Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946213

RESUMO

In the following study, ground plum stones and silanized ground plum stones were used as natural fillers for novel polyurethane (PUR) composite foams. The impact of 1, 2, and 5 wt.% of fillers on the cellular structure, foaming parameters, and mechanical, thermomechanical, and thermal properties of produced foams were assessed. The results showed that the silanization process leads to acquiring fillers with a smoother surface compared to unmodified filler. The results also showed that the morphology of the obtained materials is affected by the type and content of filler. Moreover, the modified PUR foams showed improved properties. For example, compared with the reference foam (PUR_REF), the foam with the addition of 1 wt.% of unmodified plum filler showed better mechanical properties, such as higher compressive strength (~8% improvement) and better flexural strength (~6% improvement). The addition of silanized plum filler improved the thermal stability and hydrophobic character of PUR foams. This work shows the relationship between the mechanical, thermal, and application properties of the obtained PUR composites depending on the modification of the filler used during synthesis.


Assuntos
Poliuretanos/química , Prunus domestica/química , Silanos/química , Técnicas de Química Sintética , Força Compressiva , Materiais de Construção , Teste de Materiais , Poliuretanos/síntese química , Porosidade , Reologia , Silanos/síntese química
2.
Chem Asian J ; 16(11): 1281-1297, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33871151

RESUMO

New and emerging demand for polyurethane (PU) continues to rise over the years. The harmful isocyanate binding agents and their integrated PU products are at the height of environmental concerns, in particular PU (macro and micro) pollution and their degradation problems. Non-isocyanate poly(hydroxy urethane)s (NIPUs) are sustainable and green alternatives to conventional PUs. Since the introduction of NIPU in 1957, the market value of NIPU and its hybridized materials has increased exponentially in 2019 and is expected to continue to rise in the coming years. The secondary hydroxyl groups of these NIPU's urethane moiety have revolutionized them by allowing for adequate pre/post functionalization. This minireview highlights different strategies and advances in pre/post-functionalization used in biobased NIPU. We have performed a comprehensive evaluation of the development of new ideas in this field to achieve more efficient synthetic biobased hybridized NIPU processes through selective and kinetic understanding.


Assuntos
Poliuretanos/síntese química , Aminas/química , Carbonatos/química , Cinética , Lignina/química , Nanopartículas/química , Óleos de Plantas/química , Poliaminas/química , Poliuretanos/química
3.
J Mater Chem B ; 8(46): 10650-10661, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33150923

RESUMO

Black phosphorus quantum dots (BPQDs) with excellent biocompatibility, outstanding photothermal and photodynamic efficacies have attracted significant attention in cancer therapy. However, the low environmental stability and poor dispersity of BPQDs limit their practical applications. In the present work, biocompatible anionic waterborne polyurethane (WPU) nanoparticles were synthesized from castor oil to encapsulate the BPQDs. The WPU-BPQDs with a BPQDs loading capacity of about 13.8% (w/w) exhibited significantly improved dispersion and environmental stability without affecting the photothermal efficiency of BPQDs. Intriguingly, it was found that WPU encapsulation led to significant enhancement in the reactive oxygen species (ROS) generation of BPQDs, which indicated the enhanced photodynamic efficacy of the encapsulated BPQDs as compared to the bare BPQDs. The effect of solution pH on the ROS generation efficiency of BPQDs and the pH variation caused by BPQDs degradation was then investigated to explore the possible mechanism. In acidic solution, ROS generation was suppressed, while BPQDs degradation led to the acidification of the solution. Fortunately, after being encapsulated inside the WPU nanoparticles, the degradation rate of BPQDs became slower, while the acidic environment around BPQDs was favorably regulated by WPU nanoparticles having a special electrochemical double layer consisting of interior COO- and exterior NH(Et3)+, thus endowing the WPU-BPQDs-boosted production of ROS as compared to the bare BPQDs. Considering the undesired acidic tumor environment, this unique pH regulation effect of WPU-BPQDs would be beneficial for in vivo photodynamic efficacy. Both in vitro and in vivo experiments showed that WPU-BPQDs could effectively improve photodynamic therapy (PDT) and maintain outstanding photothermal therapy (PTT) effects. Together with the excellent dispersity, biocompatibility, and easy biodegradability, WPU-BPQDs can be a promising agent for PDT/PTT cancer treatments.


Assuntos
Nanopartículas/química , Fósforo/química , Fotoquimioterapia/métodos , Terapia Fototérmica/métodos , Pontos Quânticos/química , Espécies Reativas de Oxigênio/metabolismo , Animais , Ânions , Relação Dose-Resposta a Droga , Feminino , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fósforo/administração & dosagem , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/síntese química , Poliuretanos/administração & dosagem , Poliuretanos/síntese química , Pontos Quânticos/administração & dosagem , Distribuição Aleatória , Água
4.
Int J Biol Macromol ; 145: 28-41, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31874274

RESUMO

Kraft lignin (KL) and castor oil (CO) were used as polyols in the synthesis of bio-based polyurethanes (PUs) in the absence of both solvents and catalysts at room temperature with simultaneous film formation. KL was purified (PKL), and both KL and PKL were fully characterized. CO was mixed with different percentages of PKL (0%, 10%, 30%, and 50%), as well as with polymeric methyl phenyl diisocyanate. After degassing, the reaction mixture was stirred; when the medium viscosity was suitable for spreading, it was poured onto a glass plate, and the thickness was adjusted using an extender. The storage modulus (E', 25 °C) and tensile strength of the lignopolyurethane films (LignoPUCOPKL) were higher than those of the control film (PUCO). LignoPUCOPKL30 and LignoPUCOPKL50 did not break under the conditions that the other films broke under. It was noted phase segregation (rigid and flexible domains) for LignoPUCOPKL30 and LignoPUCOPKL50, and the glass transition temperature (Tg) of the flexible domains (96.2 °C and 52.3 °C, respectively) was higher than that of PUCO (8.4 °C). The formed films were also characterized by scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, contact angles, and swelling tests. To our knowledge, the approach of this study is unprecedented.


Assuntos
Óleo de Rícino/química , Lignina/química , Poliuretanos/química , Poliuretanos/síntese química , Teste de Materiais/métodos , Polímeros/química , Solventes/química , Resistência à Tração , Temperatura de Transição , Viscosidade
5.
Molecules ; 24(23)2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31783536

RESUMO

Nowadays, polyols are basic chemicals for the synthesis of a large range of polymers, such as polyurethane foams (PUF), which are produced with several other compounds, such as polyisocyanates. During the last decades, the oleo-chemistry has developed several routes from glycerides to polyols for the polyurethanes (PU) industry to replace mainly conventional fossil-based polyols. A large range of biobased polyols can be now obtained by epoxidation of the double bonds and ring-opening (RO) of the subsequent epoxides with different chemical moieties. In preliminary studies, the RO kinetics of an epoxidized model molecule (methyl oleate) with ethanol and acetic acid were investigated. Subsequently, polyols that were derived from unsaturated triglycerides were explored in the frame of e.g., PUF formulations. Different associations were studied with different mono-alcohols derived from epoxidized and ring-opened methyl oleate while using several ring-openers to model such systems and for comparison purposes. Kinetic studies were realized with the pseudo-first-order principle, meaning that hydroxyls are in large excess when compared to the isocyanate groups. The rate of isocyanate consumption was found to be dependent on the moiety located in ß-position of the reactive hydroxyl, following this specific order: tertiary amine >> ether > ester. The tertiary amine in ß-position of the hydroxyl tremendously increases the reactivity toward isocyanate. Consequently, a biobased reactive polyurethane catalyst was synthesized from unsaturated glycerides. These approaches offer new insights regarding the replacement of current catalysts often harmful, pungent, and volatile used in PU and PUF industry, in order to revisit this chemistry.


Assuntos
Compostos de Epóxi/química , Óleos de Plantas/química , Poliuretanos/síntese química , Catálise , Ésteres/química , Etanol/química , Ácidos Graxos/química , Isocianatos/síntese química , Isocianatos/química , Cinética , Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos , Ácidos Oleicos/química , Polímeros/síntese química , Polímeros/química , Poliuretanos/química , Termodinâmica , Uretana/síntese química , Uretana/química
6.
Int J Nanomedicine ; 14: 3691-3703, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31190819

RESUMO

Background and aim: The extract of ginger, obtained from the rhizome of Zingiber officinale, contains 6-gingerol, 6-shogaol, 8-gingerol, and 10-gingerol. It has many therapeutic effects such as being chemopreventive against stroke and heart diseases, malabsorption, bacterial infections, indigestion, and nausea, which have been observed since ancient times. The main aim of this study is to evaluate the polyurethane (PU) as a proper material for the hollow nanoparticles' preparation. Methods: The PU nanoparticles were obtained by a spontaneous emulsification, in the presence of a nonionic surfactant, combined with an interfacial polyaddition process between an aliphatic diisocyanate and different mixtures of etheric and esteric polyols. The synthesis was done without any PU additives, such as catalysts, blowing agents, chains promoters, cross-linking agents, and stabilizers. Results: The particles present almost neutral pH values and low water solubility. They are heat resistant up to 280°C. Decreased irritation level was found in the assay of PU nanoparticles loaded with pure ginger extract (GE) on the murine skin tests than the irritation level recorded for pure GE. Conclusion: This research shows the reduced noxiousness of these PU nanoparticles and consequently the possibility of their use as a possible cardiovascular protector.


Assuntos
Cardiotônicos/farmacologia , Nanopartículas/química , Extratos Vegetais/farmacologia , Poliuretanos/química , Zingiber officinale/química , Animais , Varredura Diferencial de Calorimetria , Eritema/patologia , Feminino , Concentração de Íons de Hidrogênio , Melaninas/metabolismo , Camundongos , Extratos Vegetais/química , Poliuretanos/síntese química , Solubilidade , Espectrofotometria Ultravioleta , Temperatura
7.
J Agric Food Chem ; 67(8): 2220-2226, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30726082

RESUMO

Fossil fuel resources depletion and growing concern about environmental issues have raised the demand for newly sustainable biomaterials. To address this challenge, a new type of biodegradable and environmental rigid polyurethane foam called rigid polyurethane foams (RPUF)-M from full modified soy-based polyols have been synthesized without the addition of petroleum-based polyols. On the basis of the analysis of structure-activity relationship, a new kind of biobased polyurethane polyols called Bio-polyol-M was designed and synthesized directly from epoxidized soybean oil and a novel polyhydroxy compound in a three-step continuous microflow system. In the continuous microflow system, the epoxidation of soybean oil, the synthesis of GLPO (glycerine with styrene oxide), and the ring-opening reaction of epoxidized soybean oil were coupled. Another soy-polyol called Bio-polyol-B was synthesized in batch mode. In comparison to those of Bio-polyol-B, Bio-polyol-M had a higher hydroxyl number and a much lower viscosity. The RPUF-M also possessed a series of advantages over the rigid polyurethane foam called RPUF-B from Bio-polyol-B.


Assuntos
Extratos Vegetais/química , Polímeros/química , Poliuretanos/síntese química , Óleo de Soja/química , Poliuretanos/química , Glycine max/química , Viscosidade
8.
Molecules ; 24(2)2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30634633

RESUMO

Polyurethanes are widely used in the development of medical devices due to their biocompatibility, degradability, non-toxicity and chemical versatility. Polyurethanes were obtained from polyols derived from castor oil, and isophorone diisocyanate, with the incorporation of polycaprolactone-diol (15% w/w) and chitosan (3% w/w). The objective of this research was to evaluate the effect of the type of polyol and the incorporation of polycaprolactone-diol and chitosan on the mechanical and biological properties of the polyurethanes to identify the optimal ones for applications such as wound dressings or tissue engineering. Polyurethanes were characterized by stress-strain, contact angle by sessile drop method, thermogravimetric analysis, differential scanning calorimetry, water uptake and in vitro degradation by enzymatic processes. In vitro biological properties were evaluated by a 24 h cytotoxicity test using the colorimetric assay MTT and the LIVE/DEAD kit with cell line L-929 (mouse embryonic fibroblasts). In vitro evaluation of the possible inflammatory effect of polyurethane-based materials was evaluated by means of the expression of anti-inflammatory and proinflammatory cytokines expressed in a cellular model such as THP-1 cells by means of the MILLIPLEX® MAP kit. The modification of polyols derived from castor oil increases the mechanical properties of interest for a wide range of applications. The polyurethanes evaluated did not generate a cytotoxic effect on the evaluated cell line. The assessed polyurethanes are suggested as possible candidate biomaterials for wound dressings due to their improved mechanical properties and biocompatibility.


Assuntos
Óleo de Rícino/química , Quitosana/química , Poliésteres/química , Poliuretanos/síntese química , Animais , Fenômenos Biomecânicos , Varredura Diferencial de Calorimetria , Linhagem Celular , Proliferação de Células , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Teste de Materiais , Camundongos , Poliuretanos/química , Poliuretanos/farmacologia , Células THP-1/citologia , Células THP-1/efeitos dos fármacos , Termogravimetria
9.
Environ Sci Pollut Res Int ; 26(4): 3174-3183, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28822032

RESUMO

Renewable resources are playing a key role on the synthesis of biodegradable polyols. Moreover, the incorporation of covalently linked additives is increasing in importance in the polyurethane (PU) market. In this work, previously epoxidized grape seed oil and methyl oleate were transformed into phosphorylated biopolyols through an acid-catalyzed ring-opening hydrolysis in the presence of H3PO4. The formation of phosphate polyesters was confirmed by FT-IR and 31P-NMR. However, the synthesis of a high-quality PU rigid foam was not possible using exclusively these polyols attending to their low hydroxyl value. In that way, different rigid PU foams were prepared from the phosphorylated biopolyols and the commercial polyol Alcupol R4520. It was observed that phosphorylated biopolyols can be incorporated up to a 57 wt.% in the PU synthesis without significant structural changes with respect to the commercial foam. Finally, thermogravimetric and EDAX analyses revealed an improvement of thermal stability by the formation of a protective phosphorocarbonaceous char layer.


Assuntos
Ácidos Oleicos/química , Óleos de Plantas/química , Poliésteres/química , Polímeros/química , Poliuretanos/síntese química , Catálise , Hidrólise , Fosforilação , Poliuretanos/química , Sementes/química , Vitis/química
10.
Int J Biol Macromol ; 121: 373-380, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30287377

RESUMO

A novel bio-based polyurethane/chitosan foam (PU/chitosan) was synthesized using a polyol derived from castor oil and applied to remove Food Red 17 dye (FR17) from aqueous solutions. PU/chitosan foam presented better characteristics and adsorption potential than polyurethane foam (PU). PU/chitosan foam showed a semi-crystalline structure, with several functional groups, high porosity and good mechanical properties. These characteristics are adequate for adsorptive separations. Using identical adsorption conditions, PU/chitosan was able to remove >98% of FR17 dye from the solution, while, PU removed only 40%. The adsorption of FR17 on PU/chitosan composite foam was favored at pH 2. Pseudo-second order model was the most adequate to represent the kinetic data. The equilibrium data followed the Sips model, with a maximum adsorption capacity of 267.24 mg g-1. The adsorption process was spontaneous, favorable and endothermic. The results showed that polyurethane foams are capable to support chitosan, generating an adsorbent with better mechanical characteristics and high potential to remove anionic dyes from aqueous media.


Assuntos
Compostos Azo/química , Compostos Azo/isolamento & purificação , Quitosana/química , Poliuretanos/química , Poliuretanos/síntese química , Ácidos Ricinoleicos/química , Adsorção , Óleo de Rícino/química , Técnicas de Química Sintética , Concentração de Íons de Hidrogênio , Cinética , Polímeros/química , Termodinâmica , Água/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
11.
Int J Nanomedicine ; 13: 7155-7166, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30464465

RESUMO

PURPOSE: Red chili peppers have been highly valued in gastronomy and traditional medicine since ancient times; it seems that it is not just an ingredient for food but also a good remedy for various medical conditions such as increased blood pressure and high levels of serum triglycerides and cholesterol, myocardial infarction, arthritis, and migraines. The objective of this study is the characterization of a new carrier used for encapsulated extract. METHODS: Chili pepper extract was obtained and was physically entrapped inside polyurethane microparticles in order to diminish the irritative potential of this extract. The particles were evaluated by Zetasizer measurements, small-angle neutron scattering and thermal analysis, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy; the encapsulation efficacy and the drug release profile were assessed by UV-Vis spectroscopy. Bioevaluations on mice skin were performed to predict the irritative potential of the samples. RESULTS: Two different types of samples were compared: hollow polyurethane microparticles vs polyurethane particles containing the natural extract. The sizes of the particles were very similar, but the sample containing the extract presents three particle populations (the polydispersity index increases from 0.3 to 0.6 from one sample to another). The zeta-potential measurements and SEM images indicate a medium tendency to form clusters, while the UV-Vis study revealed an almost 70% encapsulation efficacy. CONCLUSION: The results suggest that encapsulation of a chili pepper extract inside polyurethane microparticles leads to a non-irritative product with a prolonged release: ~30% of encapsulated extract is released within the first 8 days and a maximum 45% is reached in 2 weeks.


Assuntos
Capsicum/química , Extratos Vegetais/farmacologia , Poliuretanos/química , Poliuretanos/síntese química , Animais , Calibragem , Varredura Diferencial de Calorimetria , Portadores de Fármacos/química , Feminino , Membranas/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Difração de Nêutrons , Tamanho da Partícula , Espalhamento a Baixo Ângulo , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Mater Sci Eng C Mater Biol Appl ; 85: 79-87, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29407160

RESUMO

Scaffolds with extracellular matrix-like fibrous morphology, suitable mechanical properties, biomineralization capability, and excellent cytocompatibility are desired for bone regeneration. In this work, fibrous and degradable poly(ester urethane)urea (PEUU) scaffolds reinforced with titanium dioxide nanoparticles (nTiO2) were fabricated to possess these properties. To increase the interfacial interaction between PEUU and nTiO2, poly(ester urethane) (PEU) was grafted onto the nTiO2. The scaffolds were fabricated by electrospinning and exhibited fiber diameter of <1µm. SEM and EDX mapping results demonstrated that the PEU modified nTiO2 was homogeneously distributed in the fibers. In contrast, severe agglomeration was found in the scaffolds with unmodified nTiO2. PEU modified nTiO2 significantly increased Young's modulus and tensile stress of the PEUU scaffolds while unmodified nTiO2 significantly decreased Young's modulus and tensile stress. The greatest reinforcement effect was observed for the scaffold with 1:1 ratio of PEUU and PEU modified nTiO2. When incubating in the simulated body fluid over an 8-week period, biomineralization was occurred on the fibers. The scaffolds with PEU modified nTiO2 showed the highest Ca and P deposition than pure PEUU scaffold and PEUU scaffold with unmodified nTiO2. To examine scaffold cytocompatibility, bone marrow-derived mesenchymal stem cells were cultured on the scaffold. The PEUU scaffold with PEU modified nTiO2 demonstrated significantly higher cell proliferation compared to pure PEUU scaffold and PEUU scaffold with unmodified nTiO2. The above results demonstrate that the developed fibrous nanocomposite scaffolds have potential for bone tissue regeneration.


Assuntos
Materiais Biomiméticos/farmacologia , Calcificação Fisiológica/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Nanocompostos/química , Poliuretanos/farmacologia , Alicerces Teciduais/química , Titânio/farmacologia , Animais , Líquidos Corporais/química , Cálcio/análise , Proliferação de Células/efeitos dos fármacos , Hidroxiácidos/síntese química , Hidroxiácidos/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanocompostos/ultraestrutura , Fósforo/análise , Poliuretanos/síntese química , Poliuretanos/química , Propionatos/síntese química , Propionatos/química , Ratos , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Biopolymers ; 109(2)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29159831

RESUMO

In the current study, we present the synthesis of novel low cost bio-polyurethane compositions with variable mechanical properties based on castor oil and glycerol for biomedical applications. A detailed investigation of the physicochemical properties of the polymer was carried out by using mechanical testing, ATR-FTIR, and X-ray photoelectron spectroscopy (XPS). Polymers were also tested in short term in-vitro cell culture with human mesenchymal stem cells to evaluate their biocompatibility for potential applications as biomaterial. FTIR analysis confirmed the synthesis of castor oil and glycerol based PU polymers. FTIR also showed that the addition of glycerol as co-polyol increases crosslinking within the polymer backbone hence enhancing the bulk mechanical properties of the polymer. XPS data showed that glycerol incorporation leads to an enrichment of oxidized organic species on the surface of the polymers. Preliminary investigation into in vitro biocompatibility showed that serum protein adsorption can be controlled by varying the glycerol content with polymer backbone. An alamar blue assay looking at the metabolic activity of the cells indicated that castor oil based PU and its variants containing glycerol are non-toxic to the cells. This study opens an avenue for using low cost bio-polyurethane based on castor oil and glycerol for biomedical applications.


Assuntos
Tecnologia Biomédica/economia , Biopolímeros/química , Óleo de Rícino/química , Custos e Análise de Custo , Glicerol/química , Poliuretanos/síntese química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Biopolímeros/economia , Óleo de Rícino/farmacologia , Forma Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Glicerol/farmacologia , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Espectroscopia Fotoeletrônica , Poliuretanos/economia , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
14.
Molecules ; 22(2)2017 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-28230803

RESUMO

An innovative and eco-friendly one-pot synthesis of bio-based polyurethanes is proposed via the epoxy-ring opening of epoxidized soybean oil (ESO) with methanol, followed by the reaction of methoxy bio-polyols intermediates with 2,6-tolyl-diisocyanate (TDI). Both synthetic steps, methanolysis and polyurethane linkage formation, are promoted by a unique catalyst, molybdenum(VI) dichloride dioxide (MoCl2O2), which makes this procedure an efficient, cost-effective, and environmentally safer method amenable to industrial scale-up.


Assuntos
Técnicas de Química Sintética , Poliuretanos/síntese química , Óleo de Soja/química , Catálise , Oxirredução , Espectroscopia de Prótons por Ressonância Magnética
15.
J Biomater Appl ; 31(5): 708-720, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27789793

RESUMO

In the present study, polyurethane materials were obtained from castor oil, polycaprolactone and isophorone diisocyanate by incorporating different concentrations of chitosan (0.5, 1.0 and 2.0% w/w) as an additive to improve the mechanical properties and the biological activity of polyurethanes. The polyurethanes were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, stress/strain fracture tests and swelling analysis, and the hydrophilic character of the surface was determined by contact angle trials. The objectives of the study were to evaluate the effect of the incorporation of chitosan on the changes of the physico-chemical and mechanical properties and the in vitro biological activity of the polyurethanes. It was found that the incorporation of chitosan enhances the ultimate tensile strength of the polyurethanes and does not affect the strain at fracture in polyurethanes with 5% w/w of polycaprolactone and concentrations of chitosan ranging from 0 to 2% w/w. In addition, PCL5-Q-PU formulations and their degradation products did not affect cell viability of L929 mouse fibroblast and 3T3, respectively. Polyurethane formulations showed antibacterial activities against Staphylococcus aureus and Escherichia coli bacteria. The results of this study have highlighted the potential biomedical application of this polyurethanes related to soft and cardiovascular tissues.


Assuntos
Materiais Biocompatíveis/síntese química , Óleo de Rícino/química , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Poliésteres/química , Poliuretanos/efeitos adversos , Poliuretanos/síntese química , Células 3T3 , Implantes Absorvíveis , Animais , Materiais Biocompatíveis/efeitos adversos , Óleo de Rícino/efeitos adversos , Quitosana/efeitos adversos , Força Compressiva , Teste de Materiais , Camundongos , Poliésteres/efeitos adversos , Estresse Mecânico , Resistência à Tração
16.
J Biomed Mater Res A ; 104(3): 775-787, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26540140

RESUMO

Tissue-engineered cardiac patch aims at regenerating an infarcted heart by improving cardiac function and providing mechanical support to the diseased myocardium. In order to take advantages of electroactivity, a new synthetic method was developed for the introduction of an electroactive oligoaniline into the backbone of prepared patches. For this purpose, a series of electroactive polyurethane/siloxane films containing aniline tetramer (AT) was prepared through sol-gel reaction of trimethoxysilane functional intermediate polyurethane prepolymers made from castor oil and poly(ethylene glycol). Physicochemical, mechanical, and electrical conductivity of samples were evaluated and the recorded results were correlated to their structural characteristics. The optimized films were proved to be biodegradable and have tensile properties suitable for cardiac patch application. The embedded AT moieties in the backbone of the prepared samples preserved their electroactivity with the electrical conductivity in the range of 10-4 S/cm. The prepared films were compatible with proliferation of C2C12 and had potential for enhancing myotube formation even without external electrical stimulation. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 775-787, 2016.


Assuntos
Óleo de Rícino/química , Diferenciação Celular/efeitos dos fármacos , Condutividade Elétrica , Mioblastos/citologia , Poliuretanos/síntese química , Poliuretanos/farmacologia , Siloxanas/síntese química , Siloxanas/farmacologia , Animais , Materiais Biocompatíveis/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Elasticidade , Técnicas Eletroquímicas , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Camundongos , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Poliuretanos/química , Siloxanas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Engenharia Tecidual/métodos , Viscosidade
17.
Carbohydr Polym ; 134: 110-8, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26428106

RESUMO

Nanocrystalline cellulose (CNC), obtained by sulphuric acid hydrolysis, was used to synthesize polyurethane foams (PUFs) based on a functionalized castor oil polyol and a Methylene diphenyl diisocyanate (MDI). Formulations with varying isocyanate index (FI) and NCO number were prepared. At 0.5 wt.%, SEM's of the fractured surface underlined that the CNC acted both as a nucleation agent and as a particulate surfactant with cell geometries and apparent density changing selectively. The chemical structure of the PUF (FTIR) changed after the incorporation of CNC by a relative change of the amount of urea, urethane and isocyanurate groups. A low NCO number and isocyanate index contributed to the migration of the CNC to the Hard Segment (HS), acting as reinforcement and improving substantially the compressive mechanical properties (Ec and σc improvements of 63 and 50%, respectively). For a high NCO number or isocyanate index, the CNC migrated to the Soft Segment (SS), without causing a reinforcement effect. The migration of the CNC was also detected with DSC, TGA and DMA, furtherly supporting the hypothesis that a low NCO number and index contributed both to the formation of a microstructure with a higher content of urethane groups.


Assuntos
Óleo de Rícino/química , Nanocompostos/química , Nanocompostos/ultraestrutura , Nanopartículas/química , Poliuretanos/química , Óleo de Rícino/síntese química , Módulo de Elasticidade , Isocianatos/síntese química , Isocianatos/química , Poliuretanos/síntese química , Temperatura , Termogravimetria
18.
ACS Appl Mater Interfaces ; 7(2): 1226-33, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25541678

RESUMO

In this study, a series of biobased polyols were prepared from olive, canola, grape seed, linseed, and castor oil using a novel, solvent/catalyst-free synthetic method. The biobased triglyceride oils were first oxidized into epoxidized vegetable oils with formic acid and hydrogen peroxide, followed by ring-opening reaction with castor oil fatty acid. The molecular structures of the polyols and the resulting polyurethane were characterized. The effects of cross-linking density and the structures of polyols on the thermal, mechanical, and shape memory properties of the polyurethanes were also investigated.


Assuntos
Materiais Biocompatíveis/síntese química , Óleos de Plantas/química , Poliuretanos/síntese química , Materiais Biocompatíveis/química , Fenômenos Biomecânicos , Poliuretanos/química
19.
J Oleo Sci ; 64(1): 101-15, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25492233

RESUMO

Polyols were synthesized from epoxidized natural oils and tetrahydrofuran through ring opening copolymerization catalyzed by Lewis acid. The properties of these polyols depend on the type of natural oils as well as the reaction conditions (monomer concentration, catalyst amount, reaction temperature and reaction time). These polyols were evaluated as a raw material for making polyurethane (PU) in order to understand the structure-property relationship between a natural oil and PU made from it. The tensile test analysis shows that the incorporation of natural oil moiety into the PU polymer network improves the elasticity of these PU samples when compared to a benchmark PU sample. In addition, the PU samples made from palm oil and soybean oil based polyols exhibit better tensile strength than benchmark PU. These polyols samples are suitable for making elastomeric PU, where high flexibility (high elongation at break) of PU is a common requirement.


Assuntos
Furanos/química , Óleos de Plantas/química , Polímeros/química , Poliuretanos/síntese química , Óleo de Soja/química , Catálise , Fenômenos Químicos , Elasticidade , Elastômeros , Ácidos de Lewis/química , Fenômenos de Química Orgânica , Óleo de Palmeira , Polimerização , Temperatura , Resistência à Tração , Fatores de Tempo
20.
Macromol Rapid Commun ; 35(14): 1238-54, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24979310

RESUMO

The catalytic chemical fixation of carbon dioxide by carbonation of oxiranes, oxetanes, and polyols represents a very versatile green chemistry route to environmentally benign di- and polyfunctional cyclic carbonates as intermediates for the formation of non-isocyanate poly-urethane (NIPU). Two synthetic pathways lead to NIPU thermoplastics and thermosets: i) polycondensation of diacarbamates or acyclic dicarbonates with diols or diamines, respectively, and ii) polyaddition by ring-opening polymerization of di- and polyfunctional cyclic carbonates with di- and polyamines. The absence of hazardous and highly moisture-sensitive isocyanates as intermediates eliminates the need for special safety precautions, drying and handling procedures. Incorporated into polymer backbones and side chains, carbonate groups enable facile tailoring of a great variety of urethane-functional polymers. As compared with conventional polyurethanes, ring-opening polymerization of polyfunctional cyclic carbonates affords polyhydroxyurethanes with unconventional architectures including NIPUs containing carbohydrate segments. NIPU/epoxy hybrid coatings can be applied on wet surfaces and exhibit improved adhesion, thermal stability and wear resistance. Combining chemical with biological carbon dioxide fixation affords 100% bio-based NIPUs derived from plant oils, terpenes, carbohydrates, and bio polyols. Biocompatible and biodegradable NIPU as well as NIPU biocomposites hold great promise for biomedical applications.


Assuntos
Dióxido de Carbono/química , Isocianatos/química , Fosgênio/química , Cimento de Policarboxilato/química , Poliuretanos/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Compostos de Epóxi/química , Química Verde , Cimento de Policarboxilato/síntese química , Polimerização , Poliuretanos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA