Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.977
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
J Hazard Mater ; 470: 134182, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583202

RESUMO

Establishing an economic and sustained Fenton oxidation system to enhance sludge dewaterability and carbamazepine (CBZ) removal rate is a crucial path to simultaneously achieve sludge reduction and harmless. Leveraging the principles akin to "tea making", we harnessed tea waste to continually release tea polyphenols (TP), thus effectively maintaining high level of oxidation efficiency through the sustained Fenton reaction. The results illustrated that the incorporation of tea waste yielded more favorable outcomes in terms of water content reduction and CBZ removal compared to direct TP addition within the Fe(III)/hydrogen peroxide (H2O2) system. Concomitantly, this process mainly generated hydroxyl radical (•OH) via three oxidation pathways, effectively altering the properties of extracellular polymeric substances (EPS) and promoting the degradation of CBZ from the sludge mixture. The interval addition of Fe(III) and H2O2 heightened extracellular oxidation efficacy, promoting the desorption and removal of CBZ. The degradation of EPS prompted the transformation of bound water to free water, while the formation of larger channels drove the discharge of water. This work achieved the concept of treating waste with waste through using tea waste to treat sludge, meanwhile, can provide ideas for subsequent sludge harmless disposal.


Assuntos
Carbamazepina , Peróxido de Hidrogênio , Ferro , Oxirredução , Esgotos , Chá , Poluentes Químicos da Água , Carbamazepina/química , Peróxido de Hidrogênio/química , Chá/química , Esgotos/química , Ferro/química , Poluentes Químicos da Água/química , Matriz Extracelular de Substâncias Poliméricas/química , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Eliminação de Resíduos Líquidos/métodos , Compostos Férricos/química , Polifenóis/química
2.
Sci Total Environ ; 927: 172270, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583627

RESUMO

Recent studies show that greenhouse gas (GHG) emissions from urban landscape water are significant and cannot be overlooked, underscoring the need to develop effective strategies for mitigating GHG production from global freshwater systems. Calcium peroxide (CaO2) is commonly used as an eco-friendly reagent for controlling eutrophication in water bodies, but whether CaO2 can reduce GHG emissions remains unclear. This study investigated the effects of CaO2 dosage on the production of methane (CH4) and nitrous oxide (N2O) in urban landscape water under anoxic conditions during summer. The findings reveal that CaO2 addition not only improved the physicochemical and organoleptic properties of simulated urban landscape water but also reduced N2O production by inhibiting the activity of denitrifying bacteria across various dosages. Moreover, CaO2 exhibited selective effects on methanogens. Specifically, the abundance of acetoclastic methanogen Methanosaeta and methylotrophic methanogen Candidatus_Methanofastidiosum increased whereas the abundance of the hydrogenotrophic methanogen Methanoregula decreased at low, medium, and high dosages, leading to higher CH4 production at increased CaO2 dosage. A comprehensive multi-objective evaluation indicated that an optimal dosage of 60 g CaO2/m2 achieved 41.21 % and 84.40 % reductions in CH4 and N2O production, respectively, over a 50-day period compared to the control. This paper not only introduces a novel approach for controlling the production of GHGs, such as CH4 and N2O, from urban landscape water but also suggests a methodology for optimizing CaO2 dosage, providing valuable insights for its practical application.


Assuntos
Metano , Óxido Nitroso , Peróxidos , Qualidade da Água , Metano/análise , Óxido Nitroso/análise , Peróxidos/análise , Poluentes Químicos da Água/análise , Gases de Efeito Estufa/análise
3.
J Environ Sci (China) ; 143: 148-163, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38644013

RESUMO

Rivers worldwide are under stress from eutrophication and nitrate pollution, but the ecological consequences overlap with climate change, and the resulting interactions may be unexpected and still unexplored. The Po River basin (northern Italy) is one of the most agriculturally productive and densely populated areas in Europe. It remains unclear whether the climate change impacts on the thermal and hydrological regimes are already affecting nutrient dynamics and transport to coastal areas. The present work addresses the long-term trends (1992-2020) of nitrogen and phosphorus export by investigating both the annual magnitude and the seasonal patterns and their relationship with water temperature and discharge trajectories. Despite the constant diffuse and point sources in the basin, a marked decrease (-20%) in nitrogen export, mostly as nitrate, was recorded in the last decade compared to the 1990s, while no significant downward trend was observed for phosphorus. The water temperature of the Po River has warmed, with the most pronounced signals in summer (+0.13°C/year) and autumn (+0.16°C/year), together with the strongest increase in the number of warm days (+70%-80%). An extended seasonal window of warm temperatures and the persistence of low flow periods are likely to create favorable conditions for permanent nitrate removal via denitrification, resulting in a lower delivery of reactive nitrogen to the sea. The present results show that climate change-driven warming may enhance nitrogen processing by increasing respiratory river metabolism, thereby reducing export from spring to early autumn, when the risk of eutrophication in coastal zones is higher.


Assuntos
Mudança Climática , Monitoramento Ambiental , Eutrofização , Nitrogênio , Fósforo , Rios , Temperatura , Poluentes Químicos da Água , Fósforo/análise , Nitrogênio/análise , Rios/química , Itália , Poluentes Químicos da Água/análise , Estações do Ano
4.
Sci Rep ; 14(1): 8406, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600150

RESUMO

The aim of this work was to synthesize a green nanoparticle SnCuO@FeO nanocomposite core-shell to break oily water emulsions during petroleum-enhancing production processes as an alternative to chemical and physical processes. In this study, eight bacterial isolates (MHB1-MHB8) have been isolated from tree leaves, giant reeds, and soil samples. The investigation involved testing bacterial isolates for their ability to make FeO nanoparticles and choosing the best producers. The selected isolate (MHB5) was identified by amplification and sequencing of the 16S rRNA gene as Bacillus paramycoides strain OQ878685. MHB5 produced the FeO nanoparticles with the smallest particle size (78.7 nm) using DLS. XRD, FTIR, and TEM were used to characterize the biosynthesized nanoparticles. The jar experiment used SnCuO@FeO with different ratios of Sn to CuO (1:1, 2:1, and 3:1) to study the effect of oil concentration, retention time, and temperature. The most effective performance was observed with a 1:1 ratio of Sn to CuO, achieving an 85% separation efficiency at a concentration of 5 mg/L, for a duration of 5 min, and at a temperature of 373 K. Analysis using kinetic models indicates that the adsorption process can be accurately described by both the pseudo-first-order and pseudo-second-order models. This suggests that the adsorption mechanism likely involves a combination of film diffusion and intraparticle diffusion. Regarding the adsorption isotherm, the Langmuir model provides a strong fit for the data, while the D-R model indicates that physical interactions primarily govern the adsorption mechanism. Thermodynamic analysis reveals a ∆H value of 18.62 kJ/mol, indicating an exothermic adsorption process. This suggests that the adsorption is a favorable process, as energy is released during the process. Finally, the synthesized green SnCuO@FeO nanocomposite has potential for use in advanced applications in the oil and gas industry to help the industry meet regulatory compliance, lower operation costs, reduce environmental impact, and enhance production efficiency.


Assuntos
Nanocompostos , Petróleo , Poluentes Químicos da Água , Emulsões , RNA Ribossômico 16S , Termodinâmica , Água/química , Adsorção , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
5.
J Hazard Mater ; 470: 134125, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565016

RESUMO

The study addressed the challenge of treating petroleum industry wastewater with high concentrations of 1,2-dichloroethane (1,2-DCA) ranging from 384 to 1654 mg/L, which poses a challenge for bacterial biodegradation and algal photodegradation. To overcome this, a collaborative approach using membrane bioreactors (MBRs) that combine algae and bacteria was employed. This synergistic method effectively mitigated the toxicity of 1,2-DCA and curbed MBR fouling. Two types of MBRs were tested: one (B-MBR) used bacterial cultures and the other (AB-MBR) incorporated a mix of algal and bacterial cultures. The AB-MBR significantly contributed to 1,2-DCA removal, with algae accounting for over 20% and bacteria for approximately 49.5% of the dechlorination process. 1,2-DCA metabolites, including 2-chloroethanol, 2-chloro-acetaldehyde, 2-chloroacetic acid, and acetic acid, were partially consumed as carbon sources by algae. Operational efficiency peaked at a 12-hour hydraulic retention time (HRT) in AB-MBR, enhancing enzyme activities crucial for 1,2-DCA degradation such as dehydrogenase (DH), alcohol dehydrogenase (ADH), and acetaldehyde dehydrogenase (ALDH). The microbial diversity in AB-MBR surpassed that in B-MBR, with a notable increase in Proteobacteria, Bacteroidota, Planctomycetota, and Verrucomicrobiota. Furthermore, AB-MBR showed a significant rise in the dominance of 1,2-DCA-degrading genus such as Pseudomonas and Acinetobacter. Additionally, algal-degrading phyla (e.g., Nematoda, Rotifera, and Streptophyta) were more prevalent in AB-MBR, substantially reducing the issue of membrane fouling.


Assuntos
Reatores Biológicos , Dicloretos de Etileno , Membranas Artificiais , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo , Dicloretos de Etileno/metabolismo , Petróleo/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Eliminação de Resíduos Líquidos/métodos
6.
PLoS One ; 19(4): e0301986, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626158

RESUMO

The production of sludge-based biochar to recover phosphorus (P) from wastewater and reuse the recovered phosphorus as agricultural fertilizer is a preferred process. This article mainly studied the removal of phosphate (PO4-P) from aqueous solution by synthesizing sludge-based biochar (MgSBC-0.1) from anaerobic fermentation sludge treated with magnesium (Mg)-loading-modification, and compared it with unmodified sludge-based biochar (SBC). The physicochemical properties, adsorption efficiency, and adsorption mechanism of MgSBC-0.1 were studied. The results showed that the surface area of MgSBC-0.1 synthesized increased by 5.57 times. The material surface contained MgO, Mg(OH)2, and CaO nanoparticles. MgSBC-0.1 can effectively remove phosphate in the initial solution pH range of 3.00-7.00, with a fitted maximum phosphorus adsorption capacity of 379.52 mg·g-1. The adsorption conforms to the pseudo second-order kinetics model and Langmuir isotherm adsorption curve. The characterization of the adsorbed composite material revealed the contribution of phosphorus crystal deposition and electrostatic attraction to phosphorus absorption.


Assuntos
Fosfatos , Poluentes Químicos da Água , Fosfatos/química , Magnésio , Esgotos , Adsorção , Carvão Vegetal , Fósforo/química , Cinética , Poluentes Químicos da Água/análise
7.
Chemosphere ; 357: 141920, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636914

RESUMO

Antimony contamination from textile industries has been a global environmental concern and the existing treatment technologies could not reduce Sb(V) to meet the discharge standards. To overcome this shortcoming, ferric flocs were introduced to expedite the biological process for enhanced Sb(V) removal in wastewater treatment plant (WWTP). For this purpose, a series of laboratorial-scale sequential batch reactor activated sludge processes (SBRs) were applied for Sb(V) removal with varied reactor conditions and the transformation of Fe and Sb in SBR system was investigated. Results showed a significant improvement in Sb(V) removal and the 20 mg L-1 d-1 iron ions dosage and iron loss rate was found to be only 15.2%. The influent Sb(V) concentration ranging 153-612 µg L-1 was reduced to below 50 µg L-1, and the maximum Sb(V) removal rate of the enhanced system reached about 94.3%. Furthermore, it exhibited high stability of Sb(V) removal in the face of antimonate load, Fe strike and matrix change of wastewater. Sludge total Sb determination and capacity calculation revealed decreasing in Sb adsorption capacity and desorption without fresh Fe dosage. While sludge morphology analysis demonstrated the aging and crystallization of iron hydroxides. These results verify the distinct effects of fresh iron addition and iron aging on Sb(V) removal. High-throughput gene pyrosequencing results showed that the iron addition changed microbial mechanisms and effect Fe oxidized bacterial quantity, indicating Sb(V) immobilization achieved by microbial synergistic iron oxidation. The present study successfully established a simple and efficient method for Sb(V) removal during biological treatment, and the modification of biological process by iron supplement could provide insights for real textile wastewater treatment.


Assuntos
Antimônio , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Esgotos/química , Esgotos/microbiologia , Antimônio/química , Ferro/química , Adsorção , Indústria Têxtil , Compostos Férricos/química , Reatores Biológicos/microbiologia , Têxteis , Biodegradação Ambiental , Aerobiose
8.
Water Res ; 256: 121558, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604065

RESUMO

The biodegradation of antibiotics in aquatic environment is consistently impeded by the widespread presence of heavy metals, necessitating urgent measures to mitigate or eliminate this environmental stress. This work investigated the degradation of sulfamethoxazole (SMX) by the white-rot fungus Phanerochaete chrysosporium (WRF) under heavy metal cadmium ion (Cd2+) stress, with a focus on the protective effects of reduced graphene oxide (RGO). The pseudo-first-order rate constant and removal efficiency of 5 mg/L SMX in 48 h by WRF decrease from 0.208 h-1 and 55.6% to 0.08 h-1 and 28.6% at 16 mg/L of Cd2+, while these values recover to 0.297 h-1 and 72.8% by supplementing RGO. The results demonstrate that RGO, possessing excellent biocompatibility, effectively safeguard the mycelial structure of WRF against Cd2+ stress and provide protection against oxidative damage to WRF. Simultaneously, the production of manganese peroxidase (MnP) by WRF decreases to 38.285 U/L in the presence of 24 mg/L Cd2+, whereas it recovers to 328.51 U/L upon the supplement of RGO. RGO can induce oxidative stress in WRF, thereby stimulating the secretion of laccase (Lac) and MnP to enhance the SMX degradation. The mechanism discovered in this study provides a new strategy to mitigate heavy metal stress encountered by WRF during antibiotic degradation.


Assuntos
Biodegradação Ambiental , Cádmio , Grafite , Phanerochaete , Sulfametoxazol , Phanerochaete/metabolismo , Sulfametoxazol/metabolismo , Cádmio/metabolismo , Poluentes Químicos da Água/metabolismo
9.
Environ Pollut ; 349: 123881, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38580063

RESUMO

Microalgae and macrophytes are commonly used as human and animal food supplements. We examined the cultivation of the microalgae Chlorella sorokiniana and the duckweed Lemna minor in thermal waters under batch and sequencing batch conditions and we characterized the produced biomass for the presence of essential nutrients as well as for heavy metals and radioisotope content. The highest specific growth rate for the microalgae was observed when 5 or 15 mg/L N were supplemented while the optimal conditions for Lemna minor were observed in the co-presence of 5 mg/L N and 1.7 mg/L P. Lemna minor presented higher concentrations of proteins and lipids comparing to the studied microalgae. Both organisms contained high amounts of lutein (up to 1378 mg/kg for Lemna minor) and chlorophyll (up to 1518 mg/kg for Lemna minor) while ß-carotene and tocopherols were found at lower concentrations, not exceeding a few tens of mg/kg. The heavy metal content varied between the two species. Lemna minor accumulated more Cd, Cu, K, Mn, Na, Ni, and Zn whereas Al, Ca and Mg were higher in Chlorella sorokiniana. Both organisms could be a significant source of essential metals but the occasional exceedance of the statutory levels of toxic metals in food products raises concern for potential risk to either humans or animals. Application of gamma-spectroscopy to quantify the effective dose to humans from 228Ra, 226Ra and 40K showed that Chlorella sorokiniana was well under the radiological limits while the collected mass of Lemna minor was too small for radiological measurements with confidence.


Assuntos
Araceae , Biomassa , Chlorella , Metais Pesados , Microalgas , Radioisótopos , Metais Pesados/análise , Metais Pesados/metabolismo , Chlorella/crescimento & desenvolvimento , Chlorella/metabolismo , Araceae/metabolismo , Microalgas/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Clorofila/metabolismo
10.
Environ Pollut ; 349: 123951, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604305

RESUMO

Phosphorus is one of the important factors to successfully establish the microalgal-bacterial symbiosis (MABS) system. The migration and transformation of phosphorus can occur in various ways, and the effects of phosphate on the MABS system facing environmental impacts like heavy metal stress are often ignored. This study investigated the roles of phosphate on the response of the MABS system to zinc ion (Zn2+). The results showed that the pollutant removal effect in the MABS system was significantly reduced, and microbial growth and activity were inhibited with the presence of Zn2+. When phosphate and Zn2+ coexisted, the inhibition effects of pollutants removal and microbial growth rate were mitigated compared to that of only with the presence of Zn2+, with the increasing rates of 28.3% for total nitrogen removal, 48.9% for chemical oxygen demand removal, 78.3% for chlorophyll-a concentration, and 13.3% for volatile suspended solids concentration. When phosphate was subsequently supplemented in the MABS system after adding Zn2+, both pollutants removal efficiency and microbial growth and activity were not recovered. Thus, the inhibition effect of Zn2+ on the MABS system was irreversible. Further analysis showed that Zn2+ preferentially combined with phosphate could form chemical precipitate, which reduced the fixation of MABS system for Zn2+ through extracellular adsorption and intracellular uptake. Under Zn2+ stress, the succession of microbial communities occurred, and Parachlorella was more tolerant to Zn2+. This study revealed the comprehensive response mechanism of the co-effects of phosphate and Zn2+ on the MABS system, and provided some insights for the MABS system treating wastewater containing heavy metals, as well as migration and transformation of heavy metals in aquatic ecosystems.


Assuntos
Metais Pesados , Microalgas , Fosfatos , Simbiose , Águas Residuárias , Poluentes Químicos da Água , Metais Pesados/metabolismo , Águas Residuárias/química , Fosfatos/farmacologia , Fosfatos/metabolismo , Eliminação de Resíduos Líquidos/métodos , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Zinco
11.
Environ Sci Pollut Res Int ; 31(20): 29264-29279, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38573576

RESUMO

Guided by efficient utilization of natural plant oil and sulfur as low-cost sorbents, it is desired to tailor the porosity and composition of polysulfides to achieve their optimal applications in the management of aquatic heavy metal pollution. In this study, polysulfides derived from soybean oil and sulfur (PSSs) with improved porosity (10.2-22.9 m2/g) and surface oxygen content (3.1-7.0 wt.%) were prepared with respect to reaction time of 60 min, reaction temperature of 170 °C, and mass ratios of sulfur/soybean oil/NaCl/sodium citrate of 1:1:3:2. The sorption behaviors of PSSs under various hydrochemical conditions such as contact time, pH, ionic strength, coexisting cations and anions, temperature were systematically investigated. PSSs presented a fast sorption kinetic (5.0 h) and obviously improved maximum sorption capacities for Pb(II) (180.5 mg/g), Cu(II) (49.4 mg/g), and Cr(III) (37.0 mg/g) at pH 5.0 and T 298 K, in comparison with polymers made without NaCl/sodium citrate. This study provided a valuable reference for the facile preparation of functional polysulfides as well as a meaningful option for the removal of aquatic heavy metals.


Assuntos
Cobre , Chumbo , Metais Pesados , Óleo de Soja , Sulfetos , Poluentes Químicos da Água , Adsorção , Chumbo/química , Óleo de Soja/química , Cobre/química , Sulfetos/química , Porosidade , Poluentes Químicos da Água/química , Metais Pesados/química , Cromo/química , Cinética , Concentração de Íons de Hidrogênio
12.
Environ Pollut ; 348: 123768, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38493868

RESUMO

In this research, a sustainable substrate, termed green and long-lasting substrate (GLS), featuring a blend of emulsified substrate (ES) and modified rice husk ash (m-RHA) was devised. The primary objective was to facilitate the bioremediation of groundwater contaminated with trichloroethylene (TCE) using innovative GLS for slow carbon release and pH control. The GLS was concocted by homogenizing a mixture of soybean oil, surfactants (Simple Green™ and soya lecithin), and m-RHA, ensuring a gradual release of carbon sources. The hydrothermal synthesis was applied for the production of m-RHA production. The analyses demonstrate that m-RHA were uniform sphere-shape granules with diameters in micro-scale ranges. Results from the microcosm study show that approximately 83% of TCE could be removed (initial TCE concentration = 7.6 mg/L) with GLS supplement after 60 days of operation. Compared to other substrates without RHA addition, higher TCE removal efficiency was obtained, and higher Dehalococcoides sp. (DHC) population and hydA gene (hydrogen-producing gene) copy number were also detected in microcosms with GLS addition. Higher hydrogen concentrations enhanced the DHC growth, which corresponded to the increased DHC populations. The addition of the GLS could provide alkalinity at the initial stage to neutralize the acidified groundwater caused by the produced organic acids after substrate biodegradation, which was advantageous to DHC growth and TCE dechlorination. The addition of m-RHA reached an increased TCE removal efficiency, which was due to the fact that the m-RHA had the zeolite-like structure with a higher surface area and lower granular diameter, and thus, it resulted in a more effective initial adsorption effect. Therefore, a significant amount of TCE could be adsorbed onto the surface of m-RHA, which caused a rapid TCE removal through adsorption. The carbon substrates released from m-RHA could then enhance the subsequent dechlorination. The developed GLS is an environmentally-friendly and green substrate.


Assuntos
Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Tricloroetileno/metabolismo , Biodegradação Ambiental , Carbono , Poluentes Químicos da Água/análise , Água Subterrânea/química , Hidrogênio , Concentração de Íons de Hidrogênio
13.
Arch Environ Contam Toxicol ; 86(3): 249-261, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494559

RESUMO

Selenium (Se) bioaccumulation and toxicity in aquatic vertebrates have been thoroughly investigated. Limited information is available on Se bioaccumulation at the base of aquatic food webs. In this study, we evaluated Se bioaccumulation in two benthic macroinvertebrates (BMI), Hyalella azteca and Chironomus dilutus raised in the laboratory and caged in-situ to a Canadian boreal lake e (i.e., McClean Lake) that receives continuous low-level inputs of Se (< 1 µg/L) from a uranium mill. Additional Se bioaccumulation assays were conducted in the laboratory with these BMI to (i) confirm field results, (ii) compare Se bioaccumulation in lab-read and native H. azteca populations and (iii) identify the major Se exposure pathway (surface water, top 1 cm and top 2-3 cm sediment layers) leading to Se bioaccumulation in H. azteca. Field and laboratory studies indicated overall comparable Se bioaccumulation and trophic transfer factors (TTFs) in co-exposed H. azteca (whole-body Se 0.9-3.1 µg/g d.w; TTFs 0.6-6.3) and C. dilutus (whole-body Se at 0.7-3.2 µg Se/g d.w.; TTFs 0.7-3.4). Native and lab-reared H. azteca populations exposed to sediment and periphyton from McClean Lake exhibited similar Se uptake and bioaccumulation (NLR, p = 0.003; 4.1 ± 0.8 µg Se/g d.w), demonstrating that lab-reared organisms are good surrogates to assess on-site Se bioaccumulation potential. The greater Se concentrations in H. azteca exposed to the top 1-3 cm sediment layer relative to waterborne exposure, corroborates the importance of the sediment-detrital pathway leading to greater Se bioaccumulation potential to higher trophic levels via BMI.


Assuntos
Anfípodes , Formigas , Chironomidae , Selênio , Poluentes Químicos da Água , Animais , Selênio/toxicidade , Selênio/metabolismo , Chironomidae/metabolismo , Bioacumulação , Canadá , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Sedimentos Geológicos
14.
J Environ Manage ; 355: 120274, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452618

RESUMO

In this study, rooibos tea waste (RTW) incorporated with a binary oxide (BO; Fe2O3-SnO2) has been reported for the first time as a highly efficient adsorbent material for the elimination of Ni(II) ions. The as-synthesised rooibos tea waste-binary oxide (RWBO) composite adsorbent was characterised using miscellaneous techniques such as FTIR, XRD, SEM, EDX, TGA, BET, and XPS. The RWBO was then tested for the removal of Ni(II) in a batch adsorption experiment. The composite adsorbent showed a great removal efficiency of about 99.75% for Ni(II) ions at 45 °C, 180 min agitation time, pH 7, and dosage of 250 mg. The adsorption process was found to be endothermic and spontaneous. Also, the spent adsorbent [RWBO-Ni(II)] was found to be solar light active with a narrow band gap of 1.4 eV. It was further used as a photocatalyst for the photocatalytic abatement of 10 mg/L ciprofloxacin with an extent of degradation of 83% obtained after 150 min. In addition, the extent of mineralisation of the ciprofloxacin by the spent adsorbent as obtained from the TOC data was found to be 64%. Overall, the RWBO composite adsorbent lends itself as an efficient, eco-friendly and promising material for environmental remediation.


Assuntos
Aspalathus , Poluentes Químicos da Água , Níquel , Óxidos , Ciprofloxacina , Chá , Aspalathus/metabolismo , Adsorção , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Íons
15.
Food Chem Toxicol ; 186: 114560, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432440

RESUMO

Alpha lipoic acid (ALA) is a dietary supplement that has been used to treat a wide range of diseases, including obesity and diabetes, and have lipid-lowering effects, making it a potential candidate for mitigating dyslipidemia resulting from exposures to the per- and polyfluoroalkyl substance (PFAS) family member perfluorooctanesulfonic acid (PFOS). ALA can be considered a non-fluorinated structural analog to PFOS due to their similar 8-carbon chain and amphipathic structure, but, unlike PFOS, is rapidly metabolized. PFOS has been shown to reduce pancreatic islet area and induce ß-cell lipotoxicity, indicating that changes in ß-cell lipid microenvironment is a mechanism contributing to hypomorphic islets. Due to structural similarities, we hypothesized that ALA may compete with PFOS for binding to proteins and distribution throughout the body to mitigate the effects of PFOS exposure. However, ALA alone reduced islet area and fish length, with several morphological endpoints indicating additive toxicity in the co-exposures. Individually, ALA and PFOS increased fatty acid uptake from the yolk. ALA alone increased liver lipid accumulation, altered fatty acid profiling and modulated PPARÉ£ pathway signaling. Together, this work demonstrates that ALA and PFOS have similar effects on lipid uptake and metabolism during embryonic development in zebrafish.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Ácido Tióctico , Poluentes Químicos da Água , Animais , Peixe-Zebra , Ácido Tióctico/farmacologia , Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade , Ácidos Graxos , Poluentes Químicos da Água/toxicidade
16.
Environ Sci Technol ; 58(12): 5472-5482, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38466321

RESUMO

The fate of selected UV filters (UVFs) was investigated in two soil aquifer treatment (SAT) systems, one supplemented with a reactive barrier containing clay and vegetable compost and the other as a traditional SAT reference system. We monitored benzophenone-3 (BP-3) and its transformation products (TPs), including benzophenone-1 (BP-1), 4,4'-dihydroxybenzophenone (4DHB), 4-hydroxybenzophenone (4HB), and 2,2'-dihydroxy-4-methoxybenzophenone (DHMB), along with benzophenone-4 (BP-4) and avobenzone (AVO) in all involved compartments (water, aquifer sediments, and biofilm). The reactive barrier, which enhances biochemical activity and biofilm development, improved the removal of all detected UVFs in water samples. Among monitored UVFs, only 4HB, BP-4, and AVO were detected in sediment and biofilm samples. But the overall retained amounts were several orders of magnitude larger than those dissolved. These amounts were quantitatively reproduced with a specifically developed simple analytical model that consists of a mobile compartment and an immobile compartment. Retention and degradation are restricted to the immobile water compartment, where biofilm absorption was simulated with well-known compound-specific Kow values. The fact that the model reproduced observations, including metabolites detected in the biofilm but not in the (mobile) water samples, supports its validity. The results imply that accumulation ensures significant biodegradation even if the degradation rates are very low and suggest that our experimental findings for UVFs and TPs can be extended to other hydrophobic compounds. Biofilms act as accumulators and biodegraders of hydrophobic compounds.


Assuntos
Solo , Poluentes Químicos da Água , Porosidade , Protetores Solares/análise , Benzofenonas/química , Água/química , Poluentes Químicos da Água/análise
17.
Sci Total Environ ; 927: 172023, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547982

RESUMO

A comprehensive floc model for simultaneous nitrification, denitrification, and phosphorus removal (SNDPR) was designed, incorporating polyphosphate-accumulating organisms (PAOs), glycogen-accumulating organisms (GAOs), intrinsic half-saturation coefficients, and explicit external mass transfer terms. The calibrated model was able to effectively describe experimental data over a range of operating conditions. The estimated intrinsic half-saturation coefficients of oxygen values for ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, ordinary heterotrophic organisms (OHOs), PAOs, and GAOs were set at 0.08, 0.18, 0.03, 0.07, and 0.1 mg/L, respectively. Simulation suggested that low dissolved oxygen (DO) environments favor K-strategist nitrifying bacteria and PAOs. In SNDPR, virtually all influent and fermentation-generated volatile fatty acids were assimilated as polyhydroxyalkanoates by PAOs in the anaerobic phase. In the aerobic phase, PAOs absorbed 997 % and 171 % of the benchmark influent total phosphorus mass loading through aerobic growth and denitrification via nitrite. These high percentages were because they were calculated relative to the influent total phosphorus, rather than total phosphorus at the end of the anaerobic period. When considering simultaneous nitrification and denitrification, about 23.1 % of influent total Kjeldahl nitrogen was eliminated through denitrification by PAOs and OHOs via nitrite, which reduced the need for both oxygen and carbon in nitrogen removal. Moreover, the microbial and DO profiles within the floc indicated a distinct stratification, with decreasing DO and OHOs, and increasing PAOs towards the inner layer. This study demonstrates a successful floc model that can be used to investigate and design SNDPR for scientific and practical purposes.


Assuntos
Desnitrificação , Nitrificação , Fósforo , Eliminação de Resíduos Líquidos , Fósforo/metabolismo , Fósforo/análise , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Modelos Teóricos
18.
Environ Pollut ; 346: 123688, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38431247

RESUMO

One challenge of the citrus industry is the treatment and disposal of its effluents due to their high toxicity, substantial organic load, and consequent resistance to conventional biotechnological processes. This study introduces a novel approach, using electrochemical oxidation with a boron-doped diamond anode to efficiently remove organic compounds from biodegraded pulp wash (treated using the fungus Pleurotus sajor-caju.) The findings reveal that employing a current density of 20 mA cm-2 achieves notable results, including a 44.1% reduction in color, a 70.0% decrease in chemical oxygen demand, an 88.0% reduction in turbidity, and an impressive 99.7% removal of total organic carbon (TOC) after 6 h of electrolysis. The energy consumption was estimated at 2.93 kWh g-1 of removed TOC. This sequential biological-electrochemical procedure not only significantly reduced the mortality rate (85%) of Danio rerio embryos but also reduced the incidence of morphologically altered parameters. Regarding acute toxicity (LC50) of the residue, the process demonstrated a mortality reduction of 6.97% for D. rerio and a 40.88% lethality decrease for Lactuca sativa seeds. The substantial reduction in toxicity and organic load observed in this study highlights the potential applicability of combined biological and electrochemical treatments for real agroindustrial residues or their effluents.


Assuntos
Diamante , Poluentes Químicos da Água , Diamante/química , Poluentes Químicos da Água/análise , Eletrólise/métodos , Compostos Orgânicos , Eletrodos , Oxirredução
19.
Environ Sci Pollut Res Int ; 31(17): 25147-25162, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38468006

RESUMO

The comparative study of the transformation among sediment phosphorus (P) fractions in different lake types is a global issue in lake ecosystems. However, interactions between sediment P fractions, environmental factors, and microorganisms vary with the nutrient status of lakes. In this study, we combine sequential extraction and metagenomics sequencing to assess the characteristics of P fractions and transformation in sediments from different lake types in the Inner Mongolian section of the Yellow River Basin. We then further explore the response of relevant microbial and environmental drivers to P fraction transformation and bioavailability in sediments. The sediments of all three lakes exhibited strong exogenous pollution input characteristics, and higher nutritional conditions led to enhanced sediment P fraction transformation ability. The transformation capacity of the sediment P fractions also differed among the different lake types at the same latitudes, which is affected by many factors such as lake environmental factors and microorganisms. Different drivers reflected the mutual control of weakly adsorbed phosphorus (WA-P), potential active phosphorus (PA-P), Fe/Al-bound phosphorus (NaOH-P), and Ca-bound phosphorus (HCl-P) with the bio-directly available phosphorus (Bio-P). The transformation of NaOH-P in reducing environments can improve P bioavailability, while HCl-P is not easily bioavailable in weakly alkaline environments. There were significant differences in the bacterial community diversity and composition between the different lake types at the same latitude (p < 0.05), and the role of P fractions was stronger in the sediments of lakes with rich biodiversity than in poor biodiversity. Lake eutrophication recovery was somewhat hindered by the microbial interactions of P cycling and P fractions within the sediment. This study provides data and theoretical support for exploring the commonalities and differences among different lake types in the Inner Mongolian section of the Yellow River Basin. Besides, it is representative and typical for promoting the optimization of ecological security patterns in ecologically fragile watersheds.


Assuntos
Lagos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Ecossistema , Fósforo/análise , Congelamento , Hidróxido de Sódio , Monitoramento Ambiental , Sedimentos Geológicos , Eutrofização , China
20.
J Environ Manage ; 357: 120725, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38554454

RESUMO

Since the electroplating industry is springing up, effective control of phosphate has attracted global concerns. In this study, a novel biosorbent (MIL-88@CS-HDG) was synthesized by loading a kind of Fe-based metal organic framework called MIL-88 into chitosan hydrogel beads and applied in deep treatment of phosphate removal in electroplating wastewater. The adsorption capacities of H2PO4- on MIL-88@CS-HDG could reach 1.1 mmol/g (corresponding to 34.1 mg P/g and 106.7 mg H2PO4-/g), which was 2.65% higher than that on single MOF powders and chitosan hydrogel beads. The H2PO4- adsorption was well described by the Freundlich isotherm model. Over 90% H2PO4- could be adsorbed at contact time of 3 h. It could keep high adsorption capacity in the pH range from 2 to 7, which had a wider pH range of application compared with pure MIL-88. Only NO3- and SO42- limited the adsorption with the reduction rate of 11.42% and 23.23%, proving it tolerated most common co-existing ions. More than 92% of phosphorus could be recovered using NaOH and NaNO3. Electrostatic attraction between Fe core and phosphorus in MIL-88@CS-HDG and ion exchange played the dominant role. The recovered MIL-88@CS-HDG remained stable and applicable in the treatment process of real electroplating wastewater even after six adsorption-regeneration cycles. Based on the removal properties and superb regenerability, MIL-88@CS-HDG is potentially applicable to practical production.


Assuntos
Quitosana , Poluentes Químicos da Água , Fosfatos , Hidrogéis , Quitosana/química , Águas Residuárias , Galvanoplastia , Fósforo , Adsorção , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA