Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 260
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Talanta ; 246: 123499, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35594734

RESUMO

Weissella viridescens is a spoilage bacterium commonly found in low-temperature meat products. In this work, after fifteen rounds including three counter selection rounds of whole-cell systemic evolution of ligands by exponential enrichment (SELEX) in vitro, a novel aptamer L3 that can specifically recognize W. viridescens was obtained with a dissociation constant (Kd) value of 68.25 ± 5.32 nM. The sequence of aptamer L3 was optimized by truncation and a new aptamer sequence TL43 was obtained with a lower Kd value of 32.11 ± 3.01 nM. Finally, a simple and rapid fluorescence polarization (FP) platform was constructed to detect W. viridescens, in which FAM-labeled complementary sequence (FAM-cDNA) was employed to generate FP signal and streptavidin was used to amplify FP signal. In the presence of target bacteria, FP value decreased owning to the dissociation of FAM-cDNA from streptavidin/biotin-TL43/FAM-cDNA complex. Under optimal conditions, the concentration of W. viridescens and FP value displayed a good linear relationship with the detection range from 102 to 106 cfu/mL. Moreover, the designed detection system had a good recovery rate of 90.6%-107.7% in smoked ham samples compared with classical plate counting method, indicating the great potential of the selected and truncated aptamer in practical biosensing applications.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Aptâmeros de Nucleotídeos/genética , Técnicas Biossensoriais/métodos , DNA Complementar , Polarização de Fluorescência , Técnica de Seleção de Aptâmeros , Estreptavidina , Weissella
2.
Bioorg Chem ; 116: 105362, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34598089

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a serious threat to global health. One attractive antiviral target is the membrane fusion mechanism employed by the virus to gain access to the host cell. Here we report a robust protein-based fluorescent polarization assay, that mimicking the formation of the six-helix bundle (6-HB) process during the membrane fusion, for the evaluation and screening of SARS-CoV-2 fusion Inhibitors. The IC50 of known inhibitors, HR2P, EK1, and Salvianolic acid C (Sal-C) were measured to be 6.1 nM, 2.5 nM, and 8.9 µM respectively. In addition, we found Sal-A has a slightly lower IC50 (3.9 µM) than Sal-C. Interestingly, simple caffeic acid can also disrupt the formation of 6-HB with a sub-mM concentration. Pilot high throughput screening (HTS) of a small marine natural product library validates the assay with a Z' factor close to 0.8. We envision the current assay provides a convenient way to screen SARS-CoV-2 fusion inhibitors and assess their binding affinity.


Assuntos
Alcenos/análise , Antivirais/análise , Polarização de Fluorescência , Ensaios de Triagem em Larga Escala , Peptídeos/análise , Polifenóis/análise , Alcenos/farmacologia , Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Estrutura Molecular , Peptídeos/farmacologia , Polifenóis/farmacologia , SARS-CoV-2/efeitos dos fármacos
3.
Int J Mol Sci ; 22(10)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063491

RESUMO

Phosphodiesterases (PDEs) hydrolyze cyclic nucleotides to modulate multiple signaling events in cells. PDEs are recognized to actively associate with cyclic nucleotide receptors (protein kinases, PKs) in larger macromolecular assemblies referred to as signalosomes. Complexation of PDEs with PKs generates an expanded active site that enhances PDE activity. This facilitates signalosome-associated PDEs to preferentially catalyze active hydrolysis of cyclic nucleotides bound to PKs and aid in signal termination. PDEs are important drug targets, and current strategies for inhibitor discovery are based entirely on targeting conserved PDE catalytic domains. This often results in inhibitors with cross-reactivity amongst closely related PDEs and attendant unwanted side effects. Here, our approach targeted PDE-PK complexes as they would occur in signalosomes, thereby offering greater specificity. Our developed fluorescence polarization assay was adapted to identify inhibitors that block cyclic nucleotide pockets in PDE-PK complexes in one mode and disrupt protein-protein interactions between PDEs and PKs in a second mode. We tested this approach with three different systems-cAMP-specific PDE8-PKAR, cGMP-specific PDE5-PKG, and dual-specificity RegA-RD complexes-and ranked inhibitors according to their inhibition potency. Targeting PDE-PK complexes offers biochemical tools for describing the exquisite specificity of cyclic nucleotide signaling networks in cells.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores de Fosfodiesterase/farmacologia , Extratos Vegetais/farmacologia , Proteínas Quinases/metabolismo , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Domínio Catalítico , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Polarização de Fluorescência , Terapia de Alvo Molecular , Complexos Multiproteicos/metabolismo , Nucleotídeos Cíclicos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Especificidade por Substrato
4.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33947115

RESUMO

Cortisol, a stress hormone, plays key roles in mediating stress and anti-inflammatory responses. As abnormal cortisol levels can induce various adverse effects, screening cortisol and cortisol analogues is important for monitoring stress levels and for identifying drug candidates. A novel cell-based sensing system was adopted for rapid screening of cortisol and its functional analogues under complex cellular regulation. We used glucocorticoid receptor (GR) fused to a split intein which reconstituted with the counterpart to trigger conditional protein splicing (CPS) in the presence of targets. CPS generates functional signal peptides which promptly translocate the fluorescent cargo. The sensor cells exhibited exceptional performance in discriminating between the functional and structural analogues of cortisol with improved sensitivity. Essential oil extracts with stress relief activity were screened using the sensor cells to identify GR effectors. The sensor cells responded to peppermint oil, and L-limonene and L-menthol were identified as potential GR effectors from the major components of peppermint oil. Further analysis indicated L-limonene as a selective GR agonist (SEGRA) which is a potential anti-inflammatory agent as it attenuates proinflammatory responses without causing notable adverse effects of GR agonists.


Assuntos
Técnicas Biossensoriais , Avaliação Pré-Clínica de Medicamentos/métodos , Polarização de Fluorescência/métodos , Hidrocortisona/análise , Óleos Voláteis/farmacologia , Receptores de Glucocorticoides/agonistas , Atrofia , Acetato de Ciproterona/farmacologia , Dexametasona/farmacologia , Estradiol/farmacologia , Fluorometria , Células HeLa , Humanos , Inteínas , Limoneno/farmacologia , Proteínas Luminescentes/análise , Mentha piperita , Mentol/farmacologia , Mifepristona/farmacologia , Estrutura Molecular , Músculo Esquelético/patologia , Mioblastos/efeitos dos fármacos , Óleos de Plantas/farmacologia , Processamento de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteína Vermelha Fluorescente
5.
SLAS Discov ; 26(8): 1020-1028, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33899548

RESUMO

Biophysical methods are widely employed in academia and the pharmaceutical industry to detect and quantify weak molecular interactions. Such methods find broad application in fragment-based drug discovery (FBDD). In an FBDD campaign, a suitable affinity determination method is key to advancing a project beyond the initial screening phase. Protein-observed (PO) nuclear magnetic resonance (NMR) finds widespread use due to its ability to sensitively detect very weak interactions at residue-level resolution. When there are issues precluding the use of PO-NMR, ligand-observed (LO) NMR reporter assays can be a useful alternative. Such assays can measure affinities in a similar range to PO-NMR while offering some distinct advantages, especially with regard to protein consumption and compound throughput. In this paper, we take a closer look at setting up such assays for routine use, with the aim of getting high-quality, accurate data and good throughput. We assess some of the key characteristics of these assays in the mathematical framework established for fluorescence polarization assays with which the readers may be more familiar. We also provide guidance on setting up such assays and compare their performance with other affinity determination methods that are commonly used in drug discovery.


Assuntos
Descoberta de Drogas/métodos , Genes Reporter , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Proteínas/química , Bioensaio , Avaliação Pré-Clínica de Medicamentos , Polarização de Fluorescência/métodos , Humanos , Ligação Proteica , Proteínas/metabolismo
6.
ChemMedChem ; 16(6): 949-954, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33305877

RESUMO

Inhibition of PSD-95 has emerged as a promising strategy for the treatment of ischemic stroke, as shown with peptide-based compounds that target the PDZ domains of PSD-95. In contrast, developing potent and drug-like small molecules against the PSD-95 PDZ domains has so far been unsuccessful. Here, we explore the druggability of the PSD-95 PDZ1-2 domain and use fragment screening to investigate if this protein is prone to binding small molecules. We screened 2500 fragments by fluorescence polarization (FP) and validated the hits by surface plasmon resonance (SPR), including an inhibition counter-test, and found four promising fragments. Three ligand efficient fragments were shown by 1 H,15 N HSQC NMR to bind in the small hydrophobic P0 pockets of PDZ1-2, and one of them underwent structure-activity relationship (SAR) studies. Overall, we demonstrate that fragment screening can successfully be applied to PDZ1-2 of PSD-95 and disclose novel fragments that can serve as starting points for optimization towards small-molecule PDZ domain inhibitors.


Assuntos
Proteína 4 Homóloga a Disks-Large/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Avaliação Pré-Clínica de Medicamentos , Polarização de Fluorescência , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Domínios PDZ/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
7.
ChemMedChem ; 16(7): 1163-1171, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33332774

RESUMO

Phosphorylation-dependent protein-protein interactions play a significant role in biological signaling pathways; therefore, small molecules that are capable of influencing these interactions can be valuable research tools and have potential as pharmaceutical agents. MEMO1 (mediator of ErbB2-cell driven motility) is a phosphotyrosine-binding protein that interacts with a variety of protein partners and has been found to be upregulated in breast cancer patients. Herein, we report the first small-molecule inhibitors of MEMO1 interactions identified through a virtual screening platform and validated in a competitive fluorescence polarization assay. Initial structure-activity relationships have been investigated for these phenazine-core inhibitors and the binding sites have been postulated using molecular dynamics simulations. The most potent biochemical inhibitor is capable of disrupting the large protein interface with a KI of 2.7 µm. In addition, the most promising phenazine core compounds slow the migration of breast cancer cell lines in a scratch assay.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Fenazinas/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Polarização de Fluorescência , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Simulação de Dinâmica Molecular , Estrutura Molecular , Fenazinas/síntese química , Fenazinas/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
8.
Int J Mol Sci ; 21(19)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992526

RESUMO

The covalent transfer of the AMP portion of ATP onto a target protein-termed adenylylation or AMPylation-by the human Fic protein HYPE/FICD has recently garnered attention as a key regulatory mechanism in endoplasmic reticulum homeostasis, neurodegeneration, and neurogenesis. As a central player in such critical cellular events, high-throughput screening (HTS) efforts targeting HYPE-mediated AMPylation warrant investigation. Herein, we present a dual HTS assay for the simultaneous identification of small-molecule activators and inhibitors of HYPE AMPylation. Employing the fluorescence polarization of an ATP analog fluorophore-Fl-ATP-we developed and optimized an efficient, robust assay that monitors HYPE autoAMPylation and is amenable to automated, high-throughput processing of diverse chemical libraries. Challenging our pilot screen with compounds from the LOPAC, Spectrum, MEGx, and NATx libraries yielded 0.3% and 1% hit rates for HYPE activators and inhibitors, respectively. Further, these hits were assessed for dose-dependency and validated via orthogonal biochemical AMPylation assays. We thus present a high-quality HTS assay suitable for tracking HYPE's enzymatic activity, and the resultant first small-molecule manipulators of HYPE-promoted autoAMPylation.


Assuntos
Inibidores Enzimáticos/química , Proteínas de Membrana , Simulação de Acoplamento Molecular , Nucleotidiltransferases , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Avaliação Pré-Clínica de Medicamentos , Chaperona BiP do Retículo Endoplasmático , Polarização de Fluorescência , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/química , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/química
9.
EMBO J ; 39(18): e106275, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32845033

RESUMO

The SARS-CoV-2 coronavirus encodes an essential papain-like protease domain as part of its non-structural protein (nsp)-3, namely SARS2 PLpro, that cleaves the viral polyprotein, but also removes ubiquitin-like ISG15 protein modifications as well as, with lower activity, Lys48-linked polyubiquitin. Structures of PLpro bound to ubiquitin and ISG15 reveal that the S1 ubiquitin-binding site is responsible for high ISG15 activity, while the S2 binding site provides Lys48 chain specificity and cleavage efficiency. To identify PLpro inhibitors in a repurposing approach, screening of 3,727 unique approved drugs and clinical compounds against SARS2 PLpro identified no compounds that inhibited PLpro consistently or that could be validated in counterscreens. More promisingly, non-covalent small molecule SARS PLpro inhibitors also target SARS2 PLpro, prevent self-processing of nsp3 in cells and display high potency and excellent antiviral activity in a SARS-CoV-2 infection model.


Assuntos
Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , Ubiquitina/metabolismo , Animais , Sítios de Ligação , Chlorocebus aethiops , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/genética , Cristalografia por Raios X , Citocinas/genética , Avaliação Pré-Clínica de Medicamentos/métodos , Reposicionamento de Medicamentos , Polarização de Fluorescência , Células HEK293 , Humanos , Cinética , Modelos Moleculares , Inibidores de Proteases/farmacologia , Conformação Proteica , SARS-CoV-2/química , SARS-CoV-2/genética , Ubiquitinas/genética , Células Vero
10.
Proc Natl Acad Sci U S A ; 117(31): 18431-18438, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32690700

RESUMO

Influenza hemagglutinin (HA) glycoprotein is the primary surface antigen targeted by the host immune response and a focus for development of novel vaccines, broadly neutralizing antibodies (bnAbs), and therapeutics. HA enables viral entry into host cells via receptor binding and membrane fusion and is a validated target for drug discovery. However, to date, only a very few bona fide small molecules have been reported against the HA. To identity new antiviral lead candidates against the highly conserved fusion machinery in the HA stem, we synthesized a fluorescence-polarization probe based on a recently described neutralizing cyclic peptide P7 derived from the complementarity-determining region loops of human bnAbs FI6v3 and CR9114 against the HA stem. We then designed a robust binding assay compatible with high-throughput screening to identify molecules with low micromolar to nanomolar affinity to influenza A group 1 HAs. Our simple, low-cost, and efficient in vitro assay was used to screen H1/Puerto Rico/8/1934 (H1/PR8) HA trimer against ∼72,000 compounds. The crystal structure of H1/PR8 HA in complex with our best hit compound F0045(S) confirmed that it binds to pockets in the HA stem similar to bnAbs FI6v3 and CR9114, cyclic peptide P7, and small-molecule inhibitor JNJ4796. F0045 is enantioselective against a panel of group 1 HAs and F0045(S) exhibits in vitro neutralization activity against multiple H1N1 and H5N1 strains. Our assay, compound characterization, and small-molecule candidate should further stimulate the discovery and development of new compounds with unique chemical scaffolds and enhanced influenza antiviral capabilities.


Assuntos
Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Polarização de Fluorescência/métodos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Influenza Humana/virologia , Bibliotecas de Moléculas Pequenas/farmacologia , Antivirais/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/metabolismo , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/metabolismo , Bibliotecas de Moléculas Pequenas/química
11.
Anal Biochem ; 602: 113796, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32485162

RESUMO

TRF2 is a telomere associated protein which plays an important role in telomere maintenance. Knockdown of TRF2 can cause chromosomal end to end fusions and induce DNA damage responses. TRF2 exerts its functions partially by recruiting a number of accessory proteins through its TRF homology domain (TRFH), therefore identification of small molecular compounds which can bind to the TRFH domain of TRF2 and block the interactions of TRF2 with its associated proteins is important to elucidate the molecular mechanism of these protein-protein interactions. Development of robust and sensitive screening and evaluation assays is critical to the identification of TRF2 inhibitors, in this paper we reported the development and optimization of a cascade of screening and binding affinity evaluation assays, including a competitive FP (Fluorescence Polarization) assay utilized in our previous research, and two novel label-free DSF (Differential Scanning Fluorescence) and BLI (Biolayer Interferometry) assays. A previously identified TRF2 inhibitor TRF2-27 was used as an internal reference compound and evaluated in all of these assays. According to the results, DSF assay is not suitable for TRF2 screening because of the low ΔTm, while the optimized labeled-free BLI assay was demonstrated to be an accurate and reproducible assay for TRF2 inhibitor screening and characterization.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Peptídeos/farmacologia , Proteína 2 de Ligação a Repetições Teloméricas/antagonistas & inibidores , Polarização de Fluorescência , Humanos , Conformação Molecular , Peptídeos/química , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
12.
Biochem Biophys Res Commun ; 533(2): 230-234, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-32376008

RESUMO

DNA-encoded chemical libraries (DECLs) are powerful tools for modern drug discovery. A DECL is a pooled mixture of small molecule compounds, each of which is tagged with a unique DNA sequence which functions as a barcode. After incubation with a drug target and washing to remove non-binders, the bound molecules are eluted and submitted for DNA sequencing to determine which molecules are binding the target. While the DECL technology itself is ultra-high throughput, the following re-synthesis of identified compounds for orthogonal validation experiments remains the bottleneck. Using existing DNA-small molecule conjugates directly for affinity measurements, as opposed to complete compound resynthesis, could accelerate the discovery process. To this end, we have tested various geometries of fluorescently-labelled DNA constructs for fluorescence anisotropy (FA) experiments. Minimizing the distance between the fluorescent moiety and ligand can maximize the correlation between ligand-protein interaction and corresponding change in fluorophore rotational freedom, thus leading to larger, easier to interpret changes in FA values. However, close proximity can also cause artifacts due to potentially promiscuous interactions between fluorophore and protein. By balancing these two opposite effects, we have identified applicable fluorescently labelled DNA constructs displaying either a single ligand or pairs of fragments for affinity measurement using a FA assay.


Assuntos
DNA/química , Corantes Fluorescentes/química , Bibliotecas de Moléculas Pequenas/química , Sítios de Ligação , Técnicas de Química Combinatória , DNA/síntese química , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Polarização de Fluorescência , Corantes Fluorescentes/síntese química , Ligantes , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/farmacologia
13.
Nat Chem Biol ; 16(5): 529-537, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32152540

RESUMO

Combination antiretroviral therapy has transformed HIV-1 infection, once a fatal illness, into a manageable chronic condition. Drug resistance, severe side effects and treatment noncompliance bring challenges to combination antiretroviral therapy implementation in clinical settings and indicate the need for additional molecular targets. Here, we have identified several small-molecule fusion inhibitors, guided by a neutralizing antibody, against an extensively studied vaccine target-the membrane proximal external region (MPER) of the HIV-1 envelope spike. These compounds specifically inhibit the HIV-1 envelope-mediated membrane fusion by blocking CD4-induced conformational changes. An NMR structure of one compound complexed with a trimeric MPER construct reveals that the compound partially inserts into a hydrophobic pocket formed exclusively by the MPER residues, thereby stabilizing its prefusion conformation. These results suggest that the MPER is a potential therapeutic target for developing fusion inhibitors and that strategies employing an antibody-guided search for novel therapeutics may be applied to other human diseases.


Assuntos
Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/metabolismo , Internalização do Vírus/efeitos dos fármacos , Sítios de Ligação , Antígenos CD4/metabolismo , Membrana Celular/metabolismo , Dequalínio/química , Dequalínio/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Polarização de Fluorescência , Células HEK293 , Proteína gp41 do Envelope de HIV/genética , HIV-1/patogenicidade , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Mutação , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
14.
Methods Mol Biol ; 2085: 145-160, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31734923

RESUMO

The phytohormone (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile) causes protein-protein interactions (PPI) between F-box Protein CORONATINE INSENSITIVE 1 (COI1) and JASMONATE ZIM DOMAIN (JAZ) transcriptional repressor. A total of 13 JAZ subtypes are encoded in the genome of Arabidopsis thaliana; however, their genetic redundancy obfuscates the individual function of each JAZ. One approach to decipher this redundant signaling network is chemical genetics, using small molecules specific to individual JAZ subtype, for which a reliable and high-throughput screening system of the ligands for all combinations of COI1-JAZs would be indispensable. In this chapter, we describe a fluorescence anisotropy-based quantitative screening system for the ligands of COI1-JAZ co-receptors. Our method is applicable to agonists and antagonists of the COI1-JAZs.


Assuntos
Descoberta de Drogas/métodos , Polarização de Fluorescência , Proteínas de Plantas/agonistas , Proteínas de Plantas/antagonistas & inibidores , Proteínas Recombinantes de Fusão , Proteínas Repressoras , Fatores de Transcrição , Avaliação Pré-Clínica de Medicamentos , Polarização de Fluorescência/métodos , Ligantes , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/química , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Proteínas Repressoras/química , Fluxo de Trabalho
15.
Anal Chem ; 91(11): 7379-7384, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31079453

RESUMO

Fluorescence polarization/anisotropy (FP/FA) approaches are appealing for targets sensing in homogeneous solution due to simplicity, reproducibility and sensitivity. Taking advantage of aptamers, aptamer structure switch FA methods are unique for small molecule detection based on the competition between aptamer-target binding and the hybridization of aptamer and complementary DNA (cDNA). However, usually small FA change is generated in these aptamer assays that only rely on size change caused by hybridization of an oligonucleotide because of the rapid local rotation of fluorophores and small mass change. Here we describe a simple and general aptamer structure switch FA assay for small molecules by employing a large-sized streptavidin (SA) as an effective signal amplifier based on proximity effect to reduce local rotation of fluorophore. In this design, the SA-labeled cDNA hybridizes with fluorescein (FAM)-labeled aptamer, drawing FAM close to SA and bringing a much higher FA value due to restricted local rotation of FAM. Small molecule-aptamer probe binding causes displacement of the SA-labeled cDNA and great decrease of FA. The closeness of SA to FAM in the duplex is key for this proposed strategy to produce large FA changes in target detection. Our method enabled to detect 60 pM aflatoxin B1 (AFB1), 1 nM ochratoxin A (OTA), and 0.5 µM adenosine triphosphate (ATP), respectively. This aptamer FA method combines the merits of aptamers and FA analysis, and it is promising in applications of detection of small molecules with good sensitivity.


Assuntos
Trifosfato de Adenosina/análise , Aflatoxina B1/análise , Aptâmeros de Nucleotídeos/química , Técnicas de Amplificação de Ácido Nucleico , Ocratoxinas/análise , Estreptavidina/química , DNA Complementar/química , Polarização de Fluorescência , Corantes Fluorescentes/química
16.
Sci Rep ; 9(1): 6215, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30996281

RESUMO

Potassium channels selectivity filter (SF) conformation is modulated by several factors, including ion-protein and protein-protein interactions. Here, we investigate the SF dynamics of a single Trp mutant of the potassium channel KcsA (W67) using polarized time-resolved fluorescence measurements. For the first time, an analytical framework is reported to analyze the homo-Förster resonance energy transfer (homo-FRET) within a symmetric tetrameric protein with a square geometry. We found that in the closed state (pH 7), the W67-W67 intersubunit distances become shorter as the average ion occupancy of the SF increases according to cation type and concentration. The hypothesis that the inactivated SF at pH 4 is structurally similar to its collapsed state, detected at low K+, pH 7, was ruled out, emphasizing the critical role played by the S2 binding site in the inactivation process of KcsA. This homo-FRET approach provides complementary information to X-ray crystallography in which the protein conformational dynamics is usually compromised.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Canais de Potássio/química , Canais de Potássio/metabolismo , Conformação Proteica , Anisotropia , Sítios de Ligação , Cristalografia por Raios X/métodos , Polarização de Fluorescência , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico , Potássio/metabolismo , Sódio/metabolismo
17.
J Med Chem ; 61(17): 7448-7470, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-29652143

RESUMO

Early stage drug discovery reporting on relatively new or difficult targets is often associated with insufficient hit triage. Literature reviews of such targets seldom delve into the detail required to critically analyze the associated screening hits reported. Here we take the enzyme glutathione transferase omega-1 (GSTO1-1) as an example of a relatively difficult target and review the associated literature involving small-molecule inhibitors. As part of this process we deliberately pay closer-than-usual attention to assay interference and hit quality aspects. We believe this Perspective will be a useful guide for future development of GSTO1-1 inhibitors, as well serving as a template for future review formats of new or difficult targets.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glutationa Transferase/antagonistas & inibidores , Glutationa Transferase/química , Desenho de Fármacos , Descoberta de Drogas , Polarização de Fluorescência/métodos , Glutationa Transferase/metabolismo , Humanos
18.
J Am Chem Soc ; 139(40): 14192-14197, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28937220

RESUMO

Human nonlysosomal glucosylceramidase (GBA2) is one of several enzymes that controls levels of glycolipids and whose activity is linked to several human disease states. There is a major need to design or discover selective GBA2 inhibitors both as chemical tools and as potential therapeutic agents. Here, we describe the development of a fluorescence polarization activity-based protein profiling (FluoPol-ABPP) assay for the rapid identification, from a 350+ library of iminosugars, of GBA2 inhibitors. A focused library is generated based on leads from the FluoPol-ABPP screen and assessed on GBA2 selectivity offset against the other glucosylceramide metabolizing enzymes, glucosylceramide synthase (GCS), lysosomal glucosylceramidase (GBA), and the cytosolic retaining ß-glucosidase, GBA3. Our work, yielding potent and selective GBA2 inhibitors, also provides a roadmap for the development of high-throughput assays for identifying retaining glycosidase inhibitors by FluoPol-ABPP on cell extracts containing recombinant, overexpressed glycosidase as the easily accessible enzyme source.


Assuntos
Ensaios Enzimáticos/métodos , Inibidores Enzimáticos/farmacologia , Polarização de Fluorescência/métodos , Imino Açúcares/farmacologia , beta-Glucosidase/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/química , Glucosilceramidase , Humanos , Imino Açúcares/química , beta-Glucosidase/metabolismo
19.
J Biochem Mol Toxicol ; 31(11)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28714536

RESUMO

1-Phenyl-5-p-tolyl-1H-1, 2, 3-triazole (PPTA) was a synthesized compound. The result of acute toxicities to mice of PPTA by intragastric administration indicated that PPTA did not produce any significant acute toxic effect on Kunming strain mice. It exhibited the various potent inhibitory activities against two kinds of bananas pathogenic bacteria, black sigatoka and freckle, when compared with that of control drugs and the inhibitory rates were up to 64.14% and 43.46%, respectively, with the same concentration of 7.06 mM. The interaction of PPTA with human serum albumin (HSA) was studied using fluorescence polarization, absorption spectra, 3D fluorescence, and synchronous spectra in combination with quantum chemistry and molecular modeling. Multiple modes of interaction between PPTA and HSA were suggested to stabilize the PPTA-HSA complex, based on thermodynamic data and molecular modeling. Binding of PPTA to HSA induced perturbation in the microenvironment around HSA as well as secondary structural changes in the protein.


Assuntos
Anti-Infecciosos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Albumina Sérica Humana/metabolismo , Triazóis/metabolismo , Triazóis/farmacologia , Animais , Sítios de Ligação , Feminino , Polarização de Fluorescência , Fungicidas Industriais/farmacologia , Humanos , Masculino , Camundongos , Modelos Moleculares , Musa/microbiologia , Estrutura Secundária de Proteína , Albumina Sérica Humana/química , Testes de Toxicidade Aguda , Triazóis/toxicidade
20.
Bioorg Med Chem ; 25(6): 1939-1948, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28233676

RESUMO

The B-cell lymphoma-2 (Bcl-2) family proteins are attractive targets for cancer therapy. In our previous work, the structure-activity relationship of WL-276 was studied. According to the results, rhodanine derivatives show potent binding affinity for Bcl-2 and Mcl-1 protein and show weaker activity against Bcl-XL protein. Based on the previous results, a new class of indole-3-carboxylic acid-based derivatives were designed and synthesized as Bcl-2/Mcl-1 dual inhibitors. Among them, compound 17 has a Ki value of 0.26µM for Bcl-2 protein and is better than WL-276. Furthermore, it inhibits the myeloid cell leukemia sequence 1 (Mcl-1) protein with a Ki value of 72nM. Especially, compound 31 can selectively acting on Bcl-2 and Mcl-1 protein but not Bcl-XL protein, which has great significance for developing dual inhibitors targeting Bcl-2 and Mcl-1 protein, as well as specific antitumor abilities in cells.


Assuntos
Desenho de Fármacos , Indóis/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Avaliação Pré-Clínica de Medicamentos , Polarização de Fluorescência , Humanos , Indóis/química , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA