Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Photobiomodul Photomed Laser Surg ; 42(4): 306-313, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38546858

RESUMO

Background: This investigation set out to compare the impacts of low-level diode laser (LLDL) and red light-emitting diode (LED) on the survival of human dental pulp stem cells (hDPSCs) and osteogenic/odontogenic differentiation. Methods and materials: In this ex vivo experimental study, the experimental groups underwent the irradiation of LLDL (4 J/cm2 energy density) and red LED in the osteogenic medium. Survival of hDPSCs was assessed after 24 and 48 h (n = 9) using the methyl thiazolyl tetrazolium (MTT) assay. The assessment of osteogenic/odontogenic differentiation was conducted using alizarin red staining (ARS; three repetitions). The investigation of osteogenic and odontogenic gene expression was performed at two time points, specifically 24 and 48 h (n = 12). This analysis was performed utilizing real-time reverse-transcription polymerase chain reaction (RT-PCR). The groups were compared at each time point using SPSS version 24. To analyze the data, the Mann-Whitney U test, analysis of variance, Tukey's test, and t-test were utilized. Results: The MTT assay showed that LLDL significantly decreased the survival of hDPSCs after 48 h, compared with other groups (p < 0.05). The qualitative results of ARS revealed that LLDL and red LED increased the osteogenic differentiation of hDPSCs. LLDL and red LED both upregulated the expression of osteogenic/odontogenic genes, including bone sialoprotein (BSP), alkaline phosphatase (ALP), dentin matrix protein 1 (DMP1), and dentin sialophosphoprotein (DSPP), in hDPSCs. The LLDL group exhibited a higher level of gene upregulation (p < 0.0001). Conclusions: The cell survival of hDPSCs was reduced, despite an increase in osteogenic/odontogenic activity. Clinical relevance: Introduction of noninvasive methods in regenerative endodontic treatments.


Assuntos
Diferenciação Celular , Sobrevivência Celular , Polpa Dentária , Lasers Semicondutores , Terapia com Luz de Baixa Intensidade , Odontogênese , Osteogênese , Células-Tronco , Humanos , Polpa Dentária/citologia , Polpa Dentária/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Osteogênese/efeitos da radiação , Células-Tronco/efeitos da radiação , Células-Tronco/citologia , Sobrevivência Celular/efeitos da radiação , Odontogênese/efeitos da radiação , Células Cultivadas , Luz Vermelha
2.
Biomed Res Int ; 2021: 6684667, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33575339

RESUMO

BACKGROUND: The regeneration of dental pulp, especially in cases of pulp death of immature teeth, is the goal of the regenerative endodontic procedures (REPs) that are based on tissue engineering principles, consisting of stem cells, growth factors, and scaffolds. Photobiomodulation therapy (PBMT) showed to improve dental pulp regeneration through cell homing approaches in preclinical studies and has been proposed as the fourth element of tissue engineering. However, when a blood clot was used as a scaffold in one of these previous studies, only 30% of success was achieved. The authors pointed out the instability of the blood clot as the regeneration shortcoming. Then, to circumvent this problem, a new scaffold was developed to be applied with the blood clot. The hypothesis of the present study was that an experimental injectable chitosan hydrogel would facilitate the three-dimensional spatial organization of endogenous stem cells in dental pulp regeneration with no interference on the positive influence of PBMT. METHODS: For the in vitro analysis, stem cells from the apical papilla (SCAPs) were characterized by flow cytometry and applied in the chitosan scaffold for evaluating adhesion, migration, and proliferation. For the in vivo analysis, the chitosan scaffold was applied in a rodent orthotopic dental pulp regeneration model under the influence of PBMT (660 nm; power output of 20 mW, beam area of 0.028 cm2, and energy density of 5 J/cm2). RESULTS: The scaffold tested in this study allowed significantly higher viability, proliferation, and migration of SCAPs in vitro when PBMT was applied, especially with the energy density of 5 J/cm2. These results were in consonance to those of the in vivo data, where pulp-like tissue formation was observed inside the root canal. CONCLUSION: Chitosan hydrogel when applied with a blood clot and PBMT could in the future improve previous results of dental pulp regeneration through cell homing approaches.


Assuntos
Quitosana , Polpa Dentária , Terapia com Luz de Baixa Intensidade , Regeneração , Alicerces Teciduais/química , Animais , Células Cultivadas , Quitosana/química , Quitosana/farmacologia , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Polpa Dentária/efeitos da radiação , Humanos , Hidrogéis/química , Masculino , Ratos , Ratos Wistar , Regeneração/efeitos dos fármacos , Regeneração/efeitos da radiação , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/efeitos da radiação , Engenharia Tecidual
3.
Lasers Med Sci ; 34(8): 1689-1698, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31134436

RESUMO

To investigate the effects of gallium-aluminum-arsenide (GaAlAs) diode laser low-level laser therapy (LLLT) on angiogenesis and dentinogenesis of the dentin-pulp complex in a human tooth slice-based in vitro model. Forty tooth slices were prepared from 31 human third molars. Slices were cultured at 37 °C, 5% CO2, and 95% humidity and randomly assigned to one of the following groups: group I: no laser treatment, group II: 660-nm diode laser; energy density = 1 J/cm2, group III: 660-nm diode laser; energy density = 3 J/cm2, group IV: 810-nm diode laser; energy density = 1 J/cm2 and group V: 810-nm diode laser; energy density = 3 J/cm2. LLLT was applied on the third and fifth days of culture. After 7 days, tissues were retrieved for real-time RT-PCR analysis to investigate the expression of VEGF, VEGFR2, DSPP, DMP-1, and BSP in respect to controls. Lower energy density (1 J/cm2) with the 660 nm wavelength showed a statistically significant up-regulation of both angiogenic (VEGF: 15.3-folds and VEGFR2: 3.8-folds) and odontogenic genes (DSPP: 6.1-folds, DMP-1: 3-fold, and BSP: 6.7-folds). While the higher energy density (3 J/cm2) with the 810 nm wavelength resulted in statistically significant up-regulation of odontogenic genes (DSPP: 2.5-folds, DMP-1: 17.7-folds, and BSP: 7.1-folds), however, the angiogenic genes had variable results where VEGF was up-regulated while VEGFR2 was down-regulated. Low-level laser therapy could be a useful tool to promote angiogenesis and dentinogenesis of the dentin-pulp complex when parameters are optimized.


Assuntos
Técnicas de Cultura de Células , Polpa Dentária/efeitos da radiação , Dentinogênese/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Adulto , Feminino , Humanos , Terapia com Luz de Baixa Intensidade/métodos , Masculino , Neovascularização Fisiológica/efeitos da radiação , Odontogênese/efeitos da radiação , Adulto Jovem
4.
J Photochem Photobiol B ; 194: 149-157, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30954874

RESUMO

Photobiomodulation therapy (PBMT) and the cell sheet (CS) technology improve processes relevant to tissue regeneration. The aim of this study was to investigate the effects of different PBMT parameters on the architecture (histology), protein composition (Western blotting and immunohistochemistry) and ultrastructure [scanning electron microscopy (SEM) and transmission electron microscopy (TEM)] of the extracellular matrix (ECM) synthesized by CSs composed by human dental pulp stem cells (hDPSCs). METHODS: Thawed cells were recharacterized by the expression profile of the surface molecules of mesenchymal stem cells (MSCs) using flow cytometry. Clonogenic medium supplemented with vitamin C (20 µg/ml) was used for obtaining the CSs. PBMT was performed with continuous-wave diode laser (660 nm, 20 mW, 0.028cm2, 0.71 W/cm2) in punctual and contact mode. The CSs were allocated in 3 experimental groups: Control: no further treatment; PBMT1 [4 s, 3 J/cm2 (lower energy density), 0.08 J/point] and PBMT2 [7 s, 5 J/cm2 (higher energy density), 0.14 J/point]. Statistical comparisons were performed (p ≤ .05). RESULTS: The cells presented the classical immunoprofile of MSCs. Type I and type III collagens and fibronectin were present in the ECM of the CSs. PBMT1 induced higher amount of fibronectin. The overall ultrastructure of the CSs in the PBMT1 was epithelial-like, whereas the PBMT2 leads to CSs with fusiform cells arranged in bundles. TEM identified a more mature ECM and signs of apoptosis and necrosis in the PBMT2 group. CONCLUSION: PBMT influence the composition and ultrastructure of the ECM of CSs of hDPSCs. Thus, PBMT, specifically when applied in the lower energy density, could be of importance in the determination of the mechanical quality of CSs, which may favor cell therapy by improving the CS transplantation approach.


Assuntos
Polpa Dentária/citologia , Matriz Extracelular/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Linhagem Celular , Polpa Dentária/efeitos da radiação , Matriz Extracelular/metabolismo , Humanos , Células-Tronco/citologia , Células-Tronco/efeitos da radiação
5.
Int J Mol Sci ; 19(8)2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30126087

RESUMO

Vital pulp therapy (VPT) is to preserve the nerve and maintain healthy dental pulp tissue. Laser irradiation (LI) is beneficial for VPT. Understanding how LI affects dental pulp cells and tissues is necessary to elucidate the mechanism of reparative dentin and dentin regeneration. Here, we show how Er:YAG-LI and diode-LI modulated cell proliferation, apoptosis, gene expression, protease activation, and mineralization induction in dental pulp cells and tissues using cell culture, immunohistochemical, genetic, and protein analysis techniques. Both LIs promoted proliferation in porcine dental pulp-derived cell lines (PPU-7), although the cell growth rate between the LIs was different. In addition to proliferation, both LIs also caused apoptosis; however, the apoptotic index for Er:YAG-LI was higher than that for diode-LI. The mRNA level of odontoblastic gene markers-two dentin sialophosphoprotein splicing variants and matrix metalloprotease (MMP)20 were enhanced by diode-LI, whereas MMP2 was increased by Er:YAG-LI. Both LIs enhanced alkaline phosphatase activity, suggesting that they may help induce PPU-7 differentiation into odontoblast-like cells. In terms of mineralization induction, the LIs were not significantly different, although their cell reactivity was likely different. Both LIs activated four MMPs in porcine dental pulp tissues. We helped elucidate how reparative dentin is formed during laser treatments.


Assuntos
Apoptose/efeitos da radiação , Proliferação de Células/efeitos da radiação , Polpa Dentária/efeitos da radiação , Animais , Diferenciação Celular/efeitos da radiação , Linhagem Celular , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Proteínas da Matriz Extracelular/análise , Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica/efeitos da radiação , Lasers Semicondutores , Terapia com Luz de Baixa Intensidade , Metaloproteinase 20 da Matriz/análise , Metaloproteinase 20 da Matriz/genética , Odontoblastos/citologia , Odontoblastos/metabolismo , Odontoblastos/efeitos da radiação , Fosfoproteínas/análise , Fosfoproteínas/genética , Sialoglicoproteínas/análise , Sialoglicoproteínas/genética , Suínos
6.
Sci Rep ; 8(1): 2057, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29391502

RESUMO

Low power light (LPL) treatment has been widely used in various clinical trials, which has been known to reduce pain and inflammation and to promote wound healing. LPL was also shown to enhance differentiation of stem cells into specific lineages. However, most studies have used high power light in mW order, and there was lack of studies about the effects of very low power light in µW. In this study, we applied 810 nm LPL of 128 µW/cm2 energy density in vitro. Upon this value, continuous wave (CW) irradiation did not induce any significant changes for differentiation of human dental pulp stem cells (hDPSCs). However, the membrane hyperpolarization, alkaline phosphatase activity, and intracellular oxidative stress were largely enhanced in the pulsed wave (PW) with 30% of duty cycle and 300-3000 Hz frequencies-LPL in which LED driver work in the form of square wave. After 21 days of daily LPL treatment, Western blot revealed the dentinogenesis in this condition in vitro. This study demonstrates that the very low power light at 810 nm enhanced significant differentiation of hDPSCs in the PW mode and there were duty cycle dependency as well as pulsing frequency dependency in the efficiency.


Assuntos
Células-Tronco Adultas/citologia , Polpa Dentária/citologia , Dentinogênese , Luz , Fototerapia/métodos , Células-Tronco Adultas/efeitos da radiação , Células Cultivadas , Polpa Dentária/efeitos da radiação , Humanos , Fototerapia/instrumentação
7.
Photomed Laser Surg ; 36(4): 209-213, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29394135

RESUMO

OBJECTIVE: This study was done to compare the intrapulpal temperature change generated by different energy levels of Er:YAG laser used during debonding of ceramic brackets and find the most suitable level for clinical use. MATERIAL AND METHODS: Eighty polycrystalline alumina brackets were bonded on bovine incisor teeth, which were randomly divided into 4 groups of 20. One group was assigned as control. In the study groups, after laser exposure with 2, 4, or 6 Watt energy levels, brackets were debonded using an Instron Universal Testing machine. Adhesive remnant index (ARI) scores were recorded to evaluate the site of debonding. To assess intrapulpal thermal increase, 60 human premolar teeth that were prepared in the same way, at the same energy levels, by a thermocouple were used. RESULTS: When the debonding forces, intrapulpal temperature increases, and ARI of the groups were examined, statistically significant difference was observed between the groups. Mean temperature increases of 0.67°C ± 0.12°C, 1.25°C ± 0.16°C, and 2.36°C ± 0.23°C were recorded for the 2, 4, and 6 Watt laser groups. The mean shear bond strength was 21.35 ± 3.43 megapascals (MPa) for the control group, whereas they were 8.79 ± 2.47, 3.28 ± 0.73, and 2.46 ± 0.54 MPa for the 2, 4, and 6 Watt laser groups, respectively. CONCLUSIONS: Four watts is the most efficient and safe energy level to be used, utilizing Er:YAG laser with water cooling spray for 6 sec by scanning method during debonding of polycrystalline alumina brackets without any carbonization effects and detrimental temperature changes at debond sites.


Assuntos
Temperatura Corporal/efeitos da radiação , Descolagem Dentária , Polpa Dentária/efeitos da radiação , Lasers de Estado Sólido/uso terapêutico , Terapia com Luz de Baixa Intensidade , Braquetes Ortodônticos , Animais , Bovinos , Cerâmica
8.
Photomed Laser Surg ; 36(4): 185-190, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29298403

RESUMO

OBJECTIVE: This study investigated temperature increases in dental pulp resulting from laser-assisted debonding of ceramic brackets using a 445-nm diode laser. MATERIALS AND METHODS: Eighteen ceramic brackets were bonded in standardized manner to 18 caries-free human third molars. Pulpal fluid circulation was simulated by pumping distilled water at 37°C through the pulp chamber. The brackets were irradiated with a 445-nm diode laser. Temperatures were measured using a thermal camera at points P1 (center of the pulp) and P2 (in the hard dental tissue) at the baseline (T0), at the start and end of laser application (T1 and T2), and the maximum during the sequence (Tmax). RESULTS: Significant differences in the temperatures measured at P1 and P2 were observed among T0, T1, T2, and Tmax. Significant increases in temperature were noted at points P1 and P2, between T1 and T2, T1 and Tmax, and T2 and Tmax. The maximum P2 values were significantly higher than at P1. The maximum temperature increase measured in the pulp was 2.23°C, lower than the critical threshold of 5.5°C. CONCLUSIONS: On the basis of the laser settings used, there is no risk to the vitality of dental pulp during laser-assisted debonding of ceramic brackets with a 445-nm diode laser.


Assuntos
Temperatura Corporal , Descolagem Dentária , Polpa Dentária/efeitos da radiação , Lasers Semicondutores/uso terapêutico , Terapia com Luz de Baixa Intensidade , Braquetes Ortodônticos , Cerâmica , Humanos , Dente Molar/efeitos da radiação , Técnicas de Cultura de Tecidos
9.
Clin Oral Investig ; 22(4): 1825-1837, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29230545

RESUMO

OBJECTIVES: This systematic review (PROSPERO register: CRD42016053140) investigated the influence of different types of light on the pulp tissue during dental bleaching. MATERIALS AND METHODS: Two independent authors conducted a systematic search and risk of bias evaluations. An electronic search was undertaken (PubMed/Medline, Embase, The Cochrane Library, and other databases) until May 2017. The population, intervention, comparison, outcomes (PICO) question was: "Does the light in dental bleaching change the response of the pulp to the bleaching procedure?" The intervention involved pulp tissue/cells after bleaching with light, while the comparison involved pulp tissue/cells after bleaching without light. The primary outcome was the inflammation/cytotoxicity observed in pulp after bleaching. RESULTS: Out of 2210 articles found, 12 articles were included in the review; four were in vivo studies (one study in dogs/others in human), and eight were in vitro studies (cell culture/with artificial pulp chamber or not). The light source used was halogen, light-emitting diode (LED), and laser. Only one in vivo study that used heat to simulate light effects showed significant pulp inflammation. Only two in vitro studies demonstrated that light influenced cell metabolism; one using halogen light indicated negative effects, and the other using laser therapy indicated positive effects. Given that animal and in vitro studies have been identified, there remain some limitations for extrapolation to the human situation. Furthermore, different light parameters were used. CONCLUSIONS: The effects of dental bleaching on the pulp are not influenced by different types of light, but different light parameters can influence these properties. CLINICAL RELEVANCE: There is insufficient evidence about the influence of different types of light on inflammation/cytotoxicity of the pulp.


Assuntos
Lâmpadas de Polimerização Dentária , Polpa Dentária/efeitos dos fármacos , Polpa Dentária/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Clareadores Dentários/uso terapêutico , Clareamento Dental/métodos , Animais , Cães , Halogênios , Humanos
10.
Clin Ter ; 168(5): e320-e326, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29044355

RESUMO

Mesenchymal stem cells (MSCs) have the capability for self-renewal, proliferation, and differentiation in various types of specialized cells, so they are very important in cellular therapies. MSC from dental pulp are simply obtainable and have high proliferative capability. Among the therapies that can stimulate the proliferation of certain cell types, low-level laser therapy (LLLT) stands out. The target of this study is to perform a literature review to investigate these effects of low-level laser irradiation on proliferation of human dental pulp.The electronic search of scientific papers was conducted in the Lilacs, Scielo, Medline and PubMed databases through scientific articles published in national and international journals in the past 20 years.The results of this review suggest that LLLT may be a useful and important tool for future advances in cell therapy and tissue engineering associated to stem cells. Studies on cell therapy for regenerating dental tissues has already been done, and shows promising results.


Assuntos
Proliferação de Células/efeitos da radiação , Polpa Dentária/citologia , Terapia com Luz de Baixa Intensidade , Diferenciação Celular/efeitos da radiação , Polpa Dentária/efeitos da radiação , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos da radiação
11.
Lasers Med Sci ; 32(9): 1995-2004, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28823073

RESUMO

In order to regenerate the dental pulp, many strategies have been developed as phototherapy. In the pulp repair, we do not know if gallium-aluminum-arsenide (GaAlAs) laser preserves the primary odontoblasts or stimulates the formation of more dentin matrix when dental pulp is damaged. The aim of the present study was to examine the effect of laser phototherapy (λ780 nm) on vascularization, inflammation, density of the primary odontoblast layer, and formation of reactionary and reparative dentin in the dental pulp by provoking extrusion of the rat incisor. The upper incisors were extruded 3 mm and then repositioned into their original sockets followed by a laser irradiation of the palatal mucosa (λ = 780 nm; p = 70 mW; CW; 4.2 J/cm2; 60 s) every 48 h. Non-traumatized and/or non-irradiated incisors were used as the controls. At 8 and 30 days after surgery, incisors were processed for histological and histomorphometric analysis. Morphological analysis revealed no differences in vascularization between groups, but showed discrete inflammation in some non-irradiated and injured specimens, which correlated with a more irregular reparative dentin. The density of primary odontoblasts in the groups treated with lasers was higher when compared to non-irradiated groups, but no statistically significant difference between groups (p > 0.05). The thickness of the tertiary dentin was increased in both traumatized groups with no statistically significant difference between non-irradiated and irradiated groups (p > 0.05).The present findings revealed that the GaAlAs laser induced small changes on dentin-pulp complex, with more regular dentin matrix in the irradiated dental pulps.


Assuntos
Polpa Dentária/patologia , Polpa Dentária/efeitos da radiação , Dentina/patologia , Dentina/efeitos da radiação , Incisivo/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Avulsão Dentária/radioterapia , Animais , Células Cultivadas , Modelos Animais de Doenças , Incisivo/patologia , Masculino , Odontoblastos/efeitos da radiação , Ratos Wistar
12.
Photomed Laser Surg ; 35(4): 217-222, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28068189

RESUMO

OBJECTIVE: The purpose of this study was to evaluate the temperature changes in the pulp chamber while using a newly introduced application of Er:YAG laser to debond ceramic brackets in a study model with a pulpal circulation with and without thermocycled samples. BACKGROUND DATA: An esthetic alternative to stainless steel brackets, ceramic brackets have been proposed. However, because of their low fracture resistance and high bond strengths, ceramic brackets can cause a problem when they are being removed using conventional techniques. MATERIALS AND METHODS: Experimental Groups A and B were established for samples with or without thermocycling. The same 20 maxillary central incisor and 20 premolar teeth were used in both groups. Pulpal blood microcirculation was simulated using an apparatus described in a previous study. Monocrystalline brackets were bonded by using Transbond XT. In Group A, brackets were debonded using the Er:YAG laser (600 mJ, 2 Hz, long pulse, and no air or water spray) after being stored in distilled water for 24 h. In Group B, brackets were debonded using the same laser system as that used in Group A after being stored in distilled water for 24 h and then thermocycled for a total of 5000 cycles between 5°C and 55°C. The laser irradiation duration and intrapulpal temperature changes were measured. RESULTS: In Group B, the intrapulpal temperature increase of the central incisors was significantly higher than that of the premolar teeth. In the central incisor and premolar teeth groups, there were no statistically significant difference between Groups A and B (p > 0.05). A positive correlation was found between laser irradiation duration and temperature increase (p < 0.01). CONCLUSIONS: The use of Er:YAG laser is an effective method for debonding the monocrystalline ceramic brackets. This method can be used safely under the consideration of intrapulpal temperature changes.


Assuntos
Temperatura Alta , Incisivo/efeitos da radiação , Lasers de Estado Sólido/uso terapêutico , Terapia com Luz de Baixa Intensidade/métodos , Intervalos de Confiança , Descolagem Dentária/métodos , Polpa Dentária/efeitos da radiação , Humanos , Técnicas In Vitro , Braquetes Ortodônticos , Fatores de Risco , Extração Dentária
13.
Lasers Med Sci ; 31(9): 1811-1817, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27553623

RESUMO

The aim of this study was to evaluate pulpal responses in healthy human teeth to photo-biomodulation therapy (PBMT) with 904-nm GaAs diode laser. The study followed a double-blind split mouth design, with a randomly selected maxillary first premolar acting as a sham-irradiated control tooth, and the contralateral tooth receiving active laser treatment. Two coded but otherwise identical laser probes (Irradia™, SpectraMedics Ltd., NC, USA) were used to deliver the sham (placebo) and laser radiation, with both the operator and patient unaware of each probe's identity. The selection of teeth for sham or laser irradiation was randomised for each treatment. Pulpal responses were assessed using electric pulp testing (EPT), 2 min prior to exposure, and immediately after laser irradiation (60 s, 30 mW average power, 25 Hz pulse frequency, 3.6 J/cm2). Treatment effects were analysed using the Wilcoxon-signed rank test. A total of 30 participants provided written informed consent. Majority of the participants (66.7 %) demonstrated an analgesic effect following PBMT (elevated EPT scores); however, nine participants (30 %) reported the lower EPT scores than the control. Both the treatment effects (stimulation and analgesia) were significant compared to the placebo. In most individuals, PBMT of healthy teeth with a 904-nm GaAs diode laser can induce analgesia, as witnessed by elevated EPT scores. A converse effect can occur in a minority of subjects.


Assuntos
Polpa Dentária/efeitos da radiação , Lasers Semicondutores/uso terapêutico , Terapia com Luz de Baixa Intensidade/métodos , Adulto , Arsenicais , Dente Pré-Molar , Método Duplo-Cego , Feminino , Gálio , Humanos , Masculino , Dor/radioterapia , Medição da Dor
14.
Braz Oral Res ; 30(1)2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27253140

RESUMO

Dental trauma in immature permanent teeth can damage pulp vascularization, which leads to necrosis and cessation of apexogenesis. Studies on tissue engineering using stem cells from human exfoliated deciduous teeth (SHEDs) have yielded promising results. Laser phototherapy (LPT) is able to influence the proliferation and differentiation of these cells, which could improve tissue engineering. SHEDs (eighth passage) were seeded into 96-well culture plates (103 cells/well) and were grown in culture medium supplemented with 15% defined fetal bovine serum (FBS) for 12 h. After determining the appropriate nutrition deficiency status (5% FBS), the cells were assigned into four groups: 1) G1 - 15% FBS (positive control); 2) G2 - 5% FBS (negative control); 3) G3 - 5% FBS+LPT 3 J/cm2; and 4) G4 - 5% FBS+LPT 5 J/cm2. For the LPT groups, two laser irradiations at 6 h intervals were performed using a continuous wave InGaAlP diode laser (660 nm, with a spot size of 0.028 cm2, 10 mW) in punctual and contact mode. Cell viability was assessed via an MTT reduction assay immediately after the second laser irradiation (0 h) and 24, 48, and 72 h later. We found that G3 and G4 presented a significantly higher cell growth rate when compared with G2 (p < 0.01). Moreover, G4 exhibited a similar cell growth rate as G1 throughout the entire experiment (p > 0.05). These findings indicate that LPT with 5 J/cm2 can enhance the growth of SHEDs during situations of nutritional deficiency. Therefore, LPT could be a valuable adjunct treatment in tissue engineering when using stem cells derived from the dental pulp of primary teeth.


Assuntos
Polpa Dentária/citologia , Terapia com Luz de Baixa Intensidade/métodos , Desnutrição , Células-Tronco/efeitos da radiação , Dente Decíduo/citologia , Análise de Variância , Animais , Bovinos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Meios de Cultura , Polpa Dentária/efeitos da radiação , Humanos , Radiometria , Reprodutibilidade dos Testes , Fatores de Tempo , Engenharia Tecidual , Dente Decíduo/efeitos da radiação
15.
Photomed Laser Surg ; 34(11): 500-508, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27058214

RESUMO

OBJECTIVE: This study aimed to conduct a systematic review of the literature published from 2000 to August 2015, to investigate the effect of photobiomodulation (PBM) therapy on dentoalveolar-derived mesenchymal stem cells (ddMSCs), assessing whether a clear conclusion can be reached from the data presented. BACKGROUND DATA: Systematic reviews provide the best evidence on the effectiveness of a procedure and permit investigation of factors that may influence the performance of a method. To the best of our knowledge, no previous systematic review has evaluated the effects of PBM only on ddMSCs. METHODS: The search was conducted in PubMed /MEDLINE®, Scopus and Web of Science databases, and reported according to the Preferred Reporting Items for Systematic Reviews and Metaanalyses (PRISMA Statement). Original research articles investigating the effects of PBM therapy on ddMSCs, published from 2000 to August 2015, were retrieved and used for this review according to the following eligibility criteria: evaluating PBM therapy, assessing stem cells of dentoalveolar origin, published in English, dealing with cells characterized as stem cells, and using light that did not need external chromophores. RESULTS: From the initial 3467 potentially relevant articles identified, 6 were excluded because they were duplicates, and 3453 were considered ineligible based on the inclusion criteria. Therefore, eight articles remained, and these were fully analyzed in order to closely check exclusion criteria items. Only one of them was excluded because the cultured cells studied were not characterized as stem cells. Finally, seven articles served as the basis for this systematic review. CONCLUSIONS: PBM therapy has no deleterious effects on ddMSCs. Although no other clear conclusion was obtained because of the scarce number of publications, the results of these studies are pointing to an important tendency of PBM therapy to improve ddMSCs' viability and proliferation.


Assuntos
Proliferação de Células/efeitos da radiação , Polpa Dentária/efeitos da radiação , Terapia com Luz de Baixa Intensidade/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Proliferação de Células/fisiologia , Polpa Dentária/citologia , Feminino , Humanos , Masculino , Regeneração/fisiologia , Regeneração/efeitos da radiação , Sensibilidade e Especificidade
16.
Braz. oral res. (Online) ; 30(1): e80, 2016. tab, graf
Artigo em Inglês | LILACS | ID: biblio-951980

RESUMO

Abstract Dental trauma in immature permanent teeth can damage pulp vascularization, which leads to necrosis and cessation of apexogenesis. Studies on tissue engineering using stem cells from human exfoliated deciduous teeth (SHEDs) have yielded promising results. Laser phototherapy (LPT) is able to influence the proliferation and differentiation of these cells, which could improve tissue engineering. SHEDs (eighth passage) were seeded into 96-well culture plates (103 cells/well) and were grown in culture medium supplemented with 15% defined fetal bovine serum (FBS) for 12 h. After determining the appropriate nutrition deficiency status (5% FBS), the cells were assigned into four groups: 1) G1 - 15% FBS (positive control); 2) G2 - 5% FBS (negative control); 3) G3 - 5% FBS+LPT 3 J/cm2; and 4) G4 - 5% FBS+LPT 5 J/cm2. For the LPT groups, two laser irradiations at 6 h intervals were performed using a continuous wave InGaAlP diode laser (660 nm, with a spot size of 0.028 cm2, 10 mW) in punctual and contact mode. Cell viability was assessed via an MTT reduction assay immediately after the second laser irradiation (0 h) and 24, 48, and 72 h later. We found that G3 and G4 presented a significantly higher cell growth rate when compared with G2 (p < 0.01). Moreover, G4 exhibited a similar cell growth rate as G1 throughout the entire experiment (p > 0.05). These findings indicate that LPT with 5 J/cm2 can enhance the growth of SHEDs during situations of nutritional deficiency. Therefore, LPT could be a valuable adjunct treatment in tissue engineering when using stem cells derived from the dental pulp of primary teeth.


Assuntos
Humanos , Animais , Bovinos , Células-Tronco/efeitos da radiação , Dente Decíduo/citologia , Terapia com Luz de Baixa Intensidade/métodos , Polpa Dentária/citologia , Desnutrição , Radiometria , Fatores de Tempo , Dente Decíduo/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Reprodutibilidade dos Testes , Análise de Variância , Meios de Cultura , Engenharia Tecidual , Polpa Dentária/efeitos da radiação , Proliferação de Células/efeitos da radiação
17.
Bauru; s.n; 2016. 133 p. tab, ilus.
Tese em Português | LILACS, BBO | ID: biblio-881837

RESUMO

O objetivo deste trabalho foi comparar os efeitos de diferentes densidades de energia e irradiâncias do Laser de Baixa Intensidade (LBI), variando em função do tempo de irradiação e potência, na viabilidade e proliferação de fibroblastos derivados da polpa de dentes decíduos humanos (HPF). HPF foram cultivados em DMEM e usados entre a 4ª e 8ª passagem. Os grupos foram divididos de acordo com diferentes densidades de energia, variando: Tempo de irradiação - Grupo I Ia (1,2 J/cm2 - 5 mW - 10 s), Ib (2,5 J/cm2 - 5 mW - 20 s), Ic (3,7 J/cm2 - 5 mW - 30 s), Id (5,0 J/cm2 - 5 mW - 40 s), e Ie (6,2 J/cm2 - 5 mW - 50 s); ou potência - Grupo II IIa (1,2 J/cm2 - 5 mW - 10 s), IIb (2,5 J/cm2 - 10 mW - 10 s), IIc (3,7 J/cm2 - 15 mW - 10 s), IId (5,0 J/cm2 - 20 mW - 10 s), e IIe (6,2 J/cm2 - 25 mW - 10 s). Células não irradiadas - cultivadas em condições nutricionais regulares - 10% Soro Fetal Bovino (SFB) (If e IIf) e células não irradiadas - cultivadas em déficit nutricional - 1% SFB (Ig e IIg), foram consideradas controles positivos e negativos, respectivamente. A viabilidade e proliferação celular foram avaliadas, repesctivamente, pelas técnicas MTT e Cristal violeta (CV), nos períodos de 24, 48 e 72 horas após a irradiação. Os dados obtidos foram submetidos à análise estatística por ANOVA 2 critérios, seguido pelo teste de Tukey (P<0,05). No ensaio MTT, os controles negativos, Ig e IIg, apresentaram significativamente menor viabilidade em relação aos correspondentes grupos experimentais: IIa e IIb, 24 horas após a irradiação; Ia, Ib, Ie, If e IIf no período de 48 horas; e Ib-If, assim como, IIa-IIf após 72 horas. Nos diferentes períodos de avaliação do ensaio CV, todos os grupos, exceto Ie, IIe e If, exibiram significativamente maior proliferação em comparação aos respectivos controles negativos. Dentro de um mesmo grupo nos diferentes períodos, os grupos If e IIe apresentaram menor viabilidade durante o período de 24 horas em comparação ao período de 72 horas pelo ensaio MTT. Na avaliação intragrupos, o ensaio CV revelou menor proliferação no período de 24 horas em comparação aos períodos de 48 e 72 horas, independente do grupo avaliado. Os diferentes protocolos de irradiação, grupos I e II, não apresentaram diferença estatisticamente significativa na viabilidade e proliferação celular entre densidades de energia iguais com irradiâncias diferentes durante os períodos avaliados. De acordo com os resultados obtidos, as diferentes densidades de energia e irradiâncias propostas não prejudicaram a viabilidade e proliferação de fibroblastos pulpares de dentes decíduos humanos. A variação do protocolo de irradiação LBI, em função do tempo ou da potência, não interferiram nas respostas celulares após a aplicação da mesma densidade de energia com irradiâncias diferentes.(AU)


The aim of this study was to compare the effects of Low-level laser (LLL) with different energy densities and irradiances, varying according to the irradiation time and power, on cell viability and proliferation of pulp fibloblasts from human primary teeth (HPF). HPF were culture in DMEM and used between 4th and 8th passages. Groups were divided according to different energy densities, varying: Time of irradiation Ia (1.2 J/cm2 - 5 mW - 10 s), Ib (2.5 J/cm2 - 5 mW - 20 s), Ic (3.7 J/cm2 - 5 mW - 30 s), Id (5.0 J/cm2 - 5 mW - 40 s), and Ie (6.2 J/cm2 - 5 mW - 50 s); or output power - Grupo II IIa (1.2 J/cm2 - 5 mW - 10 s), IIb (2.5 J/cm2 - 10 mW - 10 s), IIc (3.7 J/cm2 - 15 mW - 10 s), IId (5.0 J/cm2 - 20 mW - 10 s), e IIe (6.2 J/cm2 - 25 mW - 10 s). Non-irradiated cells - grown in regular nutritional conditions - 10% Fetal Bovine Serum (FSB) (If and IIf) and non-irradiated cells - grown in nutritional deficit - 1% FBS (Ig and IIg) were considered positive and negative controls, respectively. Cell viability and proliferation were respectively assessed through MTT and Crystal violet (CV) assays at 24, 48 and 72h after irradiation. Data were submitted to statistical analysis by ANOVA 2 criteria, followed by Tukey test (P<0.05). In the MTT assay, the negative controls, Ig and IIg, showed significantly lower viability in relation to the corresponding groups: IIa and IIb 24 hours after irradiation; Ia, Ib, Ie, If and IIf at 48 hours period; and Ib-If, as IIa-IIf, after 72 hours. At different periods of evaluation of CV assay, all groups, except Ie, IIe and If, exhibited significantly higher proliferation compared to the respective negative controls. Within the same group at different periods, groups If and IIe showed lower viability during 24 hours compared to 72 hours period by MTT assay. In the intragroup evaluation, CV assay revealed lower proliferation at 24 hours compared to 48 and 72 hours periods, regardless of the evaluated group. Different irradiation protocols, groups I and II, showed no statistically significant differences on cell viability and proliferation among equals energy densities with different irradiances at the evaluated periods. According to these findings, different LLL energy densities and irradiances proposed did not impair viability and proliferation of pulp fibloblasts from human primary teeth. The variation of the LLL irradiation protocol, by the time or power, did not interfere in cellular responses after the application of the same energy density with different irradiances.(AU)


Assuntos
Humanos , Masculino , Feminino , Pré-Escolar , Criança , Polpa Dentária/citologia , Fibroblastos/efeitos da radiação , Lasers de Estado Sólido , Terapia com Luz de Baixa Intensidade/métodos , Doses de Radiação , Análise de Variância , Contagem de Células , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Polpa Dentária/efeitos da radiação , Violeta Genciana , Reprodutibilidade dos Testes , Fatores de Tempo , Dente Decíduo/citologia
18.
Lasers Med Sci ; 30(7): 1815-22, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25240388

RESUMO

This study aimed to evaluate the effects of low-level laser therapy (LLLT) on pulpal response of primary teeth. Twenty mandibular primary molars were randomly divided into the following groups: group I Buckley's formocresol (diluted at 1:5), group II calcium hydroxide, group III LLLT + zinc oxide/eugenol, and group IV LLLT + calcium hydroxide. LLLT parameters were set at 660-nm wavelength, 10-mW power output, and 2.5 J/cm(2) energy density for 10 s in continuous mode (InGaAlP laser, Twin Laser®, MMOptics, Sao Carlos, Sao Paulo, Brazil). The teeth were extracted at the regular exfoliation period. The dentin-pulp complex was graded by an established histopathological score system. Statistical analysis was performed by Kruskal-Wallis and chi-square test. The histopathological assessment revealed statistically significant differences among groups (P < 0.05). The lowest degree of pulpal inflammation was present in LLLT + calcium hydroxide (P = 0.0296). Calcium hydroxide showed the highest rate of hard tissue barrier (P = 0.0033), odontoblastic layer (P = 0.0033), and dense collagen fibers (P = 0.0095). On the other hand, formocresol showed the highest incidence of internal resorption (P = 0.0142). Based on this study, low-level laser therapy preceding the use of calcium hydroxide exhibited satisfactory results on pulp tissue healing. However, further clinical studies on human teeth with long-term follow-up are needed to test the low-level laser therapy efficacy.


Assuntos
Cárie Dentária/radioterapia , Terapia com Luz de Baixa Intensidade , Dente Decíduo/efeitos da radiação , Criança , Preparo da Cavidade Dentária , Polpa Dentária/efeitos da radiação , Feminino , Humanos , Masculino , Dente Molar/patologia , Dente Molar/efeitos da radiação , Pulpotomia , Dente Decíduo/patologia , Resultado do Tratamento
19.
Oper Dent ; 40(2): 129-33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25216939

RESUMO

OBJECTIVES: It has been suggested that laser preconditioning can produce dental anaesthesia. This study aimed to assess the response of the dental pulp to laser preconditioning. METHODS: The effects of laser preconditioning, sham laser (negative control), and composite curing light (positive control) on the response of the dental pulp to electric pulp testing was investigated in this double-blind crossover trial with six volunteers. The Er,Cr:YSGG laser or curing light was shone on a premolar tooth in a sweeping motion for 30 seconds (in the sham treatment, the laser was not activated) in blindfolded volunteers subjected to a consistent aural stimulus. Treatment method at each visit was randomized and performed by a researcher not involved in pulp testing. Teeth were pulp tested twice initially by another member of the research team to get baseline readings, immediately following the treatment, and thereafter every two minutes for 10 minutes. Results were analyzed using analysis of variance and an independent-sample t-test. RESULTS: There were no significant differences in pulpal response between treatments (p>0.05). CONCLUSION: Laser preconditioning did not affect pulpal response as measured by an electronic pulp tester. Laser preconditioning did not result in any pain or noticeable symptoms for both teeth and soft tissues.


Assuntos
Anestesia Dentária/métodos , Preparo da Cavidade Dentária/métodos , Terapia a Laser/métodos , Adulto , Anestesia Local/métodos , Dente Pré-Molar/efeitos da radiação , Estudos Cross-Over , Polpa Dentária/efeitos da radiação , Método Duplo-Cego , Feminino , Humanos , Masculino , Projetos Piloto
20.
J Biol Regul Homeost Agents ; 29(4): 813-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26753641

RESUMO

The effects of low-level laser therapy (LLLT) has been the focus of recent studies as being assumed responsible for promoting photostimulatory and photobiomodulatory effects in vivo and in vitro, increasing cell metabolism, improving cell regeneration and invoking an anti-inflammatory response. A positive effect of LLLT on the bone proliferation of some cell types has been observed, but little is known about its effect on dental pulp stem cells (DPSCs). Here, we accurately describe the technical procedure to isolate mesenchymal DPSCs, and assay their osteogenic capacity when irradiated with an LLLT source. These preliminary results show that LLLT irradiation influences the in vitro proliferation of DPSCs and increases the expression of essential proteins for bone formation, although it is necessary to carry out further experiments on other cell types and to uniform the methodological designs.


Assuntos
Polpa Dentária/citologia , Terapia com Luz de Baixa Intensidade , Osteogênese/efeitos da radiação , Células-Tronco/efeitos da radiação , Engenharia Tecidual/métodos , Diferenciação Celular , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Polpa Dentária/efeitos da radiação , Humanos , Fator de Transcrição Sp7 , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA