Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Sci Total Environ ; 920: 170737, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340860

RESUMO

The study investigated the influence of a National Highway (NH) traversing tea estates (TEs) on heavy metal (HM) contamination in the top soils of Upper Assam, India. The dispersion and accumulation of six HMs, viz. cadmium (Cd), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), and zinc (Zn), within tea-growing soils were assessed using diverse indices: contamination factor (CF), degree of contamination (DC), enrichment factor (EF), geo-accumulation index (Igeo), modified degree of contamination (MDC), Nemerow pollution index (PINemerow), pollution load index (PLI), potential ecological risk factor (Eri), and potential ecological risk index (RI). The order of HM prevalence was Fe > Mn > Zn > Ni > Cu > Cd. Elevated Cd levels near the NH prompted immediate attention, while Cd and Zn showed moderate pollution in CF, EF, and RI. The remaining metals posed minimal individual risk (Eri< 40), resulting in an overall contamination range of "nil to shallow," signifying slight contamination from the studied metals. From MDC values for investigated metals, it was found to be "zero to very low degree of contamination" at all locations except the vicinity of NH. Soil pollution, as determined by PLI, indicated unpolluted soils in both districts, yet PINemerow values indicated slight pollution. The statistical analysis revealed that there is a significant decrease in most of the indices of HM as the distance from NH increases. The application of multivariate statistical techniques namely Principal Component Analysis and Cluster Analysis showed the presence of three distinct homogenous groups of distances based on different indices. This investigation underscores NH-associated anthropogenic effects on TE soil quality due to HM deposition, warranting proactive mitigation measures.


Assuntos
Camellia sinensis , Metais Pesados , Poluentes do Solo , Solo , Cádmio/análise , Medição de Risco , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Poluição Ambiental/análise , Zinco/análise , Manganês/análise , Níquel/análise , Chá
2.
Ann Glob Health ; 89(1): 74, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37899776

RESUMO

Purpose: Artisanal refining of crude oil has been associated with the manifestations of various health problems directly related to the release of particulate matter, including polycyclic aromatic hydrocarbons (PAHs), into the environment. This study thus assessed the respiratory health effects associated with being resident in areas where crude oil is artisanally refined in Bayelsa State. Material and methods: This study utilized a comparative, cross-sectional design and was conducted in three communities in Bayelsa State. These included Sampou (a mildly exposed community), Nembe, and Gbarain (severely exposed communities). A sample population of 615 adults selected by multistage sampling completed the study instrument, which assessed data on their respiratory health. Environmental monitoring of the PAHs levels of the samples was done, and concentrations were determined using the gas chromatography/flame ionization detector (GC/FID). The Statistical Package for Social Sciences version 25 was used to conduct descriptive and inferential analyses. Results: Findings revealed that the highest number of moderate to severe respiratory disease symptoms was experienced by respondents from Nembe 12 (41.4%), followed by those from Sampou 8 (27.6%), and then by those from Gbarain 9 (31.0%). Also, coughing that occurred mostly when lying down was found to be significantly prevalent among residents of Nembe [35 (47.9%); p-value: 0.016], among other symptoms. Respiratory disease symptoms were more likely to be found among females (p-value: 0.037), smokers (p-value: 0.002), and those having a low health risk perception related to PAHs exposure (p-value: 0.002). Conclusion: Respondents from the three study sites had in the past 12 months experienced various respiratory disease symptoms, which could be directly related to their exposure to pollution from artisanal crude oil refining. Artisanal refining of crude oil should be continually dissuaded through unwavering enforcement of environmental health laws in order to further improve public and environmental health.


Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Doenças Respiratórias , Adulto , Feminino , Humanos , Petróleo/análise , Estudos Transversais , Nigéria/epidemiologia , Poluição Ambiental/análise , Saúde Ambiental , Monitoramento Ambiental , Doenças Respiratórias/epidemiologia , Hidrocarbonetos Policíclicos Aromáticos/análise
3.
Environ Pollut ; 337: 122562, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37717896

RESUMO

The electroplating industry encompasses various processes and plating types that contribute to environmental pollution, which has led to growing public concern. To investigate related soil pollution in China, the study selected 10 sites with diverse industrial characteristics distributed across China and collected 1052 soil samples to determine the presence of industrial priority pollutants (PP) based on production process and pollutant toxicity. The factors influencing site pollution as well as proposed pollution prevention and control approaches were then evaluated. The results indicate the presence of significant pollution in the electroplating industry, with ten constituents surpassing the risk screening values (RSV). The identified PP consist of Cr(VI), zinc (Zn), nickel (Ni), total chromium (Cr), and petroleum hydrocarbons (C10-C40). PP contamination was primarily observed in production areas, liquid storage facilities, and solid zones. The vertical distribution of metal pollutants decreased with soil depth, whereas the reverse was true for petroleum hydrocarbons (C10-C40). Increase in site production time was strongly correlated with soil pollution, but strengthening anti-seepage measures in key areas can effectively reduce the soil exceedance standard ratio. This study serves as a foundation for conceptualizing site repair technology in the electroplating industry and offers a reference and methodology for pollution and source control in this and related sectors.


Assuntos
Poluentes Ambientais , Metais Pesados , Petróleo , Poluentes do Solo , Metais Pesados/análise , Galvanoplastia , Poluentes do Solo/análise , Medição de Risco , Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Poluentes Ambientais/análise , Cromo/análise , Solo , China , Hidrocarbonetos/análise , Petróleo/análise
4.
J Environ Manage ; 344: 118750, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37573701

RESUMO

Air sampling campaigns were conducted at 100 survey sites across Japan from April 2014 to February 2020, and a comprehensive database of atmospheric particles was obtained. In this study, the characteristics of PM2.5 and 26 metals were investigated in depth. Spatially, the concentration of PM2.5 gradually increased from the northeast to the southwest of Japan. The pollution in Kitakyushu City was the most serious, reaching 19.8 µg m-3. As an important particle component, metals did not show obviously spatial variation in Japan, with a sum concentration of 0.4 µg m-3. Anthropogenic metals only accounted for about 8% of the total metals, but they could pose a serious threat to public health. For children, the non-carcinogenic risk and carcinogenic risk due to exposure to anthropogenic metals could not be neglected in Japan; the corresponding HI and CR values at 100 survey sites ranged from 2.7 to 15.0 and 4.1 × 10-5 to 3.4 × 10-4, respectively. Adults faced lower health risks than children, with HI values ranging from 0.2 to 2.0 and CR values ranging from 2.0 × 10-5 to 1.6 × 10-4. The integrated health risk assessment results showed that the coastal region of the Seto Inland Sea and the north Tohoku Region were the most heavily polluted areas of Japan; in this study, 20 survey sites were finally determined to be high-risk sites, among which pollution control for Niihama City, Kitakyushu City, Hachinohe City, and Shimonoseki City were of first priority. With further combination with a positive matrix factorization model, it can be known that these four cities mainly had five to seven metal sources, and their heavy pollution was mainly caused by ship emissions, industrial emissions, biomass burning, and coal combustion. Overall, our study comprehensively revealed the regional patterns of PM2.5-bound metal pollution across Japan, which can help in making cost-effective risk management policies with limited national/local budgets.


Assuntos
Poluentes Atmosféricos , Metais Pesados , Criança , Adulto , Humanos , Metais Pesados/análise , Japão , Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Cidades , Medição de Risco , Material Particulado/análise , China , Poluentes Atmosféricos/análise
5.
Environ Pollut ; 337: 122100, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37392867

RESUMO

Cadmium (Cd) and lead (Pb) are known to enhance immune cell damages and to decrease cellular immunity, promoting higher susceptibility to infectious diseases. Selenium (Se) is an essential element involved in immunity and reactive oxygen species scavenging. This study aimed at evaluating how Cd and Pb and low nutritional (Se) quality modulate immune response to a bacterial lipopolysaccharide (LPS) challenge in wood mice (Apodemus sylvaticus). Mice were trapped near a former smelter in northern France in sites of High or Low contamination. Individuals were challenged immediately after capture or after five days of captivity, fed a standard or a Se-deficient diet. Immune response was measured with leukocyte count and plasma concentration of TNF-α, a pro-inflammatory cytokine. Faecal and plasma corticosterone (CORT), a stress-hormone involved in anti-inflammatory processes, was measured to assess potential endocrine mechanisms. Higher hepatic Se and lower faecal CORT were measured in free-ranging wood mice from High site. LPS-challenged individuals from High site showed steeper decrease of circulating leukocytes of all types, higher TNF-α concentrations, and a significant increase of CORT, compared to individuals from Low site. Challenged captive animals fed standard food exhibited similar patterns (decrease of leukocytes, increase of CORT, and detectable levels of TNF-α), with individuals from lowly contaminated site having higher immune responses than their counterparts from highly polluted site. Animals fed Se-deficient food exhibited lymphocytes decrease, no CORT variation, and average levels of TNF-α. These results suggest (i) a higher inflammatory response to immune challenge in free-ranging animals highly exposed to Cd and Pb, (ii) a faster recovery of inflammatory response in animals lowly exposed to pollution when fed standard food than more exposed individuals, and (iii) a functional role of Se in the inflammatory response. The role of Se and mechanisms underlying the relationship between glucocorticoid and cytokine remain to be elucidated.


Assuntos
Cádmio , Selênio , Camundongos , Animais , Cádmio/análise , Fator de Necrose Tumoral alfa , Lipopolissacarídeos/toxicidade , Chumbo , Murinae , Poluição Ambiental/análise , Corticosterona , Valor Nutritivo , Imunidade
6.
Huan Jing Ke Xue ; 44(5): 2879-2888, 2023 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-37177959

RESUMO

Shanxi is one of the main producing areas of Forsythia suspensa in China. In order to explore the safety of the soil in the areas where Forsythia suspensa grows,70 surface (0-25 cm) soil samples were collected from the main growing areas of F. suspensa in the eastsouth of Shanxi Province in July 2017. The concentration and composition characteristics of 16 polycyclic aromatic hydrocarbons (PAHs) in the sample soils were analyzed using chemical extraction and gas chromatography-mass spectrometry (GC-MS). The diagnostic ratio method was used to determine the source of PAHs in the areas. The potential ecological risk was assessed by using the method of calculating the equivalent carcinogenic concentration of benzo[a]pyrene. The results showed that the average concentration of total PAHs (Σ16PAHs) in all of the soil samples was 1.85 µg·g-1, which was dominated by three ring number PAHs, accounting for 76.7% of the total PAHs. The detection rates of phenanthrene (Phe) and anthracene (Ant) were both 100% of all the sample sites. The soil PAHs in the wild F. suspensa growing areas mainly originated from coal, biomass burning, and motor vehicle exhaust emissions, which resulted from air transport and sedimentation pathways. In all of the sample sites, the concentration of Σ16PAHs the limit standard level (0.2 µg·g-1) of Maliszewska-Kordybach for agricultural soil pollution and exceeded the soil heavy pollution level limit value (1.0 µg·g-1) in 41.4% of the sample sites. The concentration of BaP was above the risk control standard for soil contamination of agricultural land (0.55 µg·g-1) in 10% of all the soil samples. A total of 11.4% of the sample soil ΣBaPeq16PAHs and ΣBaPeq8BPAHs exceeded the agricultural soil screening value (0.55 µg·g-1). These results indicate that the contamination of PAHs was at a detectable level in the soil of wild F. suspensa growing in Shanxi, and thus their potential ecological risks should not be ignored. It is necessary to enhance the research regarding these areas to ensure the safe production of medicinal plants.


Assuntos
Forsythia , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo/química , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , China , Emissões de Veículos/análise , Poluição Ambiental/análise , Medição de Risco
7.
Sci Total Environ ; 871: 162023, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36739032

RESUMO

Soil pollution caused by complex organochloride mixtures has been increasing in many parts of the world in recent years; as a result, countless numbers of people are exposed to dangerous pollutions; hence, the treatment of organochlorides-polluted soils is gaining considerable attention. In this study, the potential of unactivated peroxymonosulfate (KHSO5) in remediating soil co-contaminated with trichlorophenol, para-dichlorobenzene, and para-chloro-meta-cresol was investigated. In addition, the treatment's collateral effect on critical soil properties was explored. The result revealed that treating 10 g of soil with 20 mL of 5 mM KHSO5 for 60 min could oxidize 70.49% of the total pollutants. The pH of the soil was decreased following the treatment. The significant decrease, (p < 0.05), in the soil organic matter following the remediation has affected cation exchange capacity, and available nitrogen. It was also observed that the treatment reduced the ß-glucosidase, urease, invertase, and cellulase activities significantly, (p < 0.05). The treatment, on the other hand, brought negligible effects on available phosphorus, available potassium, and particle size distribution. The phytotoxicity tests, which included seed germination and root elongation and soil respiration tests revealed that the treatment did not leach toxins into the treated soil. The treatment method was found to be relatively ecofriendly and cost effective.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Poluentes do Solo , Humanos , Solo/química , Poluentes do Solo/análise , Poluição Ambiental/análise , Compostos Orgânicos
8.
Environ Sci Pollut Res Int ; 30(14): 41910-41922, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36639587

RESUMO

The use of mechanochemistry for the remediation of hexachlorobenzene (HCB)-contaminated soil was investigated. Additives such as alkaline materials, neutral materials, natural minerals, and solid waste were studied to explore their effect on the degradation of hexachlorobenzene in soil with single or combined addition by mechanochemical method. The best combination of materials were determined based on HCB destruction percentage by considering the impact on soil quality, the treatment cost, and the availability of additives. Scanning electron microscope (SEM) images and X-ray photoelectron spectrometer (XPS) analysis were conducted for the mechanism studies. The combination of albite and ferric oxide (Fe3O4) was found to achieve the best performance in the degradation of HCB with the destruction percentage from 74.3 to 92.5% after 2-h and 6-h reaction, respectively. The developed fracture structure and complex compositions of albite provided abundant reaction sites for mechanochemical degradation of HCB in soil.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Hexaclorobenzeno/análise , Poluentes do Solo/análise , Poluição Ambiental/análise , Solo/química
9.
Environ Monit Assess ; 195(2): 299, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36640219

RESUMO

Use of medicinal herbs is now gaining popularity especially among the low-income people because it is cheap, readily available and its "seeming" lack of side effects. However, environmental pollution is a potential threat to its continued use. This study examines the effect of air pollution on the soil and consequently on the medicinal herbs grown on such soils. Soil and four medicinal herbs, Chromolaena odorata, Vernonia amygdalina, Carica papaya and Ocimum gratissimum, commonly used in the south western part of Nigeria either as purely medicinal herbs, soup vegetables or both were carefully harvested from Fasina, a polluted area, and Moro, a relatively unpolluted area, all in Ile-Ife, Nigeria. Samples were prepared following standard practice and analysed for nickel, chromium, cadmium and lead using atomic absorption spectroscopy (AAS). The results showed that elemental concentrations at the two locations were within the permissible limit for both soil and herbs, the statistical test also established no significant difference between the two locations. However, toxic metals concentrations (chromium, cadmium and lead) were found higher at the polluted site while that of the essential metal, nickel, was higher at the unpolluted site. Of the four metals, cadmium has the highest transfer ratio (0.39 and 0.34) while lead has the least (0.21 and 0.25) for Moro and Fasina sites respectively. Similarly, Chromolaena odorata has the highest transfer ratio (0.34) while Carica papaya has the least (0.28). In conclusion, gradual build-up of the toxic metals at the polluted site is evident and may eventually contaminate the herbs.


Assuntos
Metais Pesados , Plantas Medicinais , Poluentes do Solo , Humanos , Metais Pesados/análise , Ferro/análise , Níquel/análise , Cádmio/análise , Plantas Medicinais/química , Nigéria , Solo/química , Monitoramento Ambiental , Poluentes do Solo/análise , Poluição Ambiental/análise , Cromo/análise
10.
Sci Total Environ ; 857(Pt 1): 159405, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36243071

RESUMO

This study comprehensively evaluates the ecotoxicity of high-concentration heavy petroleum (HCHP)-contaminated soil before and after thermal desorption (TD) remediation at different temperatures and times. The results showed that the detoxification of contaminated soil was effectively achieved by extending the remediation duration at 400-600 °C. After treatment at 400 °C for 60 min, the toxicological indicators including bioluminescence EC50 (acute toxicity), seed germination ratio (Gr) and plant biomass of Brassica juncea (subacute toxicity), and diversity of the microbial community (chronic toxicity) reached a maximum. The value of the SOS-Induction Factor (SOSIF), characterizing genotoxicity was below 1.5, indicating that it was non-toxic. Pearson's correlation analysis illustrated that the water-soluble fraction (WSF), ALK1-3 and ARO1-3 of petroleum hydrocarbons were the primary sources of ecotoxicity. Notably, although the total ratio of petroleum removed from the soil reached 87.26 ± 4.38 %-98.69 ± 1.61 % under high-temperature thermal desorption (HTTD, 500-600 °C), the ecotoxicity was not lower than that at 400 °C. The pyrolysis products of petroleum macromolecules and extreme changes in soil properties were the leading causes of soil ecotoxicity following HTTD. The inconsistency between the removal of petroleum pollutants and ecological health risks reveals the significance of soil ecotoxicological assessments for identifying TD remediation endpoints and process optimization.


Assuntos
Petróleo , Poluentes do Solo , Petróleo/toxicidade , Petróleo/análise , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Hidrocarbonetos/análise , Solo , Poluição Ambiental/análise , Microbiologia do Solo , Biodegradação Ambiental
11.
Artigo em Inglês | MEDLINE | ID: mdl-36469548

RESUMO

The presence of potentially toxic elements (PTEs) in soil and plants is a risk factor to human well-being and the environment. Soil and leaves from a traditional medicinal plant, Vachellia karroo, known as the sweet thorn plant, were assessed to determine the extent of pollution by PTEs from gold mine tailings in a case study area of Matjhabeng Local Municipality, South Africa. A risk classification tool was developed using the different indicators of pollution quantified to describe the pollution risk at each sampling site. High concentrations of copper, cadmium, lead, nickel, and zinc were measured in the soil, which exceeded the maximum permissible soil quality limits. The enrichment factor and geoaccumulation index results also confirmed heavy soil pollution by copper, nickel, and zinc, with exceptionally heavy pollution by cadmium and selenium. The PTEs in the soil were in an exchangeable form, with the sweet thorn plant accumulating lead and selenium at toxic levels, which poses a risk to the health of the local people as the plant is used for medicinal purposes. The overall pollution risk classification tool of the sampling sites showed that 17% were high-risk areas, 53% were moderate-risk areas, and 20% of the sites were low-risk areas.


Assuntos
Metais Pesados , Plantas Medicinais , Selênio , Poluentes do Solo , Humanos , Metais Pesados/análise , Ouro , Cobre/análise , Cádmio/análise , Níquel , Zinco/análise , Poluição Ambiental/análise , Mineração , Solo , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Medição de Risco
12.
Ecotoxicol Environ Saf ; 242: 113864, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35849904

RESUMO

An in-depth understanding of the ecological and health risks posed by heavy metals originating from various pollution sources is critical for foresighted soil-quality management. Based on 220 grid samples (2 × 2 km) analyzed for eight heavy metals (Cd, Hg, As, Pb, Cr, Ni, Cu, and Zn) in the Chenshui (CS) watershed of Hunan Province, China, we applied an integrated approach for identifying and apportioning pollution sources of soil heavy metals and exploring their source-specific pollution risks. This approach consists of three sequential steps: (1) source identification by combining the positive matrix factorization model with geostatistical analysis; (2) quantification of ecological, carcinogenic, and non-carcinogenic risks in a source-specific manner; (3) prioritization of sources in a holistic manner, considering both ecological risks and human health risks. Cd (68.0%) and Hg (13.3%) dominated the ecological risk in terms of ecological risk index; As dominated the non-carcinogenic health risk in terms of total hazard index (THI; adults: 84.8%, children: 84.7%) and the carcinogenic health risk in terms of total carcinogenic risk index (TCRI; adults: 69.0%, children: 68.8%). Among three exposure routes, oral ingestion (89.4-95.2%) was the predominant route for both adults and children. Compared with adults (THI = 0.41, TCRI = 7.01E-05), children (THI = 2.81, TCRI = 1.22E-04) had greater non-carcinogenic and carcinogenic risks. Four sources (F1-4) were identified for the CS watershed: atmospheric deposition related to coal-burning and traffic emissions (F1, 18.0%), natural sources from parent materials (F2, 34.3%), non-ferrous mining and smelting industry (F3, 37.9%), and historical arsenic-related activity (F4, 9.8%). The F3 source contributed the largest (45.2%) to the ecological risks, and the F4 source was the predominant contributor to non-carcinogenic (52.4%) and carcinogenic (64.6%) risks. The results highlight the importance of considering legacy As pollution from abandoned industries when developing risk reduction strategies in this region. The proposed methodology for source and risk identification and apportionment formulates the multidimensional concerns of pollution and the various associated risks into a tangible decision-making process to support soil pollution control.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Adulto , Cádmio/análise , Criança , China , Monitoramento Ambiental , Poluição Ambiental/análise , Humanos , Mercúrio/análise , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise
13.
Environ Sci Pollut Res Int ; 29(28): 42452-42465, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35359211

RESUMO

The paper examines the impact of macroeconomic variables on CO2 emissions, very few research studies are available to estimate the asymmetric impact and causality. Because of the significance of asymmetries, this paper examines the asymmetric impact of economic growth, crude oil use, and FDI inflows on CO2 emissions in the India wherein COP (Crude oil price) is comprised as the extra variable. The implicate aggressive growth of selected variables over the period 1990-2020 is also assessed. This study uses the methodology ARDL and NARDL model to determine the macroeconomics variable's effects on CO2 emission over the period 1990-2020. Additionally, also applied the EKC (Environmental Kuznets Curve) hypothesis with an application of ARDL and NARDL model. With help of the ARDL and NARDL model, the study shows the results that a rise in economic growth would reduce CO2 (carbon dioxide) emissions while a decrease in economic growth would raise CO2 emissions which indicates an inverted U-shaped Curved relationship between economic growth and CO2 emissions. The positive and negative shockwaves in COP (crude oil prices) have a satisfactory and substantial impact on CO2 emissions as well. Besides, the crude oil consumption with positive shockwave confirmations has a positive and substantial impact on CO2 emission. In addition, the results of FDI inflows support the pollution heaven hypothesis. In light of these outcomes, this paper also recommended policy implications and future research, the policy implications are where the descending flow of FDI allows limited space to India in FDI selection; however, the existence of emission merging and implementation of carbon pricing may facilitate India in achieving its environmental targets.


Assuntos
Desenvolvimento Econômico , Petróleo , Dióxido de Carbono/análise , Poluição Ambiental/análise , Índia
14.
Sci Total Environ ; 834: 155197, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427617

RESUMO

Weathered petroleum-contaminated soil (WPCS) with a high proportion of heavy hydrocarbons is difficult to remediate. Our previous research demonstrated that Fe2O3-assisted pyrolysis was a cost-effective technology for the remediation of WPCS. However, the pyrolysis behaviors, products, and mechanisms of the WPCS with Fe2O3 are still unclear. In this study, a combination of Thermogravimetric-Fourier transform infrared spectroscopy (TG-FTIR) and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS) techniques were used to explore these pyrolysis characteristics. The thermal desorption/degradation of light and heavy hydrocarbons in the WPCS mainly occurred at 200-400 °C and 400-550 °C, respectively. The activation energy of thermal reaction of heavy hydrocarbons was decreased in the presence of Fe2O3 during the WPCS pyrolysis processes. In the process, the released inorganic gaseous products were mainly H2O and CO2, while the released organic gaseous compounds were primarily cycloalkanes, alkanes, acids/esters, alcohols, and aldehydes. Compared with the WPCS pyrolysis without Fe2O3, the yields of gaseous products released during the WPCS pyrolysis with Fe2O3 were reduced significantly, and some gaseous products were even not detected. This phenomenon was contributed by the following two reasons: 1) heavy hydrocarbons in the WPCS were more easily transformed into coke in the presence of Fe2O3 during pyrolysis; 2) some released gaseous products were reacted with Fe2O3 and fixed on the soil particles. Therefore, the WPCS pyrolysis with Fe2O3 can effectively reduce the burden of tail gas treatment. Criado method analysis results suggested that the reaction mechanism of heavy hydrocarbons during the WPCS pyrolysis with Fe2O3 was rendered as the synergic effects of diffusion, order-based, and random nucleation and growth reactions.


Assuntos
Petróleo , Poluição Ambiental/análise , Gases/análise , Hidrocarbonetos/análise , Pirólise , Solo
15.
Chemosphere ; 298: 134254, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35278453

RESUMO

Sewer sediments contain high concentrations of carbon, nitrogen, and phosphorus pollutants, which can be the main source of overflow pollution due to high-velocity scouring. To elucidate the scouring overflow pollution characteristics and regulation mechanism of sewer sediment under different precipitation intensities, a sewer-storage tank linkage control experimental device was established to simulate the practical sewer overflow under different precipitation intensities and the control process of storage tank overflow pollutants. Based on the division of flow from small to large, the pollution characteristics of overflow pollutants and the contribution rate of sewer sediments to overflow pollutants were analysed. The results showed that the total load of overflow pollutants increased with an increase in rainfall intensity and were 7.58 kg, 16.54 kg, 27.42 kg, respectively. The concentration of particulate pollutants increased sharply in a short time, and the concentration of dissolved pollutants decreased at a certain dilution. Sewer sediment was the main source of overflow pollutants, contributing up to 70%. After the overflow pollutants entered the regulation and storage tank, a certain stratification phenomenon was discovered at different sedimentation times. The concentration of large particle pollutants gradually increased from top to bottom in the regulation and storage tank, and the concentration of dissolved pollutants showed no obvious difference between the layers. With an increase in rainfall intensity, the recommended regulation and storage times of overflow pollutants were within 15 min, 45-60 min, and 60 min, respectively. Finally, based on the relationship among rainfall intensity, sediment scouring thickness, regulation and storage time, a prediction formula for the regulation and storage time of overflow pollutants was obtained, which provided a basis for the regulation and treatment of subsequent overflow pollutants.


Assuntos
Poluentes Ambientais , Esgotos , Poluentes Ambientais/análise , Poluição Ambiental/análise , Nitrogênio/análise , Fósforo/análise , Chuva , Esgotos/análise , Movimentos da Água
16.
Environ Sci Pollut Res Int ; 29(38): 57296-57305, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35352226

RESUMO

Mineralogy was an important driver for the environmental release of heavy metals. Therefore, the present work was conducted by coupling mineral liberation analyzer (MLA) with complementary geochemical tests to evaluate the geochemical behaviors and their potential environmental risks of heavy metals in the smelter contaminated soil. MLA analysis showed that the soil contained 34.0% of quartz, 17.15% of biotite, 1.36% of metal sulfides, 19.48% of metal oxides, and 0.04% of gypsum. Moreover, As, Pb, and Zn were primarily hosted by arsenopyrite (29.29%), galena (88.41%), and limonite (24.15%), respectively. The integrated geochemical results indicated that among the studied metals, Cd, Cu, Mn, Pb, and Zn were found to be more bioavailable, bioaccessible, and mobile. Based on the combined mineralogical and geochemical results, the environmental release of smelter-driven elements such as Cd, Cu, Mn, Pb, and Zn were mainly controlled by the acidic dissolution of minerals with neutralizing potential, the reductive dissolution of Fe/Mn oxides, and the partial oxidation of metal sulfide minerals. The present study results have confirmed the great importance of mineralogy analysis and geochemical approaches to explain the contribution of smelting activities to soil pollution risks.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/análise , China , Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Chumbo/análise , Metais Pesados/análise , Minerais/análise , Óxidos/análise , Solo/química , Poluentes do Solo/análise
17.
Zhongguo Zhong Yao Za Zhi ; 47(3): 643-650, 2022 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-35178946

RESUMO

In this study, the content of five heavy metals(Pb, Cd, As, Hg, and Cu) in 59 batches of Lonicerae Japonicae Flos(LJF) medicinal materials and pieces were determined by inductively coupled plasma mass spectrometry(ICP-MS). The health risk assessment was processed using the maximum estimated daily intake(EDI), target hazard quotients(THQ), and carcinogenic risks(CR) assessment models. With reference to the limit standard for heavy metal content in LJF specified in 2020 edition of Chinese Pharmacopoeia, five batches produced in Hebei were found to contain excessive Pb, and the remaining 54 batches met the specifications, with the unqualified rate of 8.47%. Comparative analysis of heavy metal content in LJF samples from three different producing areas, namely Shandong, Henan, and Hebei showed that the levels of Pb, As, and Hg in LJF from Hebei were significantly higher than those from Henan and Shandong. The samples produced in Shandong contained the highest content of Cd. The samples from Hebei contained the highest content of Cu while those from Shandong had the lowest content of Cu. As demonstrated by health risk assessment based on the EDI, THQ and CR models, these 59 batches of LJF samples did not cause significant health hazards for the exposed population, and there was no potential non-carcinogenic or carcinogenic risk. In conclusion, a few of LJF samples contained excessive heavy metals, so some measures, including controlling production environment, cultivating management mode, and optimizing processing methods, should be taken for ensuring the medication safety of LJF.


Assuntos
Medicamentos de Ervas Chinesas , Mercúrio , Metais Pesados , Poluição Ambiental/análise , Mercúrio/análise , Mercúrio/toxicidade , Metais Pesados/análise , Metais Pesados/toxicidade , Medição de Risco
18.
Environ Sci Pollut Res Int ; 29(24): 36161-36169, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35060036

RESUMO

In this study, pollens were collected from 25 different locations of Northern Turkey to investigate pollution monitoring. Surface chemistry of pollen samples was characterized by X-ray photoelectron spectroscopy (XPS). Then the concentrations of certain elements (Li, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Ba, and Pb) in pollen samples were determined by inductively coupled plasma mass spectrometry (ICP-MS) for the evaluation of environmental pollution. The levels of elements were detected in the following ranges (minimum-maximum, mg/kg dry pollen): Li (0.18-0.39), Al (24.98-308.04), V (6.18-98.58), Cr (1.05-6.81), Mn (13.85-95.91), Fe (52.20-326.26), Co (0.15-0.34), Ni (1.66-10.79), Cu (8.61-19.01), Zn (20.47-70.02), As (1.22-2.65), Se (0.39-0.67), Cd (0.05-0.74), Ba (0.73-16.30), and Pb (0.00-0.26). It has been concluded that there is a correlation between the pollen samples with high heavy metal concentrations and traffic density as these regions are closer to the road in the northern region. It is exposed to pollution from various sources such as intensified urbanization and tourism activities carried out on land and sea; industrial activities are increasing rapidly due to the opportunities offered by the coastal areas, sea transportation, and agricultural, domestic, and industrial pollution coming from the inner regions through rivers and streams. In this sense, pollens can be used as potential bio-indicators for monitoring heavy metal pollution and gives an idea about how we can use them for future assessing purposes.


Assuntos
Biomarcadores Ambientais , Metais Pesados , Animais , Abelhas , Cádmio/análise , Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Chumbo/análise , Metais Pesados/análise , Espectroscopia Fotoeletrônica , Pólen/química , Medição de Risco , Turquia
19.
Clin Exp Allergy ; 52(4): 530-539, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34741765

RESUMO

BACKGROUND: The prevalence of asthma has increased in recent decades. Among the reasons for this increase is environmental pollution. Pollutants cause bronchial inflammation and introduce modifications in the pollen, making it more allergenic. OBJECTIVE: Assess symptoms and medication requirements of asthmatic patients with grass allergies in Madrid (high urban pollution) and Ciudad Real (low pollution), and simultaneously evaluate the in vitro effects that pollen collected in both areas has on the immune cells of patients. METHODS: During two pollen seasons, patients from both cities were included. The patients recorded their symptoms and the asthma medication they took daily. In both cities, pollen data, pollutants and meteorological variables were evaluated. The response to different cell populations from patients in both areas were analysed after "in vitro" stimulation with pollen from both cities. RESULTS: The symptoms and medication use of the patients in Madrid was 29.94% higher. The NO2 concentration in Madrid was triple that of Ciudad Real (33.4 vs. 9.1 µg/m3 of air). All other pollutants had very similar concentrations during the study period. Pollen from the high pollution area caused a significant enhancement of T-CD8+ and NK cells proliferation compared with pollen of low pollution area, independently of the patient's origin. CONCLUSION: Asthmatic patients from Madrid have a worse clinical evolution than those from Ciudad Real because of higher levels of urban pollution, and this could be driven by the higher capacity of pollen of Madrid to activate T-CD8+ and NK cells.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Asma , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Alérgenos , Asma/tratamento farmacológico , Asma/epidemiologia , Asma/etiologia , Poluição Ambiental/análise , Humanos , Poaceae , Pólen , Estações do Ano
20.
Integr Environ Assess Manag ; 18(4): 868-887, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34730270

RESUMO

Assessing the persistence of chemicals in the environment is a key element in existing regulatory frameworks to protect human health and ecosystems. Persistence in the environment depends on many fate processes, including abiotic and biotic transformations and physical partitioning, which depend on substances' physicochemical properties and environmental conditions. A main challenge in persistence assessment is that existing frameworks rely on simplistic and reductionist evaluation schemes that may lead substances to be falsely assessed as persistent or the other way around-to be falsely assessed as nonpersistent. Those evaluation schemes typically assess persistence against degradation half-lives determined in single-compartment simulation tests or against degradation levels measured in stringent screening tests. Most of the available test methods, however, do not apply to all types of substances, especially substances that are poorly soluble, complex in composition, highly sorptive, or volatile. In addition, the currently applied half-life criteria are derived mainly from a few legacy persistent organic pollutants, which do not represent the large diversity of substances entering the environment. Persistence assessment would undoubtedly benefit from the development of more flexible and holistic evaluation schemes including new concepts and methods. A weight-of-evidence (WoE) approach incorporating multiple influencing factors is needed to account for chemical fate and transformation in the whole environment so as to assess overall persistence. The present paper's aim is to begin to develop an integrated assessment framework that combines multimedia approaches to organize and interpret data using a clear WoE approach to allow for a more consistent, transparent, and thorough assessment of persistence. Integr Environ Assess Manag 2022;18:868-887. © 2021 ExxonMobil Biomedical Sciences, Inc. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Ecotoxicologia , Monitoramento Ambiental , Ecossistema , Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Humanos , Medição de Risco/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA