Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.381
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Chemosphere ; 352: 141275, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253089

RESUMO

Priority water pollutants comprising six plasticizers, 18 volatile organic compounds (VOCs), total petroleum hydrocarbon (TPH), 1,4-dioxane, epichlorohydrin, formaldehyde, acrylamide, and cyanides were determined in surface river sediments to assess their distribution patterns and ecological risks. Among these, di (2-ethylhexyl) phthalate (DEHP), toluene, TPH, and acrylamide were frequently found in sediments. The industrial sites had higher concentrations of ∑plasticizers (median 628 ng/g dry weight (dw)), ∑VOCs (median 3.35 ng/g dw), acrylamide (median 0.966 ng/g dw), and TPH (median 152 µg/g dw) in sediments than the mixed and non-industrial areas. The other pollutants did not show the significant differences in levels according to site types because of their relatively low detection frequencies. Volatile and soluble substances as well as hydrophobic pollutants were predominantly detected in surface sediments from industrial areas. Sediment contamination patterns were affected by the size and composition of the industrial zones around the sampling sites. The ecological risks determined using the sediment quality guidelines (DEHP, VOCs, and TPH) and the mean probable effect level quotients (DEHP) were mostly acceptable. However, the two most representative industrial regions (the largest industrial area and the first industrial city) showed risks of concern for DEHP and TPH.


Assuntos
Dietilexilftalato , Poluentes Ambientais , Petróleo , Ácidos Ftálicos , Poluentes Químicos da Água , Poluentes da Água , Rios/química , Poluentes Químicos da Água/análise , Medição de Risco , Plastificantes , Sedimentos Geológicos/química , Acrilamidas , China , Monitoramento Ambiental
2.
Sci Total Environ ; 912: 169155, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38065493

RESUMO

Characterized by irregular spatial and temporal variations of pollutant loading and complex occurrence mechanisms, agricultural nonpoint source pollution (ANPSP) has always been a great challenge in field restoration worldwide. Returning farmlands to wetlands (RFWs) as an ecological restoration mode among various constructed wetlands was selected to manage ANPSP in this study. Triarrhena lutarioriparia, Nelumbo nucifera and Zizania latifolia monocultures were designed and the water pollutants was monitored. N. nucifera and Z. latifolia could reach the highest TN (53.28 %) and TP (53.22 %) removal efficiency, respectively. By 16s high-throughput sequencing of rhizosphere bacteria, 45 functional species were the main contributors for efficient N and P removal, and 38 functional keystone taxa (FKT) were found with significant ecological niche roles and metabolic functions. To our knowledge, this is the first study to explore the microbial driving N and P removal mechanism in response to ANPSP treated by field scale RFWs.


Assuntos
Poluentes Ambientais , Poluição Difusa , Poluentes da Água , Áreas Alagadas , Nitrogênio/análise , Fósforo , Eliminação de Resíduos Líquidos
3.
Environ Sci Pollut Res Int ; 30(41): 94205-94217, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37526819

RESUMO

To reveal the influence of the phosphorus chemical industry (PCI) on regional water environmental quality and safety, the water quality and ecotoxicological effects of a stream near a phosphorus chemical plant (PCP) in Guizhou Province, southwestern China, were investigated based on water samples collected from the stream. The results showed that the average concentrations of NH3-N, TN, P, F-, Hg, Mn, and Ni were 3.14 mg/L, 30.09 mg/L, 3.34 mg/L, 1.18 mg/L, 1.06 µg/L, 45.82 µg/L, and 11.30 µg/L, respectively. The overall water quality of the stream was in the heavily polluted category, and NH3-N, TN, P, F-, and Hg were the main pollution factors. The degree of pollution was in the order of rainy period > transitional period > dry period, and the most polluted sample site was 1100 m from the PCP. After 28 days of exposure to stream water, there was no significant change in the growth parameters of zebrafish. The gills of zebrafish showed a small amount of epithelial cell detachment and a small amount of inflammatory cell infiltration, and the liver tissue displayed a large amount of hepatocyte degeneration with loose and lightly stained cytoplasm. Compared with the control group, the %DNA in tail, tail length, tail moment, and olive tail moment were significantly increased (p < 0.05), indicating that the water sample caused DNA damage in the peripheral blood erythrocytes of zebrafish. The stream water in the PCI area was found to be polluted and exhibited significant toxicity to zebrafish, which could pose a threat to regional ecological security.


Assuntos
Indústria Química , Rios , Poluentes da Água , Poluição Química da Água , Poluentes da Água/análise , Poluentes da Água/toxicidade , Qualidade da Água , Peixe-Zebra/crescimento & desenvolvimento , Animais , China , Distribuição Aleatória , Rios/química , Brânquias/efeitos dos fármacos , Fígado/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Amônia/análise , Fósforo/análise , Estações do Ano
4.
J Agric Food Chem ; 71(22): 8265-8296, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37219570

RESUMO

The ability of modern agriculture to meet future food demand imposed by accelerating growth of the world's population is a major challenge, and fertilizers play a key role by replacing nutrients in agricultural soil. Given the need for fertilizers, their cost in nonrenewable resources and energy, and the consequences of the greenhouse gas emissions required to make them, people have begun to explore ways to make fertilizer manufacturing and use more sustainable. Using data from the CAS Content Collection, this review examines and analyzes the academic and patent literature on sustainable fertilizers from 2001 to 2021. The breakdown of journal and patent literature publication over time on this topic, country or region of publications, the substances included in published research, among other things allow us to understand the general progress in the field as well as the classes of materials and concepts driving innovation. We hope that this bibliometric analysis and literary review will assist researchers in relevant industries to discover and implement ways to supplement conventional fertilizers and nutrient sources while improving the efficiency and sustainability of waste management and ammonia production.


Assuntos
Fertilizantes , Amônia/síntese química , Água/química , Poluentes da Água/isolamento & purificação , Humanos , Animais , Purificação da Água/métodos , Agricultura
5.
Environ Monit Assess ; 195(6): 693, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37204517

RESUMO

In the present era of significant industrial development, the presence and dispersal of countless water contaminants in water bodies worldwide have rendered them unsuitable for various forms of life. Recently, the awareness of environmental sustainability for wastewater treatment has increased rapidly in quest of meeting the global water demand. Despite numerous conventional adsorbents on deck, exploring low-cost and efficient adsorbents is interesting. Clays and clays-based geopolymers are intensively used as natural, alternative, and promising adsorbents to meet the goals for combating climate change and providing low carbon, heat, and power. In this narrative work, the present review highlights the persistence of some inorganic/organic water pollutants in aquatic bodies. Moreover, it comprehensively summarizes the advancement in the strategies associated with synthesizing clays and their based geopolymers, characterization techniques, and applications in water treatment. Furthermore, the critical challenges, opportunities, and future prospective regarding the circular economy are additionally outlined. This review expounded on the ongoing research studies for leveraging these eco-friendly materials to address water decontamination. The adsorption mechanisms of clays-based geopolymers are successfully presented. Therefore, the present review is believed to deepen insights into wastewater treatment using clays and clays-based geopolymers as a groundbreaking aspect in accord with the waste-to-wealth concept toward broader sustainable development goals.


Assuntos
Poluentes Químicos da Água , Poluentes da Água , Purificação da Água , Águas Residuárias , Argila , Monitoramento Ambiental , Adsorção , Purificação da Água/métodos
6.
Environ Sci Pollut Res Int ; 30(16): 48232-48247, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36752921

RESUMO

Soil solution chemistry depends largely on mineralogy and organic matter properties of soil horizons with which they interact. Differing lithologies within a given catchment area can influence variability in soil cation exchange capacities and affect solute transport. Zero-tension and tension lysimeters were used to evaluate the fast transport of solutes in the topsoil vs. slow diffusional matrix flow at the subsoil of three contrasting lithology catchments in a mid-elevation mountain forest. Our aim was to test the feasibility of lysimeters' hydrochemical data as a gauge for legacy subsoil pollution. Due to contrasting lithologies, atmospheric legacy pollution prevailing at the soil-regolith interface is differently yet consistently reflected by beryllium, lead, and chromium soil solution concentrations of the three catchments. Geochemical (dis)equilibrium between the soil and soil matrix water governed the hydrochemistry of the soil solutions at the time of collection, potentially contributing to decreased dissolved concentrations with increased depths at sites with higher soil pH. A complementary isotopic δ18O runoff generation model constrained potential seasonal responses and pointed to sufficiently long water-regolith interactions as to permit important seasonal contributions of groundwater enriched in chemical species to the topsoil levels. Our study also reflects subsoil equilibration with atmospheric solutes deposited at the topsoil and thus provides guidance for evaluating legacy pollution in soil profiles derived from contrasting lithology.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Metais , Solo , Metais/análise , Solo/química , Água , Poluentes da Água/análise
7.
Environ Monit Assess ; 195(1): 151, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434297

RESUMO

In order to understand the sources of pollutants and the temporal and spatial distribution characteristics of the water quality in Cihu Lake, China, the monitoring data of seven water quality indicators from 12 sampling sites from 2015 to 2019 were selected, and the temporal and spatial variation laws of the water quality and pollution sources were analyzed by the use of the multivariate statistical analysis method. The results show that nitrogen and phosphorus pollution in the lake is dominant. The average concentrations of total nitrogen (TN) and total phosphorus (TP) exceed the surface water quality Class III standards by 1.6 and 2.2 times, respectively. Spatially, the results of the cluster analysis showed that the water quality in Cihu Lake can be categorized into three regions: the northern half of the lake, the southern half of the lake, and the canal entering the lake. Temporally, the water quality in these three regions can be classified into three categories: March to May (the northern half of Cihu Lake), September to November (the southern half of Cihu Lake), and September (the canal entering Cihu Lake). The discriminant analysis results showed that NH3-N, TN, CODCr, and BOD5 are the main factors that affect the uneven spatial distribution of the water quality of Cihu Lake, while TN, DO, and CODMn are the main factors that affect the temporal difference in the northern half of Cihu Lake, and NH3-N, TP, CODCr, DO, CODMn, TN, and TP are the main factors affecting the temporal difference in the southern half of Cihu Lake and the canal entering Cihu Lake. It was found that the water pollution in the study area can be mainly attributed to the incoming water and urban domestic pollution. The main pollution sources for the canal entering Cihu Lake and the southern half of Cihu Lake are the water from the sewage treatment plant and the domestic sewage that has not been intercepted, while the northern half of Cihu Lake is mainly affected by surface runoff, mixed rainwater and sewage, and internal pollution.


Assuntos
Poluentes Químicos da Água , Poluentes da Água , Lagos/análise , Poluentes da Água/análise , Esgotos/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Qualidade da Água , Fósforo/análise , Nitrogênio/análise
8.
Chemosphere ; 308(Pt 2): 136220, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36044965

RESUMO

In many intensive animal production areas, the over-application of manure has resulted in a build-up of soil phosphorus (P) and the creation of legacy P soils that threaten water quality. We investigated dissolved P forms losses in runoff using simulated rainfall in packed soil boxes amended with three poultry litter and products, including raw (unprocessed) litter, granulated litter with the addition of urea, and heated raw litter. These were applied at 3 kg water-extractable P (WEP) ha-1 as determined with three litter-to-water extraction ratios (1:10, 1:100, and 1:200). Over three simulated rainfall events, the amount of dissolved reactive P (DRP) lost was significantly greater in runoff from soils amended with granulated litter (1.09 ± 0.02 kg ha-1) than raw (0.81 kg ha-1) and heated (0.58 kg ha-1) litters. No significant differences in the amount of dissolved unreactive P (DUP) in runoff (0.38 ± 0.07 kg ha-1) were observed among three litter amended soils. The soil test P (i.e., Mehlich 3-P) increased from 6.9 mg kg-1 in control to 10.4-11.6 mg kg-1 in litter amended soils, whereas the total WEP (0.26 ± 0.03 mg kg-1) in soils was similar after three rainfall simulation events. We conclude that (1) an accurate litter-to-water extraction ratio (>1:200) is critical to determine the amount of WEP in manure as it will ensure similar amounts of soluble P application and will result in identical runoff losses of dissolved P, and (2) the granulation and heating of litter created a product that could enhance the use of poultry litter, especially in non-agricultural markets, resulting in sustainably using manure and reducing the risk of P loss to water bodies.


Assuntos
Fósforo , Poluentes da Água , Animais , Monitoramento Ambiental , Esterco , Fósforo/análise , Aves Domésticas , Chuva , Solo , Ureia , Movimentos da Água , Poluentes da Água/análise
9.
J Photochem Photobiol B ; 234: 112544, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35994971

RESUMO

Public health is a major concern globally, owing to the presence of industrial dyes in the effluent. Nanoparticles with green synthesis are an enthralling research field with various applications. This study deals with investigating the photocatalytic potential of Fe-oxide nanoparticles (FeO-NPs) for the degradation of methylene blue dye and their potential biomedical investigations. Biosynthesis using Anthemis tomentosa flower extract showed to be an effective method for the synthesis of FeO-NPs. The freshly prepared FeO-NPs were characterized through UV/Vis spectroscopy showing clear peak at 318 nm. The prepared FeO-NPs were of smaller size and spherical shape having large surface area and porosity with no aggregations. The FeO-NPs were characterized using XRD, FTIR, HRTEM, SEM and EDX. The HRTEM results showed that the particle size of FeO-NPs was 60-90 nm. The antimicrobial properties of FeO-NPs were investigated against two bacterial Staphylococcus aureus 13 (±0.8) and Klebsiella pneumoniae 6(±0.6) and three fungal species Aspergillus Niger, Aspergillus flavus, and Aspergillus fumigatus exhibiting a maximum reduction of 57% 47% and 50%, respectively. Moreover, FeO-NPs exhibited high antioxidant properties evaluated against ascorbic acid. Overall, this study showed high photocatalytic, antimicrobial, and antioxidant properties of FeO-NPs owing to their small size and large surface area. However, the ecotoxicity study of methylene blue degradation products showed potential toxicity to aquatic organisms.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Poluentes da Água , Antibacterianos/química , Anti-Infecciosos/farmacologia , Antioxidantes , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Azul de Metileno/química , Extratos Vegetais/química
10.
Proc Natl Acad Sci U S A ; 119(30): e2202682119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858430

RESUMO

Heterogeneous peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs) have shown a great potential for pollutant degradation, but their feasibility for large-scale water treatment application has not been demonstrated. Herein, we develop a facile coprecipitation method for the scalable production (∼10 kg) of the Cu-Fe-Mn spinel oxide (CuFeMnO). Such a catalyst has rich oxygen vacancies and symmetry-breaking sites, which endorse it with a superior PMS-catalytic capacity. We find that the working reactive species and their contributions are highly dependent on the properties of target organic pollutants. For the organics with electron-donating group (e.g., -OH), high-valent metal species are mainly responsible for the pollutant degradation, whereas for the organics with electron-withdrawing group (e.g., -COOH and -NO2), hydroxyl radical (•OH) as the secondary oxidant also plays an important role. We demonstrate that the CuFeMnO-PMS system is able to achieve efficient and stable removal of the pollutants in the secondary effluent from a municipal wastewater plant at both bench and pilot scales. Moreover, we explore the application prospect of this PMS-based AOP process for large-scale wastewater treatment. This work describes an opportunity to scalably prepare robust spinel oxide catalysts for water purification and is beneficial to the practical applications of the heterogeneous PMS-AOPs.


Assuntos
Óxido de Alumínio , Óxido de Magnésio , Peróxidos , Poluentes da Água , Purificação da Água , Óxido de Alumínio/química , Catálise , Óxido de Magnésio/química , Peróxidos/química , Poluentes da Água/química , Purificação da Água/métodos
11.
Environ Sci Pollut Res Int ; 29(60): 90435-90445, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35870066

RESUMO

Sediments are the major sink for selenium (Se) in aquatic environments. Se speciation in sediments is crucial for its bioavailability and toxicity in benthos, but this is relatively understudied. In this study, the background levels of Se in the river sediments, fish flakes, and Lumbriculus variegatus were also detected. Then, the dynamic changes of selenium speciation and concentrations in sediments were investigated after adding selenite (Se(IV)) and seleno-L-methionine (Se-Met) in the sediments for 90 and 7 days, and the accumulation and depuration of Se(IV) and Se-Met for 7 days in the oligochaete L. variegatus were also explored. Without the presence of worms, the levels of Se(IV) in the sediments were relatively stable within 7 days but showed a decreasing trend during the 90 days of aging. In contrast, Se-Met in the sediments showed a sharp decrease within 3 days of aging. The LC50-96 h values of Se(IV) and Se-Met in L. variegatus were 372.6 and 9.4 µg/g, respectively. Interestingly, the dominant Se species in Se(IV)- or Se-Met-treated L. variegatus was Se-Met, whose level was increased with time in 7 days of exposure. Se was barely depurated from L. variegatus during the 8 days of the depuration period. This study has provided indispensable data on the levels of total Se in the abiotic and biotic matrices and the biodynamics of Se in a representative benthos, which could better understand the ecological risk of Se to the freshwater benthic communities.


Assuntos
Selênio , Poluentes da Água , Oligoquetos
12.
Environ Sci Pollut Res Int ; 29(52): 79253-79271, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35708808

RESUMO

In this study, plant extract obtained from pods of Millettia pinnata plant species was employed for nanosynthesis of Bi2O3. The as-synthesized semiconductor metal oxide nanoparticles were analyzed using various characterization tools such as X-ray diffraction (XRD), Scanning electron microscope (SEM), ultra violet-visible (UV-Vis), Fourier transform infrared (FTIR), Zeta potential, Raman, and X-ray photoelectron spectroscopy (XPS). The characterization results designate the formation of α and ß forms of Bi2O3. FESEM images demonstrate rod and flake-like nanostructures ranging from 25 to 70 nm. The green synthesized nanomaterial was found efficient for reduction of 4-nitro phenol (4-NP) and 4-nitro aniline (4-NA). However, it showed better performance toward the reduction of 4-NA. Photocatalytic investigations demonstrated that the green synthesized nanophotocatalyst was capable in degrading Amido Black 10B (AB-10B) dye efficiently under visible light illumination. 98.83% degradation of AB-10B dye was achieved within 120 min of irradiation under optimum conditions of photocatalyst dose and dye concentration. Active species trapping experiments revealed prominent role of superoxide radicals (•O2-) while hydroxyl radicals (•OH) played considerable role in the AB-10B photocatalytic degradation process. Moreover, the photostability and reusability assessment study ascertained good performance of the catalyst after four runs of successive cycles.


Assuntos
Millettia , Poluentes da Água , Extratos Vegetais , Superóxidos , Negro de Amido , Catálise , Óxidos , Compostos de Anilina , Fenóis
13.
Waste Manag ; 147: 30-35, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35597167

RESUMO

This study aimed to investigate the changes of swine and dairy manure characteristics during a long-term storage (150-180 days) under 4 °C, 20 °C, and 37 °C, sealed and unsealed conditions. Water extractable phosphorus (WEP) of both manures rapidly increased during the first 15-30 days and then decreased. At the end of the storage, the WEP reduction was 90%±3% and 71%±5% of the initial concentration for swine manure and dairy manure, respectively. Generally, unsealed storage and higher temperatures led to more WEP reduction. This study suggested that manure stored for less than 30 days had the highest P runoff potential, while a long-term manure storage reduced P runoff potential compared to freshly excreted manure.


Assuntos
Esterco , Poluentes da Água , Animais , Gado , Fósforo , Suínos , Água , Movimentos da Água , Poluentes da Água/análise
14.
Environ Sci Pollut Res Int ; 29(42): 63640-63654, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35460477

RESUMO

The purpose of this research is to seek a better inversion algorithm. And on this basis, it explores the feasibility of using hyperspectral monitoring technology instead of laboratory physical and chemical index test and evaluates the prediction effect of inversion model on water quality change. So as to be more convenient, more economical and extensive monitoring methods for water quality monitoring of urban internal river are provided. This paper takes the water samples collected in Fuyang River in downtown Handan as the research object and obtains original spectral data of the samples by the ASD FieldSpec 4 field hyperspectral spectrometer. After the smoothing filter pretreatment by the Savitzky-Golay (SG) method and specified mathematical transformations, the modeling spectral indicators of various water quality parameters are selected and determined by calculating the maximum mean of absolute values for correlation coefficients of various spectral indicators and measured values in the wavelength range from 400 to 950 nm. By introducing partial least squares (PLS), random forest (RF), and Lasso (least absolute shrinkage and selection operator), six water quality parameter fitting models were constructed including turbidity (Turb), suspended substance (SS), chemical oxygen demand (COD), NH4-N, total nitrogen (TN), and total phosphorus (TP), which are also testified and evaluated through hyperspectral data. The results show that different spectral transformation methods highlight different information inversion effects. The first derivative of reciprocal logarithm of spectral data after SG smoothing has a good modeling effect on four water quality parameters including Turb, COD, NH4-N, and TP; and the first derivative of smoothed spectral data has a good modeling effect on both water quality parameters of SS and TN. Among the three models, the PLS model has a good prediction effect, with the [Formula: see text] for COD, TN, and TP ranging from 0.74 to 0.80, while that for Turb and SS shows relatively poorer prediction effect, followed by even worse effect on HN4-H. Both machine learning algorithms of RF and Lasso have respectively obtained the best prediction models for different water quality parameters. The Lasso model has a [Formula: see text] value above 0.8 for water body organic pollutants COD, TN, and TP, and the decrease value for [Formula: see text] and [Formula: see text] is below 0.1, which indicates that the model has high prediction accuracy and strong generalization ability, but the results of SS and NH4-N do not meet the expected accuracy. In the inversion model of RF for COD, [Formula: see text] is higher than [Formula: see text], which shows excellent performance, and has certain prediction ability for SS and NH4-N. The RF model and Lasso model complement each other effectively in applicability and prediction accuracy. Compared with the traditional regression model PLS, machine learning has obvious overall advantages, making it more suitable for classified inversion prediction of urban river water quality parameters.


Assuntos
Poluentes da Água , Qualidade da Água , Monitoramento Ambiental/métodos , Imageamento Hiperespectral , Nitrogênio/análise , Fósforo , Rios/química , Tecnologia
15.
Int J Mol Sci ; 23(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35054917

RESUMO

Research on layered two-dimensional (2D) materials is at the forefront of material science. Because 2D materialshave variousplate shapes, there is a great deal of research on the layer-by-layer-type junction structure. In this study, we designed a composite catalyst with a dimension lower than two dimensions and with catalysts that canbe combined so that the band structures can be designed to suit various applications and cover for each other's disadvantages. Among transition metal dichalcogenides, 1T-WS2 can be a promising catalytic material because of its unique electrical properties. Black phosphorus with properly controlled surface oxidation can act as a redox functional group. We synthesized black phosphorus that was properly surface oxidized by oxygen plasma treatment and made a catalyst for water quality improvement through composite with 1T-WS2. This photocatalytic activity was highly efficient such that the reaction rate constant k was 10.31 × 10-2 min-1. In addition, a high-concentration methylene blue solution (20 ppm) was rapidly decomposed after more than 10 cycles and showed photo stability. Designing and fabricating bandgap energy-matching nanocomposite photocatalysts could provide a fundamental direction in solving the future's clean energy problem.


Assuntos
Poluentes Atmosféricos/química , Luz , Nanocompostos/química , Fósforo/química , Poluentes da Água/química , Catálise , Recuperação e Remediação Ambiental , Nanocompostos/ultraestrutura , Processos Fotoquímicos , Análise Espectral
16.
Appl Environ Microbiol ; 87(20): e0080021, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34378990

RESUMO

Oil spills in the subarctic marine environment off the coast of Labrador, Canada, are increasingly likely due to potential oil production and increases in ship traffic in the region. To understand the microbiome response and how nutrient biostimulation promotes biodegradation of oil spills in this cold marine setting, marine sediment microcosms amended with diesel or crude oil were incubated at in situ temperature (4°C) for several weeks. Sequencing of 16S rRNA genes following these spill simulations revealed decreased microbial diversity and enrichment of putative hydrocarbonoclastic bacteria that differed depending on the petroleum product. Metagenomic sequencing revealed that the genus Paraperlucidibaca harbors previously unrecognized capabilities for alkane biodegradation, which were also observed in Cycloclasticus. Genomic and amplicon sequencing together suggest that Oleispira and Thalassolituus degraded alkanes from diesel, while Zhongshania and the novel PGZG01 lineage contributed to crude oil alkane biodegradation. Greater losses in PAHs from crude oil than from diesel were consistent with Marinobacter, Pseudomonas_D, and Amphritea genomes exhibiting aromatic hydrocarbon biodegradation potential. Biostimulation with nitrogen and phosphorus (4.67 mM NH4Cl and 1.47 mM KH2PO4) was effective at enhancing n-alkane and PAH degradation following low-concentration (0.1% [vol/vol]) diesel and crude oil amendments, while at higher concentrations (1% [vol/vol]) only n-alkanes in diesel were consumed, suggesting toxicity induced by compounds in unrefined crude oil. Biostimulation allowed for a more rapid shift in the microbial community in response to petroleum amendments, more than doubling the rates of CO2 increase during the first few weeks of incubation. IMPORTANCE Increases in transportation of diesel and crude oil in the Labrador Sea will pose a significant threat to remote benthic and shoreline environments, where coastal communities and wildlife are particularly vulnerable to oil spill contaminants. Whereas marine microbiology has not been incorporated into environmental assessments in the Labrador Sea, there is a growing demand for microbial biodiversity evaluations given the pronounced impact of climate change in this region. Benthic microbial communities are important to consider given that a fraction of spilled oil typically sinks such that its biodegradation occurs at the seafloor, where novel taxa with previously unrecognized potential to degrade hydrocarbons were discovered in this work. Understanding how cold-adapted microbiomes catalyze hydrocarbon degradation at low in situ temperature is crucial in the Labrador Sea, which remains relatively cold throughout the year.


Assuntos
Sedimentos Geológicos/microbiologia , Microbiota , Petróleo/metabolismo , Poluentes da Água/metabolismo , Adaptação Fisiológica , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Temperatura Baixa , Hidrocarbonetos/metabolismo , Microbiota/genética , Terra Nova e Labrador , Poluição por Petróleo , RNA Ribossômico 16S/genética
17.
Ecotoxicol Environ Saf ; 221: 112451, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34174737

RESUMO

Manganese oxides and iron oxides have been widely introduced in constructed wetlands (CWs) for sewage treatment due to their extensiveness in nature and their ability to participate in various reactions, but their effects on greenhouse gas (GHG) emissions remain unclear. Here, a set of vertical subsurface-flow CWs (Control, Fe-VSSCWs, and Mn-VSSCWs) was established to comprehensively evaluate which are the better metal substrate materials for CWs, iron oxides or manganese oxides, through water quality and the global warming potential (GWP) of nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2). The results revealed that the removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in Mn-VSSCWs were all higher than that in Fe-VSSCWs, and manganese oxides could almost completely suppress the CH4 production and reduce GWP (from 8.15 CO2-eq/m2/h to 7.17 mg CO2-eq/m2/h), however, iron oxides promoted GWP (from 8.15 CO2-eq/m2/h to 10.84 mg CO2-eq/m2/h), so manganese oxides are the better CW substrate materials to achieve effective sewage treatment while reducing the greenhouse gas effect.


Assuntos
Poluentes Atmosféricos/química , Compostos Férricos/química , Efeito Estufa/prevenção & controle , Compostos de Manganês/química , Óxidos/química , Purificação da Água/métodos , Áreas Alagadas , Análise da Demanda Biológica de Oxigênio , Dióxido de Carbono/química , Metano/química , Nitrogênio/química , Óxido Nitroso/química , Fósforo/química , Poluentes da Água/química , Qualidade da Água
18.
Sci Prog ; 104(2): 368504211019845, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34030520

RESUMO

Modified natural zeolites (MNZ) are widely used in pollutant removal, but how to address these MNZ that have adsorbed pollutants must be considered. Selenium is an essential trace element for metabolism and is also a water pollutant. Selenium is adsorbed in the water by MNZ in this study first. Then the Brassica chinensis L. was planted in the soil which contains the MNZ loaded with selenium (MNZ-Se) to explore selenium uptake. MNZ-Se release tests in water and soil were also considered. The results showed the following: (1) The maximum adsorption capacity of MNZ for selenium is 46.90 mg/g. (2) Water release experiments of MNZ-Se showed that regardless of how the pH of the aqueous solution changes, the trend of the release of selenium from MNZ-Se in aqueous solution is not affected and first decreases before stabilizing. (3) Soil release experiments of MNZ-Se showed that the selenium content in the soil increased and reached the concentration in the standard of selenium-rich soil. Addition amount and soil pH value will affect the release ratio. The release ratio of MNZ-Se in the water was higher than that in the soil. (4) With an increase in the soil MNZ-Se content, the selenium content in the soil and B. c increases. Above all, MZN can be a good medium for water pollutant removal and soil improvement.


Assuntos
Selênio , Poluentes da Água , Zeolitas , Selênio/química , Selênio/metabolismo , Solo/química , Verduras/metabolismo , Águas Residuárias , Água
19.
Environ Sci Pollut Res Int ; 28(24): 31814-31830, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33611734

RESUMO

An automatic calibration framework of water quality parameters for surface runoff during modeling with InfoWorks ICM was constructed. The framework is based on a genetic algorithm (GA) and fully considers the calibration sequence for multiple water pollutants, namely, total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorous (TP). Meanwhile, four different objective functions including the Nash-Sutcliff efficiency coefficient (NSE), coefficient of determination (R2), percentage error in the peak (PEP), and percentage bias (PBIAS) were selected as fitness evaluators for the GA. The framework was applied successfully to a specific area of Fuzhou in China, and the multi-objective results were compared with the single-objective results. The comprehensive indexes of TSS, COD, TN, and TP by multi-objective calibration were lower than that of the single-objective calibration in both scenarios. Compared with single-objective calibration, the iterations to reach the optimal value were shortened 9, 5, 13, and 15 iterations by multi-objective calibration. Therefore, the findings showed that the multi-objective function GA was more balanced and more efficient than the single-objective function GA. Then, the uncertainty of the model was evaluated by using the samples generated by automatic calibration, which provided a reliable basis for the subsequent application of the model. This framework can be applied to other programs through adjustments of the number and weight of objective functions according to the specific situation, which will make the modeling more efficient and accurate.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Poluentes da Água , Calibragem , China , Monitoramento Ambiental , Fósforo/análise , Chuva , Água , Movimentos da Água , Poluentes Químicos da Água/análise
20.
Ecotoxicol Environ Saf ; 210: 111885, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33421714

RESUMO

Antibiotic resistance genes (ARGs) have attracted extensive attention as an emerging environmental contaminant potentially threatening humans. One of the main emission sources of ARGs is swine wastewater. In this study, integrated membrane filtration including ultrafiltration and two-stage reverse osmosis was conducted for swine wastewater treatment. The abundances of 16 target ARGs, which accounted for 72.64% of the total ARGs in swine wastewater according to metagenomic sequencing, were quantified by quantitative real-time PCR (qPCR) during each stage of the membrane filtration process. The results showed that integrated membrane filtration could reduce more than 99.0% of conventional pollutants and 99.79% of ARGs (from 3.02 × 108 copy numbers/mL to 6.45 × 105 copy numbers/mL). Principal component analysis (PCA) indicated that the removal efficiency of ARGs subtype by membrane filtration did not depend on ARGs type. However, strong correlations were found between ARGs and the wastewater quality indicators TP, SS and EC according to Cooccurrence patterns, indicating that ARG removal was closely associated with insoluble solid particles and soluble ions in swine wastewater. These results showed that membrane filtration could not only remove conventional pollutants such as nitrogen and phosphorus but also reduce the emerging pollutant of ARGs and decrease the risk of ARGs flowing into natural water.


Assuntos
Resistência Microbiana a Medicamentos/genética , Filtração/métodos , Genes Bacterianos , Purificação da Água/métodos , Criação de Animais Domésticos , Animais , Nitrogênio , Fósforo , Reação em Cadeia da Polimerase em Tempo Real , Suínos , Águas Residuárias/microbiologia , Poluentes da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA