10.
Molecules ; 28(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36903266

RESUMO

Research on the manufacture of hydrogel films from polyvinyl alcohol, corn starch, patchouli oil, and silver nanoparticles, (PVA/CS/PO/AgNPs, respectively) was completed. The silver nanoparticles used in this study resulted from green synthesis using local patchouli plants (Pogostemon cablin Benth). Aqueous patchouli leaf extract (APLE) and methanol patchouli leaf extract (MPLE) are used in the synthesis of phytochemicals (green synthesis), which are then blended in the production of PVA/CS/PO/AgNPs hydrogel films, which are then cross linked with glutaraldehyde. The results demonstrated that the hydrogel film was flexible, easy to fold, and free of holes and air bubbles. The presence of hydrogen bonds between the functional groups of PVA, CS, and PO was revealed using FTIR spectroscopy. SEM analysis revealed that the hydrogel film was slightly agglomerated and did not exhibit cracking or pinholes. The analysis of pH, spreadability, gel fraction, and swelling index showed that the resulting PVA/CS/PO/AgNP hydrogel films met expected standards except for the organoleptic properties of the resulting colors, which tended to be slightly darker in color. The formula with silver nanoparticles synthesized in methanolic of patchouli leaf extract (AgMENPs) had the highest thermal stability compared to hydrogel films with silver nanoparticles synthesized in aqueous of patchouli leaf extract (AgAENPs). The hydrogel films can be safely used up to 200 °C. The antibacterial studies revealed that the films inhibited the growth of both Staphylococcus aureus and Staphylococcus epidermis, as determined by the disc diffusion method, with the best antibacterial activity being against Staphylococcus aureus. In conclusion, the hydrogel film F1, loaded with silver nanoparticles biosynthesized in aqueous of patchouli leave extract (AgAENPs) and light fraction of patchouli oil (LFoPO) performed the best activity against both Staphylococcus aureus and Staphylococcus epidermis.


Assuntos
Nanopartículas Metálicas , Pogostemon , Álcool de Polivinil/química , Prata/química , Zea mays , Nanopartículas Metálicas/química , Amido , Antibacterianos/farmacologia , Staphylococcus aureus , Extratos Vegetais/química , Hidrogéis
11.
Pharm Pat Anal ; 11(6): 213-224, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36511100

RESUMO

Pogostemon cablin (Pogostemon patchouli or Patchouli) is known for its essential oil and is a popular medicinal herb in Indian Ayurveda and traditional Chinese medicine. This review covers patent articles on the P. cablin plant's therapeutic effects. The patent literature was collected using a thorough, comprehensive search on databases like Thomson Innovation, Espacenet, Patentscope, The Lens and Patent digital libraries of different Jurisdictions, including IPO, USPTO, CNIPA, inPASS, KIPO, JPO, etc. Despite the vast number of review articles on non-patent literature, none of the articles reviewed the patent literature. This current P. cablin literature analysis study will facilitate bridging the gap between further exploring the potential of this plant through novel investigations.


Assuntos
Óleos Voláteis , Pogostemon , Sesquiterpenos , Óleos Voláteis/uso terapêutico
12.
Molecules ; 27(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36144760

RESUMO

Patchouli extracts and oils extracted from Pogostemon cablin are essential raw material for the perfume and cosmetics industries, in addition to being used as a natural additive for food flavoring. Steam distillation is a standard method used for plant extraction. However, this method causes thermal degradation of some essential components of the oil. In this study, patchouli was extracted with supercritical carbon dioxide (SC-CO2) under different conditions of pressure (10-30 MPa) and temperature (40-80 °C). The chemical components of the crude extracted oil and the functional group were characterized using gas chromatography-mass spectrometry (GC-MS) and Fourier Transform Infrared Spectroscopy (FT-IR). The extraction with supercritical carbon dioxide was shown to provide a higher yield (12.41%) at a pressure of 20 MPa and a temperature of 80 °C. Patchouli alcohol, Azulene, δ-Guaiene, and Seychellene are the main bioactive compounds that GC-MS results have identified. FTIR spectra showed alcohol, aldehyde, and aromatic ring bond stretching peaks. Extraction of patchouli with supercritical carbon dioxide provided a higher yield and a better quality of the crude patchouli oil.


Assuntos
Cromatografia com Fluido Supercrítico , Óleos Voláteis , Perfumes , Pogostemon , Aldeídos , Azulenos , Dióxido de Carbono , Cromatografia com Fluido Supercrítico/métodos , Óleos Voláteis/química , Extratos Vegetais , Óleos de Plantas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Vapor
13.
Am J Chin Med ; 50(3): 691-721, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35282804

RESUMO

Pogostemonis Herba (PH) is the dried aerial parts of Pogostemon cablin (Blanco) Benth, which is mainly distributed and used in Asian countries. PH is an aromatic damp-resolving drug in traditional Chinese medicine (TCM), which is usually used for the treatment of vomiting, chest tension, tiredness, abdominal pain, diarrhea, and headache. In this review, the summary of chemical constituents in the aerial parts, biological activities, history of uses, quality control methods, industrial applications, pharmacokinetics and network pharmacology are reported. By collating the chemical constituents of various parts of PH, a total of 174 components were identified, including 66 terpenes, 6 pyrones, 40 flavonoids, 21 phenylpropanoids, 9 steroids, 4 polysaccharides and 28 others. Pharmacological research has found that PH possesses multi-pharmacological activities, including regulating the gastrointestinal tract, inhibition of pathogenic microorganisms, and anti-inflammation, which provide more scientific interpretation for the clinical usage of PH. In addition, the shortcomings of the current research on PH and the recommendation of future studies on PH are analyzed. We hope this review can provide some insight for further research and applications of PH in future.


Assuntos
Pogostemon , Flavonoides , Farmacologia em Rede , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Controle de Qualidade , Terpenos
14.
Zhongguo Zhong Yao Za Zhi ; 47(2): 412-418, 2022 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-35178983

RESUMO

Farnesyl diphosphate synthase(FPPS) is a key enzyme at the branch point of the sesquiterpene biosynthetic pathway, but there are no reports on the transcriptional regulation of FPPS promoter in Pogostemon cabin. In the early stage of this study, we obtained the binding protein PcFBA-1 of FPPS gene promoter in P. cabin. In order to explore the possible mechanism of PcFBA-1 involved in the regulation of patchouli alcohol biosynthesis, this study performed PCR-based cloning and sequencing analysis of PcFBA-1, analyzed the expression patterns of PcFBA-1 in different tissues by fluorescence quantitative PCR and its subcellular localization using the protoplast transformation system, detected the binding of PcFBA-1 protein to the FPPS promoter in vitro with the yeast one-hybrid system, and verified its transcriptional regulatory function by dual-luciferase reporter gene assay. The findings demonstrated that the cloned PcFBA-1 had an open reading frame(ORF) of 1 131 bp, encoding a protein of 376 amino acids, containing two conserved domains named F-box-like superfamily and FBA-1 superfamily, and belonging to the F-box family. Moreover, neither signal peptide nor transmembrane domain was contained, implying that it was an unstable hydrophilic protein. In addition, as revealed by fluorescence quantitative PCR results, PcFBA-1 had the highest expression in leaves, and there was no significant difference in expression in roots or stems. PcFBA-1 protein was proved mainly located in the cytoplasm. Furthermore, yeast one-hybrid screening and dual-luciferase reporter gene assay showed that PcFBA-1 was able to bind to FPPS promoter both in vitro and in vivo to enhance the activity of FPPS promoter. In summary, this study identifies a new transcription factor PcFBA-1 in P. cabin, which directly binds to the FPPS gene promoter to enhance the promoter activity. This had laid a foundation for the biosynthesis of patchouli alcohol and other active ingre-dients and provided a basis for metabolic engineering and genetic improvement of P. cabin.


Assuntos
Pogostemon , Sequência de Aminoácidos , Clonagem Molecular , Geraniltranstransferase/genética , Fatores de Transcrição/genética
15.
Pharmacol Res ; 176: 106082, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35032662

RESUMO

Patchouli Essential Oil (PEO) has been used as a scent for various healing purposes since the ancient Egyptian period. The primary source of the oil is Pogostemon cablin (PC), a medicinal plant for treating gastrointestinal symptoms. However, the pharmacological function has not been addressed. Here, we report the cancer prevention and gut microbiota (GM) modulating property of PEO and its derivatives patchouli alcohol (PA) and pogostone (PO) in the ApcMin /+ colorectal cancer mice model. We found that PEO, PA, and PO significantly reduced the tumor burden. At the same time, it strengthened the epithelial barrier, evidenced by substantially increasing the number of the goblet and Paneth cells and upregulation of tight junction and adhesion molecules. In addition, PEO, PA, and PO shifted M1 to M2 macrophage phenotypes and remodeled the inflammatory milieu of ApcMin /+ mice. We also found suppression of CD4+CD25+ and stimulation CD4+ CD8+ cells in the spleen, blood, mesenteric lymph nodes (MLNs), and Peyer's patches (PPs) of the treated mice. The composition of the gut microbiome of the drug-treated mice was distinct from the control mice. The drugs stimulated the short-chain fatty acids (SCFAs)-producers and the key SCFA-sensing receptors (GPR41, GPR43, and GPR109a). The activation of SCFAs/GPSs also triggered the alterations of PPAR-γ, PYY, and HSDCs signaling mediators in the treated mice. Our work showed that PEO and its derivatives exert potent anti-cancer effects by modulating gut microbiota and improving the intestinal microenvironment of the ApcMmin /+ mice.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Óleos Voláteis/uso terapêutico , Pogostemon , Animais , Antineoplásicos Fitogênicos/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/microbiologia , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Linfonodos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Óleos Voláteis/farmacologia , Nódulos Linfáticos Agregados/efeitos dos fármacos , Baço/efeitos dos fármacos
16.
J Biomol Struct Dyn ; 40(1): 154-165, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32838699

RESUMO

The interest in naturally occurring essential oils from medicinal plants has increased extremely over the last decade markedly because they possess antimicrobial and antioxidant protective properties against different chronic diseases. Extensive survival of drug-resistant infectious bacteria depends on quorum sensing (QS) signaling network which raises the need for alternative antibacterial compounds. The aim of this study was to examine the phytochemical compounds of patchouli essential oil (PEO) and to assess its antioxidant activity. Antioxidant studies estimated by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method showed that the PEO has effective antioxidant activity (IC50 19.53 µg/mL). QS inhibitory activity of PEO was examined by employing the biosensor strain, Chromobacterium violaceum CV12472. At sub-lethal concentrations, PEO potentially reduced the QS regulated violacein synthesis in CV12472 without inhibiting its cell proliferation. Moreover, it also effectively reduced the production of some QS regulated virulence factors and biofilm development in P. aeruginosa PAO1 without hindering its growth. Phytochemical analysis of PEO was done by GC/MS technique. Molecular docking of PEO major compounds with QS (LasR and FabI) and biofilm regulator proteins (MvfR and Sialidase) of PAO1 was evaluated. These phytocompounds showed potential hydrogen binding interactions with these proteins. The overall results, in vitro and in silico, suggest that PEO could be applied as biocontrol agent against antibiotic resistance pathogens. Communicated by Ramaswamy H. Sarma.


Assuntos
Óleos Voláteis , Pogostemon , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Biofilmes , Simulação de Acoplamento Molecular , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Percepção de Quorum , Fatores de Virulência
17.
Nat Prod Res ; 36(8): 2191-2195, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33251869

RESUMO

Gas chromatography-mass spectrometry is an essential tool for metabolomics. In this research we have selected photosynthetic organs- leaf and sepal of a wild Indian tea tree from north-east India to study wild tea metabolites. The result of this study reveals that photosynthetic parts of wild Indian tea tree are rich in 'patchouli' components unlike established cultivated varieties which are known to be rich in polyphenols or flavonoids. Twenty six compounds were detected in sesquiterpene rich leaf while nineteen were detected in the waxy sepal. The remarkable outcome of this study is presence of fourteen 'patchouli' compounds including patchouli alcohol as the major compound (44.81% in leaf and 19.59% in sepal) which can promote this plant to a top-notch position in fields of botany, pharmaceuticals and essential oil industry by occupying the throne of patchouli.


Assuntos
Pogostemon , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica/métodos , Chá/química , Árvores
18.
J Ethnopharmacol ; 282: 114645, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34530094

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Essential oil (EO) is the main extract of patchouli and tangerine peel with antiinflammatory, antiulcer, and other functions. However, the efficacy and mechanism of the combination of EO from patchouli and tangerine peel against gastric ulcer (GU) are unclear. AIM OF THE STUDY: This study aims to reveal the protective effect of the combination of EO from patchouli and tangerine peel against GU in rats, as well as explore the optimal ratio and possible mechanism of EO in GU treatment. MATERIALS AND METHODS: The GU model is executed via water immersion and restraint stress. The repair effect of EO in different proportions on gastric mucosa injury and the effects on serum gastrin (GAS), pepsinogen C (PGC), prostaglandin E2 (PGE2), and 5-hydroxytryptamine in GU rats were observed. The optimal ratio obtained was used in the second part to set different dose groups for further experiment. The effects of the different EO doses on gastric mucosal ulcer formation and gastric acid secretion were evaluated. The morphology of chief and parietal cells were observed via transmission electron microscopy. The contents of GAS, PGC, substance P (SP), cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), cholecystokinin (CCK), PGE2, and motilin (MTL) in serum in different groups were detected via enzyme-linked immunosorbent assay. Expressions of epidermal growth factor (EGF) and trefoil factor 2 (TFF2) protein in gastric tissues were detected via immunohistochemistry, and expressions of c-Jun N-terminal kinase (JNK), P53, Bcl-2-associated X protein (Bax), and Caspase-3 protein in gastric tissues were detected via western blotting. RESULTS: The EO from patchouli and tangerine peel at 1:2 ratio of compatibility significantly improved gastric mucosal injury, decreased serum GAS and PGC contents, and increased the PGE2 level in serum (p < 0.05). The mixture of EO from patchouli and tangerine peel (Mix-EO) can reduce the formation of gastric mucosal ulcers, reduce gastric mucosal injury, improve the expansion of the endoplasmic reticulum of the chief cells, repair mitochondrial damage, and inhibit the secretion of gastric acid by parietal cells. Mix-EO at 300 mg/kg can reduce the expression of serum GAS, PGC, SP, CCK, and cAMP/cGMP (p < 0.05 or 0.01); increase the expression of EGF and TFF2 protein in gastric tissues (p < 0.01); and inhibit the expression of JNK, p53, Bax, and Caspase-3 proteins (p < 0.01). CONCLUSION: The combination of EO from patchouli and tangerine peel can repair the gastric mucosal damage in GU rats and prevent the occurrence of ulcers by inhibiting the secretion of gastric acid, enhancing the defensive ability of gastric mucosa, and suppressing the apoptosis of gastric epithelial cells. Moreover, the optimal compatible ratio of patchouli and tangerine peel is 1:2.


Assuntos
Citrus/química , Óleos de Plantas/farmacologia , Pogostemon/química , Úlcera Gástrica/tratamento farmacológico , Animais , Dinoprostona/sangue , Dinoprostona/genética , Dinoprostona/metabolismo , Gastrinas/sangue , Gastrinas/genética , Gastrinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Pepsinogênio C/sangue , Pepsinogênio C/genética , Pepsinogênio C/metabolismo , Óleos de Plantas/química , Substâncias Protetoras/farmacologia , Ratos , Ratos Sprague-Dawley , Restrição Física/efeitos adversos , Serotonina/sangue , Serotonina/genética , Serotonina/metabolismo , Úlcera Gástrica/etiologia
19.
J Pharm Biomed Anal ; 209: 114526, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34915323

RESUMO

Pogostemon cablin Benth (PCB) is a well-known traditional Chinese medicine that has been used for treatment of many ailments for several centuries. In presently, the chemical profiling and quality control study of PCB has mainly concentrated on the volatile fractions. However, the non-volatile chemical profile of PCB was still unclear. In this study, 73 non-volatile constituents (i.e., 33 flavonoids, 21 organic acids, 9 phenylpropanoids, 4 sesquiterpenes, 3 alkaloids, and 3 other types of compounds) were identified and characterized in PCB using high performance liquid chromatography coupled with quadruple time-of-flight tandem mass spectrometry (HPLC-Q-TOF-MS). Meanwhile, to assess PCB samples, an established HPLC-Q-TOF-MS fingerprint was combined with multivariate statistical analysis that included similarity analysis (SA), hierarchical cluster analysis (HCA), principal component analysis (PCA), and orthogonal partial least squares-discriminant analysis (OPLS-DA). The PCB samples could be classified into two groups (herbal decoction pieces and processed medicinal materials), and acteoside, isoacteoside, 4',6-Dihydroxy-5,7-dimethoxyflavone, pachypodol and pogostone were screened as the potential chemical markers that attributed classification. In addition, nine representative components (pachypodol, vicenin-2, apigenin, rhamnocitrin, acteoside, isoacteoside, chlorogenic acid, azelaic acid and pogostone) in PCB were simultaneously determined by using an ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UPLC-QQQ-MS/MS). This study is the first to describe the chemical profile of PCB using liquid chromatography tandem mass spectrometry, which would improve our understanding of the substance basis of PCB and is helpful to the PCB further quality evaluation.


Assuntos
Medicamentos de Ervas Chinesas , Pogostemon , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/análise , Pogostemon/química , Espectrometria de Massas em Tandem
20.
Fitoterapia ; 156: 105098, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34883225

RESUMO

Five new sesquiterpenes, namely, guaianes A-E (1-5), including one novel carbon skeleton guaiane-type sesquiterpene derivatives (1), together with thirteen known compounds (6-18), were isolated from the aerial parts of Pogostemon cablin (Blanco.) Benth. Their chemical structures were mainly established through the relative spectroscopic data, while the absolute configurations of compounds 1-5 were elucidated on the base of single-crystal X-ray diffraction analysis and electronic circular dichroism (ECD) calculations. All compounds were tested for their inhibiting effects on NO production in LPS-stimulated BV2 microglia cells as well as the cell viabilities. The results showed that compounds 2-16 and 18 possessed moderately anti-inflammatory activities at a concentration of 50 µM.


Assuntos
Ácido Nítrico/antagonistas & inibidores , Extratos Vegetais/farmacologia , Pogostemon/química , Sesquiterpenos/farmacologia , Cromatografia em Camada Fina , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Ácido Nítrico/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Polarimetria de Varredura a Laser , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Sesquiterpenos de Guaiano/química , Sesquiterpenos de Guaiano/isolamento & purificação , Sesquiterpenos de Guaiano/farmacologia , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA