Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Water Res ; 251: 121050, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241807

RESUMO

While the adsorption/bio-oxidation (A/B) process has been widely studied for carbon capture and shortcut nitrogen (N) removal, its integration with enhanced biological phosphorus (P) removal (EBPR) has been considered challenging and thus unexplored. Here, full-scale pilot testing with an integrated system combining A-stage high-rate activated sludge with B-stage partial (de)nitrification/anammox and side-stream EBPR (HRAS-P(D)N/A-S2EBPR) was conducted treating real municipal wastewater. The results demonstrated that, despite the relatively low influent carbon load, the B-stage P(D)N-S2EBPR system could achieve effective P removal performance, with the carbon supplement and redirection of the A-stage sludge fermentate to the S2EBPR. The novel process configuration design enabled a system shift in carbon flux and distribution for efficient EBPR, and provided unique selective factors for ecological niche partitioning among different key functionally relevant microorganisms including polyphosphate accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs). The combined nitrite from B-stage to S2EBPR and aerobic-anoxic conditions in our HRAS-P(D)N/A-S2EBPR system promoted DPAOs for simultaneous internal carbon-driven denitrification via nitrite and P removal. 16S rRNA gene-based oligotyping analysis revealed high phylogenetic microdiversity within the Accumulibacter population and discovered coexistence of certain oligotypes of Accumulibacter and Competibacter correlated with efficient P removal. Single-cell Raman micro-spectroscopy-based phenotypic profiling showed high phenotypic microdiversity in the active PAO community and the involvement of unidentified PAOs and internal carbon-accumulating organisms that potentially played an important role in system performance. This is the first pilot study to demonstrate that the P(D)N-S2EBPR system could achieve shortcut N removal and influent carbon-independent EBPR simultaneously, and the results provided insights into the effects of incorporating S2EBPR into A/B process on metabolic activities, microbial ecology, and resulted system performance.


Assuntos
Esgotos , Purificação da Água , Desnitrificação , Fósforo/metabolismo , Rios , Nitrogênio , RNA Ribossômico 16S , Filogenia , Nitritos , Projetos Piloto , Reatores Biológicos , Purificação da Água/métodos , Polifosfatos/metabolismo , Carbono
2.
Water Res ; 251: 121089, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38277823

RESUMO

We piloted the incorporation of side-stream enhanced biological phosphorus removal (S2EBPR) with A/B stage short-cut nitrogen removal processes to enable simultaneous carbon-energy-efficient nutrients removal. This unique configuration and system conditions exerted selective force on microbial populations distinct from those in conventional EBPR. Interestingly, effective P removal was achieved with the predominance of Acinetobacter (21.5 ± 0.1 %) with nearly negligible level of known conical PAOs (Ca. Accumulibacter and Tetrasphaera were 0.04 ± 0.10 % and 0.47 ± 0.32 %, respectively). Using a combination of techniques, such as fluorescence in situ hybridization (FISH) coupled with single cell Raman spectroscopy (SCRS), the metabolic tracing of Acinetobacter-like cells exerted PAO-like phenotypic profiling. In addition, comparative metagenomics analysis of the closely related Acinetobacter spp. revealed the EBPR relevant metabolic pathways. Further oligotyping analysis of 16s rRNA V4 region revealed sub-clusters (microdiversity) of the Acinetobacter and revealed that the sub-group (oligo type 1, identical (100 % alignment identity) hits from Acinetobacter_midas_s_49494, and Acinetobacter_midas_s_55652) correlated with EBPR activities parameters, provided strong evidence that the identified Acinetobacter most likely contributed to the overall P removal in our A/B-shortcut N-S2EBPR system. To the best of our knowledge, this is the first study to confirm the in situ EBPR activity of Acinetobacter using combined genomics and SCRS Raman techniques. Further research is needed to identify the specific taxon, and phenotype of the Acinetobacter that are responsible for the P-removal.


Assuntos
Fósforo , Rios , Fósforo/metabolismo , RNA Ribossômico 16S/genética , Hibridização in Situ Fluorescente , Reatores Biológicos , Polifosfatos/metabolismo , Esgotos
3.
J Microbiol Biotechnol ; 34(2): 407-414, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38247220

RESUMO

Phosphorus is an essential but non-renewable nutrient resource critical for agriculture. Luxury phosphorus uptake allows microalgae to synthesize polyphosphate and accumulate phosphorus, but, depending on the strain of algae, polyphosphate may be degraded within 4 hours of accumulation. We studied the recovery of phosphorus from wastewater through luxury uptake by an engineered strain of Synechocystis sp. with inhibited polyphosphate degradation and the effect of this engineered Synechocystis biomass on lettuce growth. First, a strain (ΔphoU) lacking the phoU gene, which encodes a negative regulator of environmental phosphate concentrations, was generated to inhibit polyphosphate degradation in cells. Polyphosphate concentrations in the phoU knock-out strain were maintained for 24 h and then decreased slowly. In contrast, polyphosphate concentrations in the wild-type strain increased up to 4 h and then decreased rapidly. In addition, polyphosphate concentration in the phoU knockout strain cultured in semi-permeable membrane bioreactors with artificial wastewater medium was 2.5 times higher than that in the wild type and decreased to only 16% after 48 h. The biomass of lettuce treated with the phoU knockout strain (0.157 mg P/m2) was 38% higher than that of the lettuce treated with the control group. These results indicate that treating lettuce with this microalgal biomass can be beneficial to crop growth. These results suggest that the use of polyphosphate-accumulating microalgae as biofertilizers may alleviate the effects of a diminishing phosphorous supply. These findings can be used as a basis for additional genetic engineering to increase intracellular polyphosphate levels.


Assuntos
Synechocystis , Águas Residuárias , Synechocystis/genética , Synechocystis/metabolismo , Polifosfatos/metabolismo , Fósforo/metabolismo , Reatores Biológicos , Meios de Cultura/metabolismo
4.
Sci Total Environ ; 912: 168952, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38043807

RESUMO

Enhanced biological phosphorus removal (EBPR) is an effective process for phosphorus removal from wastewater. In this study, two lab-scale sequencing batch reactors (SBR) were used to perform EBPR process, in which genus Propioniciclava was unexpectedly accumulated and its relative abundance was over 70 %. A series of tests were conducted to explore the role of Propioniciclava in the two EBPR systems. The two systems performed steadily throughout the study, and the phosphorus removal efficiencies were 96.6 % and 93.5 % for SBR1 and SBR2, respectively. The stoichiometric analysis related to polyphosphate accumulating organisms (PAOs) indicated that polyphosphate accumulating metabolism (PAM) was achieved in the anaerobic phase. It appeared that the Propioniciclava-dominated systems could not perform denitrifying phosphorus removal. Instead, phosphorus was released under anoxic conditions without carbon sources. According to the genomic information from Integrated Microbial Genomes (IMG) database, Propioniciclava owns ppk1, ppk2 and ppx genes that are associated with phosphorus release and uptake functions. By phylogenetic investigation of communities by reconstruction of unobserved states 2 (PICRUSt2) analysis, the abundance of genes related to phosphorus metabolism was much higher than that of genes related to denitrification. Therefore, Propioniciclava was presumed to be a potential PAO without denitrifying phosphorus uptake function. In addition to Propioniciclava, Tessaracoccus and Thiothrix were also enriched in both systems. Overall, this study proposes a novel potential PAO and broadens the understanding of EBPR microbial communities.


Assuntos
Fósforo , Polifosfatos , Polifosfatos/metabolismo , Fósforo/metabolismo , Filogenia , Águas Residuárias , Transporte Biológico , Reatores Biológicos , Esgotos
5.
Bioresour Technol ; 393: 130048, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37980947

RESUMO

Previous researches have recognized the vital role of Tetrasphaera elongata in enhanced biological phosphorus removal systems, but the underlying mechanisms remain under-investigated. To address this issue, this study investigated the metabolic characteristics of Tetrasphaera elongata when utilizing glucose as the sole carbon source. Results showed under aerobic conditions, Tetrasphaera elongata exhibited a glucose uptake rate of 136.6 mg/(L·h) and a corresponding phosphorus removal rate of 8.6 mg P/(L·h). Upregulations of genes associated with the glycolytic pathway and oxidative phosphorylation were observed. Noteworthily, the genes encoding the two-component sensor histidine kinase and response regulator transcription factor exhibited a remarkable 28.3 and 27.4-fold increase compared with the group without glucose. Since these genes play a pivotal role in phosphate-specific transport systems, collectively, these findings shed light on a potential mechanism for simultaneous decarbonization and phosphorus removal by Tetrasphaera elongata under aerobic conditions, providing fresh insights into phosphorus removal from wastewaters.


Assuntos
Actinobacteria , Actinomycetales , Glucose , Glucose/metabolismo , Fósforo/metabolismo , Carbono/metabolismo , Polifosfatos/metabolismo , Actinomycetales/genética , Actinomycetales/metabolismo , Reatores Biológicos , Esgotos
6.
Water Res ; 246: 120742, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37857010

RESUMO

Partial nitrification (PN) and high glycogen accumulating metabolism (GAM) activity are the basis for efficient nitrogen (N) and phosphorus (P) removal in simultaneous nitrification endogenous denitrification and phosphorus removal (SNDPR) systems. However, achieving these processes in practical operations is challenging. This study proposes that light irradiation is a novel strategy to enhance the nutrient removal performance of the SNDPR system with low carbon to nitrogen ratios (C/N of 3.3-4.1) domestic wastewater. Light energy densities (Es) of 55-135 J/g VSS were found to promote the activity of ammonia-oxidizing bacteria (AOB) and GAM, while inhibiting the activity of nitrite-oxidizing bacteria (NOB) and polyphosphate accumulating metabolism (PAM). Long-term exposure to different light patterns at Es of 55-135 J/g VSS revealed that continuous light rapidly achieved PN by inhibiting NOB activity and promoted the growth of glycogen accumulating organisms (GAOs), allowing the removal of above 82 % N and below 80 % P. Intermittent light maintained stable PN by inhibiting the activity and growth of NOB and promoted the growth of polyphosphate accumulating organisms (PAOs) with high GAM activity (Accmulibacer IIC-ii and IIC-iii), allowing the removal of above 82 % N and 95 % P. Flow cytometry and enzyme activity assays showed that light promoted GAM-related enzyme activity and the metabolic activity of partial Accmulibacer II over other endogenous denitrifying bacteria, while inhibiting NOB translation activity. These findings provide a new approach for enhancing nutrient removal, especially for achieving PN and promoting GAM activity, in SNDPR systems treating low C/N ratio domestic wastewater using light irradiation.


Assuntos
Nitrificação , Águas Residuárias , Desnitrificação , Fósforo/metabolismo , Eliminação de Resíduos Líquidos , Reatores Biológicos/microbiologia , Nitrogênio/metabolismo , Bactérias/metabolismo , Glicogênio/metabolismo , Nitritos/metabolismo , Polifosfatos/metabolismo , Esgotos
7.
Water Res ; 246: 120713, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37839225

RESUMO

Previous research suggested that two major groups of polyphosphate-accumulating organisms (PAOs), i.e., Ca. Accumulibacter and Tetrasphaera, play cooperative roles in enhanced biological phosphorus removal (EBPR). The fermentation of complex organic compounds by Tetrasphaera provides carbon sources for Ca. Accumulibacter. However, the viability of the fermentation products (e.g., lactate, succinate, alanine) as carbon sources for Ca. Accumulibacter and their potential effects on the metabolism of Ca. Accumulibacter were largely unknown. This work for the first time investigated the capability and metabolic details of Ca. Accumulibacter cognatus clade IIC strain SCUT-2 (enriched in a lab-scale reactor with a relative abundance of 42.8%) in using these fermentation products for EBPR. The enrichment culture was able to assimilate lactate and succinate with the anaerobic P release to carbon uptake ratios of 0.28 and 0.36 P mol/C mol, respectively. In the co-presence of acetate, the uptake of lactate was strongly inhibited, since two substrates shared the same transporter as suggested by the carbon uptake bioenergetic analysis. When acetate and succinate were fed at the same time, Ca. Accumulibacter assimilated two carbon sources simultaneously. Proton motive force (PMF) was the key driving force (up to 90%) for the uptake of lactate and succinate by Ca. Accumulibacter. Apart from the efflux of proton in symport with phosphate via the inorganic phosphate transport system, translocation of proton via the activity of fumarate reductase contributed to the generation of PMF, which agreed with the fact that PHV was a major component of PHA when lactate and succinate were used as carbon sources, involving the succinate-propionate pathway. Metabolic models for the usage of lactate and succinate by Ca. Accumulibacter for EBPR were built based on the combined physiological, biochemical, metagenomic, and metatranscriptomic analyses. Alanine was shown as an invalid carbon source for Ca. Accumulibacter. Instead, it significantly and adversely affected Ca. Accumulibacter-mediated EBPR. Phosphate release was observed without alanine uptake. Significant inhibitions on the aerobic phosphate uptake was also evident. Overall, this study suggested that there might not be a simply synergic relationship between Ca. Accumulibacter and Tetrasphaera. Their interactions would largely be determined by the kind of fermentation products released by the latter.


Assuntos
Betaproteobacteria , Fósforo , Fósforo/metabolismo , Fermentação , Prótons , Reatores Biológicos , Betaproteobacteria/metabolismo , Polifosfatos/metabolismo , Lactatos/metabolismo , Alanina , Succinatos/metabolismo , Carbono/metabolismo , Acetatos/metabolismo
8.
Water Res ; 247: 120776, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37898002

RESUMO

Enhanced biological phosphate removal and aerobic sludge granulation are commonly studied with fatty acids as substrate. Fermentative substrates such as glucose have received limited attention. In this work, glucose conversion by aerobic granular sludge and its impact on phosphate removal was studied. Long-term stable phosphate removal and successful granulation were achieved. Glucose was rapidly taken up (273 mg/gVSS/h) at the start of the anaerobic phase, while phosphate was released during the full anaerobic phase. Some lactate was produced during glucose consumption, which was anaerobically consumed once glucose was depleted. The phosphate release appeared to be directly proportional to the uptake of lactate. The ratio of phosphorus released to glucose carbon taken up over the full anaerobic phase was 0.25 Pmol/Cmol. Along with glucose and lactate uptake in the anaerobic phase, poly­hydroxy-alkanoates and glycogen storage were observed. There was a linear correlation between glucose consumption and lactate formation. While lactate accounted for approximately 89 % of the observed products in the bulk liquid, minor quantities of formate (5 %), propionate (4 %), and acetate (3 %) were also detected (mass fraction). Formate was not consumed anaerobically. Quantitative fluorescence in-situ hybridization (qFISH) revealed that polyphosphate accumulating organisms (PAO) accounted for 61 ± 15 % of the total biovolume. Metagenome evaluation of the biomass indicated a high abundance of Micropruina and Ca. Accumulibacter in the system, which was in accordance with the microscopic observations and the protein mass fraction from metaproteome analysis. Anaerobic conversions were evaluated based on theoretical ATP balances to provide the substrate distribution amongst the dominant genera. This research shows that aerobic granular sludge technology can be applied to glucose-containing effluents and that glucose is a suitable substrate for achieving phosphate removal. The results also show that for fermentable substrates a microbial community consisting of fermentative organisms and PAO develop.


Assuntos
Glucose , Esgotos , Reatores Biológicos , Polifosfatos/metabolismo , Fósforo/metabolismo , Lactatos
9.
Appl Environ Microbiol ; 89(8): e0077123, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37466435

RESUMO

"Candidatus Accumulibacter" is the major polyphosphate-accumulating organism (PAO) in global wastewater treatment systems, and its phylogenetic and functional diversity have expanded in recent years. In addition to the widely recognized type I and II sublineages, we discovered a novel type enriched in laboratory bioreactors. Core gene and machine learning-based gene feature profiling supported the assertion that type III "Ca. Accumulibacter" is a potential PAO with the unique function of using dimethyl sulfoxide as an electron acceptor. Based on the correlation between ppk1 and genome similarity, the species-level richness of Accumulibacter was estimated to be over 100, suggesting that the currently recognized species are only the tip of the iceberg. Meanwhile, the interstrain transcriptional and morphological features of multiple "Ca. Accumulibacter" strains co-occurring in a bioreactor were investigated. Metatranscriptomics of seven co-occurring strains indicated that the expression level and interphasic dynamics of PAO phenotype-related genes had minimal correlation with their phylogeny. In particular, the expression of denitrifying and polyphosphate (poly-P) metabolism genes exhibited higher interstrain and interphasic divergence than expression of glycogen and polyhydroxyalkanoate metabolic genes. A strategy of cloning rRNA genes from different strains based on similar genomic synteny was successfully applied to differentiate their morphology via fluorescence in situ hybridization. Our study further expands the phylogenetic and functional diversity of "Ca. Accumulibacter" and proposes that deciphering the function and capability of certain "Ca. Accumulibacter" should be tailored to the environment and population in question. IMPORTANCE In the last 2 decades, "Ca. Accumulibacter" has garnered significant attention as the core functional but uncultured taxon for enhanced biological phosphorus removal due to its phylogenetic and functional diversity and intragenus niche differentiation. Since 2002, it has been widely known that this genus has two sublineages (type I and II). However, in this study, a metagenomic approach led to the discovery of a novel type (type III) with proposed novel functional features. By comparing the average nucleotide identity of "Ca. Accumulibacter" genomes and the similarity of ppk1, a phylogenetic biomarker largely deposited in databases, the global species-level richness of "Ca. Accumulibacter" was estimated for the first time to be over 100. Furthermore, we observed the co-occurrence of multiple "Ca. Accumulibacter" strains in a single bioreactor and found the simultaneous transcriptional divergence of these strains intriguing with regard to their niche differentiation within a single community. Our results indicated a decoupling feature between transcriptional pattern and phylogeny for co-occurring strains.


Assuntos
Betaproteobacteria , Filogenia , Hibridização in Situ Fluorescente , Betaproteobacteria/genética , RNA Ribossômico 16S/genética , Fósforo/metabolismo , Reatores Biológicos , Polifosfatos/metabolismo , Esgotos
10.
Int J Mol Sci ; 24(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37373026

RESUMO

Phosphorus (P) is the second most important macronutrient for crop growth and a limiting factor in food production. Choosing the right P fertilizer formulation is important for crop production systems because P is not mobile in soils, and placing phosphate fertilizers is a major management decision. In addition, root microorganisms play an important role in helping phosphorus fertilization management by regulating soil properties and fertility through different pathways. Our study evaluated the impact of two phosphorous formulations (polyphosphates and orthophosphates) on physiological traits of wheat related to yield (photosynthetic parameters, biomass, and root morphology) and its associated microbiota. A greenhouse experiment was conducted using agricultural soil deficient in P (1.49%). Phenotyping technologies were used at the tillering, stem elongation, heading, flowering, and grain-filling stages. The evaluation of wheat physiological traits revealed highly significant differences between treated and untreated plants but not between phosphorous fertilizers. High-throughput sequencing technologies were applied to analyse the wheat rhizosphere and rhizoplane microbiota at the tillering and the grain-filling growth stages. The alpha- and beta-diversity analyses of bacterial and fungal microbiota revealed differences between fertilized and non-fertilized wheat, rhizosphere, and rhizoplane, and the tillering and grain-filling growth stages. Our study provides new information on the composition of the wheat microbiota in the rhizosphere and rhizoplane during growth stages (Z39 and Z69) under polyphosphate and orthophosphate fertilization. Hence, a deeper understanding of this interaction could provide better insights into managing microbial communities to promote beneficial plant-microbiome interactions for P uptake.


Assuntos
Microbiota , Fósforo , Fósforo/metabolismo , Fertilizantes , Triticum/metabolismo , Rizosfera , Microbiota/fisiologia , Solo , Polifosfatos/metabolismo , Microbiologia do Solo
11.
Environ Res ; 233: 116494, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37356531

RESUMO

Tetrasphaera-related polyphosphate accumulating organisms (PAOs) are the key functional guilds for enhanced biological phosphorus removal (EBPR) systems. Their biomass enrichment can be enhanced by the nitrification inhibitor allylthiourea (ATU). However, the underlying assembly mechanism and the functional potential of the EBPR microbiome regulated by ATU are unclear. This study investigates the effect of ATU on microbiome assembly and functional potential by closely following the microbiota dynamics in an EBPR system enriched with Tetrasphaera-related PAOs for 288-days before, during and after ATU addition. The results showed that ATU addition increased microbiota structural similarity and compositional convergence, and enhanced determinism in the assembly of EBPR microbiome. During exposure to ATU, Tetrasphaera-related PAOs were governed by homogeneous selection and the dominant species revealed by 16S rRNA gene-based phylogenetic analysis shifted from clade III to clade I. Meanwhile, ATU supply promoted significant enrichment of functional genes involved in phosphate transport (pit) and polyphosphate synthesis and degradation (ppk1 and ppk2), whereas both Nitrosomonas and ammonia monooxygenase-encoding genes (amoA/B/C) assignable to this group of nitrifying bacteria decreased. Moreover, ATU addition relieved the significant abundance correlation between filamentous bacteria Ca. Promineofilum and denitrifying Brevundimonas (FDR-adjusted P < 0.01), damaging their potential synergic or cooperative interactions, thus weakening their competitiveness against Tetrasphaera-related PAOs. Notably, ATU withdrawn created opportunistic conditions for the unexpected explosive growth and predominance of Thiothrix filaments, leading to a serious bulking event. Our study provides new insights into the microbial ecology of Tetrasphaera-related PAOs in EBPR system, which could guide the establishment of an efficient microbiota for EBPR.


Assuntos
Actinomycetales , Fósforo , Polifosfatos/metabolismo , Filogenia , RNA Ribossômico 16S , Actinomycetales/genética , Actinomycetales/metabolismo , Bactérias/genética , Bactérias/metabolismo , Reatores Biológicos , Esgotos/microbiologia
12.
J Environ Radioact ; 263: 107185, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37094505

RESUMO

The intricate dynamics of inorganic polyphosphate (polyP) in response to phosphorus (P) limitation and metal exposure typical of contaminated aquatic environments is poorly understood. Cyanobacteria are important primary producers in aquatic environments that are exposed to P stringency as well as metal contamination. There is a growing concern regarding migration of uranium, generated as a result of anthropogenic activities, into the aquatic environments owing to high mobility and solubility of stable aqueous complexes of uranyl ions. The polyP metabolism in cyanobacteria in context of uranium (U) exposure under P limitation has hardly been explored. In this study, we analyzed the polyP dynamics in a marine, filamentous cyanobacterium Anabaena torulosa under combination of variable phosphate concentrations (overplus and deficient) and uranyl exposure conditions typical of marine environments. Polyphosphate accumulation (polyP+) or deficient (polyP-) conditions were physiologically synthesized in the A. torulosa cultures and were ascertained by (a) toulidine blue staining followed by their visualization using bright field microscopy and (b) scanning electron microscopy in combination with energy dispersive X-ray spectroscopy (SEM/EDX). On exposure to 100 µM of uranyl carbonate at pH 7.8, it was observed that the growth of polyP+ cells under phosphate limitation was hardly affected and these cells exhibited larger amounts of uranium binding as compared to polyP- cells of A. torulosa. In contrast, the polyP- cells displayed extensive lysis when exposed to similar U exposure. Our findings suggest that polyP accumulation played an important role in conferring uranium tolerance in the marine cyanobacterium, A. torulosa. The polyP-mediated uranium tolerance and binding could serve as a suitable strategy for remediation of uranium contamination in aquatic environments.


Assuntos
Cianobactérias , Monitoramento de Radiação , Urânio , Polifosfatos/metabolismo , Urânio/toxicidade , Urânio/metabolismo , Cianobactérias/metabolismo
13.
J Hazard Mater ; 451: 131157, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36889076

RESUMO

Sulfate in wastewater can be reduced to sulfide and its impact on the stability of enhanced biological phosphorus removal (EBPR) is still unclear. In this study, the metabolic changes and subsequent recovery of polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) were investigated at different sulfide concentrations. The results showed that the metabolic activity of PAOs and GAOs was mainly related to H2S concentration. Under anaerobic conditions, the catabolism of PAOs and GAOs was promoted at H2S concentrations below 79 mg/L S and 271 mg/L S, respectively, and inhibited above these concentrations; whereas anabolism was consistently inhibited in the presence of H2S. The phosphorus (P) release was also pH-dependent due to the intracellular free Mg2+ efflux from PAOs. H2S was more destructive to the esterase activity and membrane permeability of PAOs than those of GAOs and prompted intracellular free Mg2+ efflux of PAOs, resulting in worse aerobic metabolism and subsequent recovery of PAOs than GAOs. Additionally, sulfides facilitated the production of extracellular polymeric substances (EPS), especially tightly bound EPS. The amount of EPS in GAOs was significantly higher than that in PAOs. The above results indicated that sulfide had a stronger inhibition to PAOs than GAOs, and when sulfide was present, GAOs had a competitive advantage over PAOs in EBPR.


Assuntos
Glicogênio , Polifosfatos , Sulfetos , Águas Residuárias , Aerobiose , Reatores Biológicos , Glicogênio/metabolismo , Fósforo/farmacologia , Fósforo/metabolismo , Polifosfatos/metabolismo , Águas Residuárias/química , Sulfetos/análise , Sulfetos/metabolismo , Eliminação de Resíduos Líquidos
14.
Plant Physiol ; 192(2): 927-944, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36946208

RESUMO

Lysosome-related organelles (LROs) are a class of heterogeneous organelles conserved in eukaryotes that primarily play a role in storage and secretion. An important function of LROs is to mediate metal homeostasis. Chlamydomonas reinhardtii is a model organism for studying metal ion metabolism; however, structural and functional analyses of LROs in C. reinhardtii are insufficient. Here, we optimized a method for purifying these organelles from 2 populations of cells: stationary phase or overloaded with iron. The morphology, elemental content, and lysosomal activities differed between the 2 preparations, even though both have phosphorus and metal ion storage functions. LROs in stationary phase cells had multiple non-membrane-bound polyphosphate granules to store phosphorus. Those in iron-overloaded cells were similar to acidocalcisomes (ACs), which have a boundary membrane and contain 1 or 2 large polyphosphate granules to store more phosphorus. We established a method for quantifying the capacity of LROs to sequester individual trace metals. Based on a comparative proteomic analysis of these 2 types of LROs, we present a comprehensive AC proteome and identified 113 putative AC proteins. The methods and protein inventories provide a framework for studying the biogenesis and modification of LROs and the mechanisms by which they participate in regulating metal ion metabolism.


Assuntos
Chlamydomonas , Chlamydomonas/metabolismo , Proteômica , Organelas/metabolismo , Lisossomos/metabolismo , Polifosfatos/metabolismo , Fósforo/metabolismo
15.
Appl Microbiol Biotechnol ; 107(5-6): 1997-2009, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36759376

RESUMO

Polyphosphate accumulating organisms (PAOs) are responsible for enhanced biological phosphate removal (EBPR) from wastewater, where they grow embedded in a matrix of extracellular polymeric substances (EPS). EPSs comprise a mixture of biopolymers like polysaccharides or (glyco)proteins. Despite previous studies, little is known about the dynamics of EPS in mixed cultures, and their production by PAOs and potential consumption by flanking microbes. EPSs are biodegradable and have been suggested to be a substrate for other organisms in the community. Studying EPS turnover can help elucidate their biosynthesis and biodegradation cycles. We analyzed the turnover of proteins and polysaccharides in the EPS of an enrichment culture of PAOs relative to the turnover of internal proteins. An anaerobic-aerobic sequencing batch reactor (SBR) simulating EBPR conditions was operated to enrich for PAOs. After achieving a stable culture, carbon source was switched to uniformly 13C-labeled acetate. Samples were collected at the end of each aerobic phase. EPSs were extracted by alkaline treatment. 13C enrichment in proteins and sugars (after hydrolysis of polysaccharides) in the extracted EPS were measured by mass spectrometry. The average turnover rate of sugars and proteins (0.167 and 0.192 d-1 respectively) was higher than the expected value based on the solid removal rate (0.132 d-1), and no significant difference was observed between intracellular and extracellular proteins. This indicates that EPS from the PAO enriched community is not selectively degraded by flanking populations under stable EBPR process conditions. Instead, we observed general decay of biomass, which corresponds to a value of 0.048 d-1. KEY POINTS: • Proteins showed a higher turnover rate than carbohydrates. • Turnover of EPS was similar to the turnover of intracellular proteins. • EPS is not preferentially consumed by flanking populations.


Assuntos
Fósforo , Águas Residuárias , Fósforo/metabolismo , Polifosfatos/metabolismo , Matriz Extracelular/metabolismo , Polímeros , Açúcares , Reatores Biológicos , Esgotos
16.
Bioresour Technol ; 373: 128744, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36791978

RESUMO

Tetrasphaera-enhanced biological phosphorus removal (T-EBPR) was developed by augmenting conventional EBPR (C-EBPR) with Tetrasphaera to improve phosphorus removal from anaerobic digestate of swine wastewater. At influent total phosphorus (TP) concentrations of 45-55 mg/L, T-EBPR achieved effluent TP concentration of 4.17 ± 1.02 mg/L, 54 % lower than that in C-EBPR (8.98 ± 0.76 mg/L). The enhanced phosphorous removal was presumably due to the synergistic effect of Candidatus Accumulibacter and Tetrasphaera occupying different ecological niches. Bioaugmentation with Tetrasphaera promoted the polyphosphate accumulation metabolism depending more on the glycolysis pathway, as evidenced by an increase in intracellular storage compounds of glycogen and polyhydroxyalkanoates by 0.87 and 0.34 mmol C/L, respectively. The enhanced intracellular storage capacity was coincidentally linked to the increase in phosphorus release and uptake rates by 1.23 and 1.01 times, respectively. These results suggest bioaugmentation with Tetrasphaera could be an efficient way for improved phosphorus removal from high-strength wastewater.


Assuntos
Actinomycetales , Águas Residuárias , Animais , Suínos , Fósforo/metabolismo , Anaerobiose , Polifosfatos/metabolismo , Reatores Biológicos , Actinomycetales/metabolismo , Esgotos
17.
Arch Microbiol ; 205(1): 47, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36592238

RESUMO

The cells of Saccharomyces cerevisiae are capable for phosphate surplus: the increased uptake of phosphate (Pi) and accumulation of inorganic polyphosphate (polyP) occur when the cells after Pi limitation were cultivated in a medium supplemented with Pi. We demonstrated that single knockout mutations in the PHO84, PHO87, and PHO89 genes encoding plasma membrane phosphate transporters suppressed the Pi uptake and polyP accumulation under phosphate surplus at nitrogen starvation. The knockout strains in the PHM6 and PHM7 genes encoding unannotated PHO-proteins showed decreased polyP accumulation under Pi surplus both at nitrogen starvation and in complete YPD medium. This is due to the suppression of Pi uptake in the cells of these mutant strains. We speculate that Pi transporters of plasma membrane, and Phm6 and Phm7 proteins function in concert providing increased Pi uptake at phosphate surplus conditions.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fosfatos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Polifosfatos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico
18.
Microb Ecol ; 85(2): 478-494, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35157108

RESUMO

Excessive phosphorus can lead to eutrophication in marine and coastal ecosystems. Sulfur metabolism-associated microorganisms stimulate biological phosphorous removal. However, the integrating co-biotransformation mechanism of phosphorus and sulfur in subtropical marine mangrove ecosystems with Spartina alterniflora invasion is poorly understood. In this study, an ecological model of the coupling biotransformation of sulfur and phosphorus is constructed using metagenomic analysis and quantitative polymerase chain reaction strategies. Phylogenetic analysis profiling, a distinctive microbiome with high frequencies of Gammaproteobacteria and Deltaproteobacteria, appears to be an adaptive characteristic of microbial structures in subtropical mangrove ecosystems. Functional analysis reveals that the levels of sulfate reduction, sulfur oxidation, and poly-phosphate (Poly-P) aggregation decrease with increasing depth. However, at depths of 25-50 cm in the mangrove ecosystems with S. alterniflora invasion, the abundance of sulfate reduction genes, sulfur oxidation genes, and polyphosphate kinase (ppk) significantly increased. A strong positive correlation was found among ppk, sulfate reduction, sulfur oxidation, and sulfur metabolizing microorganisms, and the content of sulfide was significantly and positively correlated with the abundance of ppk. Further microbial identification suggested that Desulfobacterales, Anaerolineales, and Chromatiales potentially drove the coupling biotransformation of phosphorus and sulfur cycling. In particular, Desulfobacterales exhibited dominance in the microbial community structure. Our findings provided insights into the simultaneous co-biotransformation of phosphorus and sulfur bioconversions in subtropical marine mangrove ecosystems with S. alterniflora invasion.


Assuntos
Microbiota , Áreas Alagadas , Polifosfatos/análise , Polifosfatos/metabolismo , Filogenia , Espécies Introduzidas , Nitrogênio/metabolismo , Fósforo/metabolismo , Poaceae , Enxofre/metabolismo , Sulfatos/metabolismo , China
19.
Water Res ; 227: 119340, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36395566

RESUMO

Glycerol is abundantly present in wastewater from industries such as biodiesel production facilities. Glycerol is also a potential carbon source for microbes that are involved in wastewater nutrient removal processes. The conversion of glycerol in biological phosphorus removal of aerobic granular sludge processes has not been explored to date. The current study describes glycerol utilization by aerobic granular sludge and enhanced biological phosphorus removal (EBPR). Robust granules with good phosphorus removal capabilities were formed in an aerobic granular sludge sequencing batch reactor fed with glycerol. The interaction between the fermentative conversion of glycerol and product uptake by polyphosphate accumulating organisms (PAO) was studied using stoichiometric and microbial community analysis. Metagenomic, metaproteomic and microscopic analysis identified a community dominated by Actinobacteria (Tessaracoccus and Micropruina) and a typical PAO known as Ca. Accumulibacter. Glycerol uptake facilitator (glpF) and glycerol kinase (glpK), two proteins involved in the transport of glycerol into the cellular metabolism, were only observed in the genome of the Actinobacteria. The anaerobic conversion appeared to be a combination of a substrate fermentation and product uptake-type reaction. Initially, glycerol fermentation led mainly to the production of 1,3-propanediol (1,3-PDO) which was not taken up under anaerobic conditions. Despite the aerobic conversion of 1,3-PDO stable granulation was observed. Over time, 1,3-PDO production decreased and complete anaerobic COD uptake was observed. The results demonstrate that glycerol-containing wastewater can effectively be treated by the aerobic granular sludge process and that fermentative and polyphosphate accumulating organisms can form a food chain in glycerol-based EBPR processes.


Assuntos
Glicerol , Esgotos , Esgotos/química , Águas Residuárias , Fósforo/metabolismo , Polifosfatos/metabolismo , Bactérias/metabolismo
20.
Int J Mol Sci ; 23(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36232597

RESUMO

Platelets produce inorganic polyphosphate (polyP) upon activation to stimulate blood coagulation. Some researchers have linked polyP metabolism to ATP production, although the metabolic linkage is yet to be elucidated. We found evidence for this possibility in our previous study on professional athletes (versus non-athletes), and proposed that the regulatory mechanism might be different for these two groups. To explore this aspect further, we investigated the effects of modulated ATP production on polyP levels. Blood samples were obtained from Japanese healthy, non-athletes in the presence of acid-citrate-dextrose. The platelets in the plasma were treated with oligomycin, rotenone, and GlutaMAX to modulate ATP production. PolyP level was quantified fluorometrically and visualized using 4',6-diamidino-2-phenylindole. Correlations between polyP and ATP or NADH were then calculated. Contrary to the hypothesis, inhibitors of ATP production increased polyP levels, whereas amino acid supplementation produced the opposite effect. In general, however, polyP levels were positively correlated with ATP levels and negatively correlated with NADH levels. Since platelets are metabolically active, they exhibit high levels of ATP turnover rate. Therefore, these findings suggest that ATP may be involved in polyP production in the resting platelets of non-athletes.


Assuntos
Polifosfatos , Rotenona , Trifosfato de Adenosina/metabolismo , Aminoácidos , Citratos , Glucose , Humanos , NAD , Oligomicinas , Polifosfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA