Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Curr Allergy Asthma Rep ; 24(5): 233-251, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38492159

RESUMO

PURPOSE OF REVIEW: In this review, we detail the exposome (consisting of environmental factors such as diet, microbial colonization, allergens, pollutants, and stressors), mechanistic and clinical research supporting its influence on atopic disease, and potentiation from climate change. We highlight contemporary environmental interventions and available evidence substantiating their roles in atopic disease prevention, from observational cohorts to randomized controlled trials, when available. RECENT FINDINGS: Early introduction to allergenic foods is an effective primary prevention strategy to reduce food allergy. Diverse dietary intake also appears to be a promising strategy for allergic disease prevention, but additional study is necessary. Air pollution and tobacco smoke are highly associated with allergic disease, among other medical comorbidities, paving the way for campaigns and legislation to reduce these exposures. There is no clear evidence that oral vitamin D supplementation, prebiotic or probiotic supplementation, daily emollient application, and antiviral prophylaxis are effective in preventing atopic disease, but these interventions require further study. While some environmental interventions have a well-defined role in the prevention of atopic disease, additional study of many remaining interventions is necessary to enhance our understanding of their role in disease prevention. Alignment of research findings from randomized controlled trials with public policy is essential to develop meaningful public health outcomes and prevent allergic disease on the population level.


Assuntos
Exposição Ambiental , Humanos , Exposição Ambiental/prevenção & controle , Exposição Ambiental/efeitos adversos , Alérgenos/imunologia , Mudança Climática , Hipersensibilidade Imediata/prevenção & controle , Expossoma , Hipersensibilidade Alimentar/prevenção & controle , Dieta , Poluição do Ar/efeitos adversos , Poluição do Ar/prevenção & controle
2.
Environ Res ; 251(Pt 1): 118472, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452912

RESUMO

Volatile organic compounds (VOCs) are harmful pollutants emitted from industrial processes. They pose a risk to human health and ecosystems, even at low concentrations. Controlling VOCs is crucial for good air quality. This review aims to provide a comprehensive understanding of the various methods used for controlling VOC abatement. The advancement of mono-functional treatment techniques, including recovery such as absorption, adsorption, condensation, and membrane separation, and destruction-based methods such as natural degradation methods, advanced oxidation processes, and reduction methods were discussed. Among these methods, advanced oxidation processes are considered the most effective for removing toxic VOCs, despite some drawbacks such as costly chemicals, rigorous reaction conditions, and the formation of secondary chemicals. Standalone technologies are generally not sufficient and do not perform satisfactorily for the removal of hazardous air pollutants due to the generation of innocuous end products. However, every integration technique complements superiority and overcomes the challenges of standalone technologies. For instance, by using catalytic oxidation, catalytic ozonation, non-thermal plasma, and photocatalysis pretreatments, the amount of bioaerosols released from the bioreactor can be significantly reduced, leading to effective conversion rates for non-polar compounds, and opening new perspectives towards promising techniques with countless benefits. Interestingly, the three-stage processes have shown efficient decomposition performance for polar VOCs, excellent recoverability for nonpolar VOCs, and promising potential applications in atmospheric purification. Furthermore, the review also reports on the evolution of mathematical and artificial neural network modeling for VOC removal performance. The article critically analyzes the synergistic effects and advantages of integration. The authors hope that this article will be helpful in deciding on the appropriate strategy for controlling interested VOCs.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/química , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Poluição do Ar/prevenção & controle , Oxirredução
3.
Rev Environ Health ; 38(1): 85-96, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-34883008

RESUMO

OBJECTIVES: This article aims to discuss the impact of air quality on human health, measures to achieve the goal of good indoor air quality and proposed benefits of interventions of Unani Medicine with an evidence-based approach. CONTENT: The significance of air quality on the health of the community cannot be denied. Recent evidences from WHO illustrated data on severe air pollutants and their impacts on human health ranges from minor upper respiratory irritation to chronic respiratory ailments including lung carcinoma and heart disease associated with premature mortality and reduced life expectancy. In Unani Medicine, air has been included in the list of factors, which are six in number and play the central role in prevention of diseases and maintenance of health. Air is considered as the medium of most of the extrinsic factors such as chemical and biological pollutants affecting health and their exposure results in short and long-term health issues. The literature of Unani Medicine proposes many simple and effective measures, which help to improve indoor and outdoor air quality. The goal of outdoor clean air is achieved through implementation of measures to tackle the source of pollution, while indoor clean air is attained through various means e.g., fumigation with herbal drugs. Hence, an extensive literature survey on Unani reserve was conducted to collect information about the concept of air discussed under the heading of six essential factors and its implication in prevention of diseases and maintenance of health. Further, research databases such as Pub Med, Google Scholar, and Science-Direct were broadly searched for evidence on the efficacy of herbals mentioned in Unani literature for the indoor air purification and subsequent air quality improvement. SUMMARY AND OUTLOOK: Recent studies showed good air quality leads to decrease in mortality, particularly of respiratory and cardiovascular deaths whereas poor air quality results in a variety of diseases. Unani scholars prescribed several regimens such as Bukhoor (Fumigation), Sa'oot (Nasal instillation) and use of Abeer (Perfumes) and Nadd (Incense) for the improvement of air quality. Likewise various herbal fumigants and sprays containing drugs like mi'a sa'ila (Liquidambar orientalis Mill.), mastagi (Pistacia lentiscus L.), mushk (Moschus moschiferus L.), loban (Styrax benzoides W. G. Craib), abnoos (Diospyros ebenum J. Koenig ex Retz), za'fran (Crocus sativus L.) and sirka (vinegar) etc. has been well explained and used exclusively for air purification and improvement of AQI. Therefore, in the present scenario of altered air quality, we forward certain measures described in Unani system of medicine for health promotion and protection. Scientific evidence on several drugs reveal the presence of a number of pharmacologically active substances, which may provide a new approach into the purification of air.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Poluentes Ambientais , Humanos , Medicina Unani , Poluição do Ar/efeitos adversos , Poluição do Ar/prevenção & controle , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/prevenção & controle , Poluição do Ar em Ambientes Fechados/análise
4.
Environ Health ; 21(1): 104, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309727

RESUMO

BACKGROUND: Dietary fish-oil supplementation might attenuate the associations between fine particulate matter (PM2.5) and subclinical biomarkers. However, the molecular mechanisms remain to be elucidated. This study aimed to explore the molecular mechanisms of fish-oil supplementation against the PM2.5-induced health effects. METHODS: We conducted a randomized, double-blinded, and placebo-controlled trial among healthy college students in Shanghai, China, from September 2017 to January 2018. A total of 70 participants from the Fenglin campus of Fudan University were included. We randomly assigned participants to either supplementation of 2.5-gram fish oil (n = 35) or sunflower-seed oil (placebo) (n = 35) per day and conducted four rounds of health measurements in the last two months of the trial. As a post hoc exploratory study, the present untargeted metabolomics analysis used remaining blood samples collected in the previous trial and applied a Metabolome-Wide Association Study framework to compare the effects of PM2.5 on the metabolic profile between the sunflower-seed oil and fish oil groups. RESULTS: A total of 65 participants completed the trial (34 of the fish oil group and 31 of the sunflower-seed oil group). On average, ambient PM2.5 concentration on the day of health measurements was 34.9 µg/m3 in the sunflower-seed oil group and 34.5 µg/m3 in the fish oil group, respectively. A total of 3833 metabolites were significantly associated with PM2.5 in the sunflower-seed oil group and 1757 in the fish oil group. Of these, 1752 metabolites showed significant between-group differences. The identified differential metabolites included arachidonic acid derivatives, omega-3 fatty acids, omega-6 fatty acids, and omega-9 fatty acids that were related to unsaturated fatty acid metabolism, which plays a role in the inflammatory responses. CONCLUSION: This trial suggests fish-oil supplementation could mitigate the PM2.5-induced inflammatory responses via modulating fatty acid metabolism, providing biological plausibility for the health benefits of fish-oil supplementation against PM2.5 exposure. TRIAL REGISTRATION: This study is registered at ClinicalTrails.gov (NCT03255187).


Assuntos
Poluição do Ar , Óleos de Peixe , Material Particulado/efeitos adversos , Suplementos Nutricionais , Método Duplo-Cego , China , Poluição do Ar/efeitos adversos , Poluição do Ar/prevenção & controle , Óleos de Plantas
5.
J Environ Manage ; 317: 115486, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35751296

RESUMO

Integrated Assessment Model provides a useful framework for evaluating different aspects of air quality policies, spanning from abatement measures to emissions, concentrations, health impacts and costs. These models are then useful to provide a holistic view of the impacts of policies, so that ex-ante one can evaluate how various policies will impact air concentrations, health benefits and implementation costs. Among these Integrated Assessment Models, SHERPA (Screening for High Emission Potentials on Air) has been recently used to evaluate the impact of policies, covering all aspects from measures to health, but without being able to provide the dimension related to abatement measures costs. In this paper we fill this gap, developing a module able to associate to a SHERPA scenario its related implementation costs. This paper describes how this module has been developed and provide a concrete application of this tool. Results of this module can be useful to provide a full cost-benefit analysis of alternative policies based on technological changes, covering both internal costs (costs of abatement measures) and external costs (related to human health impacts of air quality).


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Análise Custo-Benefício , Humanos
6.
Comb Chem High Throughput Screen ; 25(10): 1639-1660, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33845731

RESUMO

Air pollution, especially particulate matter pollution, adversely affects human health. A growing pool of evidence has emerged which underscores the potential of individual-level nutritional interventions in attenuating the adverse health impact of exposure to PM2.5. Although controlling emission and reducing the overall levels of air pollution remains the ultimate objective globally, the sustainable achievement of such a target and thus consequent protection of human health will require a substantial amount of time and concerted efforts worldwide. In the meantime, smaller-scale individual-level interventions that can counter the inflammatory or oxidative stress effects triggered by exposure to particulate matter may be utilized to ameliorate the health effects of PM2.5 pollution. One such intervention is the incorporation of nutraceuticals in the diet. Here, we present a review of the evidence generated from various in vitro, in vivo and human studies regarding the effects of different anti-inflammatory and antioxidant nutraceuticals in ameliorating the health effects of particulate matter air pollution. The studies discussed in this review suggest that these nutraceuticals, when consumed as a part of the diet or as additional supplementation, can potentially negate the cellular level adverse effects of exposure to particulate pollution. The potential benefits of adopting a non-pharmacological diet-based approach to air pollution-induced disease management have also been discussed. We argue that before a nutraceuticals-based approach can be used for widespread public adoption, further research, especially human clinical trials, is essential to confirm the beneficial action of relevant nutraceuticals and to explore the safe limits of human supplementation and the risk of side effects. Future research should focus on systematically translating bench-based knowledge regarding nutraceuticals gained from in vitro and in vivo studies into clinically usable nutritional guidelines.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Suplementos Nutricionais , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise
7.
Environ Int ; 156: 106631, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34004448

RESUMO

Exposure to traffic-related air pollution (TRAP) increases blood pressure (BP) and cardiovascular morbidity and mortality. We aimed to evaluate the potential efficacy of L-arginine supplementation in mitigating the adverse cardiovascular effects of adults with elevated BP walking outside under TRAP using a randomized, double-blind and placebo-controlled trial. 118 adults with elevated BP were recruited and were randomly assigned to either the placebo group or the intervention group with 9 g/day L-arginine supplementation for 2 weeks. On the 14th day, paired participants from the two groups walked along a traffic road for 2 h. Resting BP, L-arginine-nitric oxide metabolites and inflammatory biomarkers were measured before, during and after the 2 h exposure scenario, and ambulatory BP and Holter were measured during the 2 h outdoor walk. Participants in the intervention group had significantly elevated plasma L-arginine levels compared to the placebo group after supplementation. The two groups had similar exposures to traffic-related air pollutants. However, participants in the intervention group showed significant reductions of 5.3 mmHg (95% CI: -9.9, -0.7) in resting systolic BP (SBP), 4.3 mmHg (95% CI: -7.2, -1.3) in resting diastolic BP (DBP) and 4.6 mmHg (95% CI: -7.9, -1.3) in resting mean arterial pressure (MAP) at 30 min after the 2 h outdoor walk compared with the placebo group. There were also significant decreases in ambulatory SBP, DBP and MAP (7.5-9.9 mmHg, 5.3-7.6 mmHg and 4.7-7.9 mmHg, respectively) during the walk in the intervention group compared with the placebo group. There were no substantial changes in ST-segment level, L-arginine-NO metabolites and inflammatory biomarkers, and no significant associations were found between specific traffic-related air pollutants and cardiovascular health indicators. Specifically, our study shows that oral L-arginine supplementation was safe and well-tolerated, and could improve BP levels in adults with elevated BP during outside walk under TRAP.


Assuntos
Poluição do Ar , Hipertensão , Adulto , Poluição do Ar/prevenção & controle , Arginina , Pressão Sanguínea , Suplementos Nutricionais , Humanos , Caminhada
8.
Br J Dermatol ; 184(2): 261-269, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32333793

RESUMO

BACKGROUND: Exposure to fine particulate matter (with an aerodynamic diameter ≤ 2·5 µm, PM2·5 ) air pollution has been associated with skin-related diseases or disorders. OBJECTIVES: To evaluate the potential skin-protective effects of fish-oil supplementation against PM2·5 exposure. MATERIALS AND METHODS: This is an exploratory analysis based on a pilot randomized, double-blind, placebo-controlled trial among 65 healthy young adults between September 2017 and January 2018 in Shanghai, China. We randomly assigned participants to take either fish oil or placebo 2·5 g daily for four consecutive months. Four rounds of skin D-Squame® tape samples were collected in the last 2 months, and five secondary biomarkers of skin inflammation and oxidative stress were measured. Fixed-site PM2·5 concentrations on campus were measured in real time. We used linear mixed-effect models to analyse the associations between short-term PM2·5 exposure and biomarkers in each group. RESULTS: The 24-h average PM2·5 concentration was 34·68 ± 15·83 µg m-3 . There were generally weaker associations between PM2·5 and biomarkers in the fish-oil group than in the placebo group, but the associations and the between-group differences varied by biomarkers and lag periods. Compared with the placebo group, for a 10-µg m-3 increase in PM2·5 concentration, the increments of interleukin-1α and carbonyl protein in the fish-oil group were 41·55% smaller [95% confidence interval (CI) 4·61-78·48%] at lag 0-48 h and 22·01% smaller (95% CI 11·25-32·77%) at lag 0-24 h, respectively. No significant between-group differences were observed for other biomarkers. CONCLUSIONS: This study suggested that dietary fish-oil supplementation may improve biomarkers of skin inflammation and oxidative-stress response to short-term PM2·5 exposure.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/prevenção & controle , Biomarcadores , China , Suplementos Nutricionais , Exposição Ambiental/análise , Humanos , Estresse Oxidativo , Material Particulado/efeitos adversos , Material Particulado/análise , Projetos Piloto , Adulto Jovem
9.
Phytother Res ; 35(2): 877-887, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32893384

RESUMO

Exposure to PM2.5 (particulate matter with an aerodynamic diameter ≤ 2.5 µm) has been associated with increased cardiopulmonary outcomes, mediated by a hypothesized biological mechanism of systemic inflammation and oxidation. This randomized, double-blinded and placebo-controlled trial among 120 healthy adults in Wuhan, China, was conducted to evaluate whether the supplementation of herbal product composed of Ginseng, Lilii Bulbus and Poria (GLP) which have been shown to have anti-inflammatory and anti-oxidant activity offers protective effects on PM2.5 -induced damage to cardiopulmonary health. Participants received four rounds of health examinations and two rounds of blood sample collection from November 2018 to January 2019. Compared to the placebo group, the GLP group showed significant increased antioxidant biomarkers such as superoxide dismutase (SOD) and paraoxonase1 (PON1). What is more, interleukin-6 (IL-6), an inflammatory biomarker, was significantly decreased in the GLP group. In addition, nitric oxide and club cell secretory protein (CC16) were increased but heart rate was decreased in the GLP group. As for pulmonary function indicators, significantly increased fractional exhaled nitric oxide (FeNO) was observed in the GLP group. Taken together, we concluded that GLP supplementation is associated with decreased inflammatory biomarker and increased antioxidant biomarkers suggesting cardiopulmonary benefits against PM2.5 exposure among young adults in China.


Assuntos
Poluição do Ar/prevenção & controle , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/tratamento farmacológico , Pneumopatias/induzido quimicamente , Pneumopatias/tratamento farmacológico , Panax/química , Material Particulado/efeitos adversos , Poria/química , Adolescente , Adulto , Suplementos Nutricionais , Feminino , Humanos , Masculino , Adulto Jovem
10.
J Hosp Infect ; 108: 109-112, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33188867

RESUMO

This study analysed the effectiveness of plasma treatment on airborne bacteria and surface counts during a 14-day intervention within a four-bedded bay in an adult respiratory ward at Cork University Hospital, Ireland. One-hundred-litre air samples were collected twice daily every weekday for 4 weeks, with settle plates and surface swabs. The plasma treatment did not have an effect on airborne bacteria and fungi that was detectable by culture. However, the possibility that culture-based sampling may be insufficiently sensitive to detect an effect, or that the duration of the study was insufficient for plasma treatment to affect a complex environment, cannot be excluded.


Assuntos
Microbiologia do Ar , Poluição do Ar/prevenção & controle , Hospitais , Gases em Plasma , Monitoramento Ambiental , Fungos , Irlanda
11.
PLoS One ; 15(10): e0240160, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33027306

RESUMO

Pollen is an important component of bioaerosol and the distribution of pollen and its relationship with meteorological parameters can be analyzed to better prevent hay fever. Pollen assemblages can also provide basic data for analyzing the relationship between bioaerosol and PM. We collected 82 samples of airborne pollen using a TSP large flow pollen collector from June 1, 2015 to June 1, 2016, from central Zhanjiang city in South China. We also conducted a survey of the nearby vegetation at the same time, in order to characterize the major plant types and their flowering times. We then used data on daily temperature, relative humidity, precipitation, vapor pressure and wind speed from a meteorological station in the center of Zhanjiang City to assess the relationship between the distribution of airborne pollen and meteorological parameters. Our main findings and conclusions are as follows: (1) We identified 15 major pollen types, including Pinus, Castanopsis, Myrica, Euphorbiaceae, Compositae, Gramineae, Microlepia and Polypodiaceae. From the vegetation survey, we found that the pollen from these taxa represented more than 75% of local pollen, while the pollen of Podocarpus, Dacrydium and other regional pollen types represented less than 25%. (2) The pollen concentrations varied significantly in different seasons. The pollen concentrations were at a maximum in spring, consisting mainly of tree pollen; the pollen concentrations were at an intermediate level in autumn and winter, consisting mainly of herb pollen and fern spores; and the pollen concentrations in summer were the lowest, consisting mainly of fern spores. (3) Analysis of the relationship between airborne pollen concentrations and meteorological parameters showed that variations in the pollen concentrations were mainly affected by temperature and relative humidity. In addition, there were substantial differences in these relationships in different seasons. In spring, pollen concentrations were mainly affected by temperature; in summer, they were mainly affected by the direction of the maximum wind speed; in autumn, they were mainly affected by relative humidity and temperature; and in winter, they were mainly affected by relative humidity and wind speed. Temperature and relative humidity promote plant growth and flowering. Notably, the variable wind direction in summer and the increased wind speed in winter and spring are conductive to pollen transmission. (4) Of the 15 major pollen types, Moraceae, Artemisia and Gramineae are the main allergenic pollen types, with peaks in concentration during April-May, August-September, and October-December, respectively. (5) Atypical weather conditions have substantial effects on pollen dispersal. In South China, the pollen concentrations in the sunny day were usually significantly higher than that of the rainy day. The pollen concentrations increased in short rainy days, which usually came from the Herb and Fern pollen. The pollen concentrations decreased in continuous rainy days especially for the Tree and Shrub pollen. the pollen concentrations in the sunny days were usually significantly higher than that in the rainy days. The pollen concentrations increased in short and strong rainfall.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/estatística & dados numéricos , Alérgenos/efeitos adversos , Monitoramento Ambiental/estatística & dados numéricos , Pólen/efeitos adversos , Poluição do Ar/efeitos adversos , Poluição do Ar/prevenção & controle , China , Cidades/estatística & dados numéricos , Humanos , Chuva , Rinite Alérgica Sazonal/etiologia , Rinite Alérgica Sazonal/prevenção & controle , Estações do Ano , Luz Solar , Vento
12.
Philos Trans A Math Phys Eng Sci ; 378(2183): 20190327, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32981434

RESUMO

The damage and injury that ground level ozone (O3) causes vegetation has become increasingly evident over the past half century with a large body of observational and experimental evidence demonstrating a variety of effects at ambient concentrations on crop, forest and grassland species and ecosystems. This paper explores the use of experimental data to develop exposure-response relationships for use in risk assessment studies. These studies have typically identified the USA mid-West, much of Europe, the Indo Gangetic Plain in South Asia and the Eastern coastal region of China as global regions where O3 is likely to threaten food supply and other ecosystems. Global risk assessment modelling estimates yield losses of staple crops between 3 to 16% causing economic losses of between US$14 to 26 billion in the year 2000. Changes in anthropogenic emissions of O3 precursors in recent decades have modified O3 concentration profiles (peaks versus background O3) and global distributions with the Northern Hemisphere seeing increases in O3 levels of between 1 and 5 ppb/decade since the 1950s and the emergence of Asia as the region with the highest O3 concentrations. In the future, O3 mitigation could focus on methane (CH4) and nitrogen oxide (NOx) emissions; these will differentially influence global and local/regional O3 concentrations and influence daily and seasonal profiles. The consequent effects on vegetation will in part depend on how these changes in O3 profile alter the exceedance of detoxification thresholds for plant damage. Adaptation options may play an important role in enhancing food supply while mitigation strategies are being implemented. An improved understanding of the mechanisms by which O3 affects plants, and how this might influence detoxification thresholds and interactions with other environmental variables such as water stress and nutrients, would help develop O3 deposition and impact models to support the development of crop, land-surface exchange and ultimately earth system models for holistic assessments of global change. This article is part of a discussion meeting issue 'Air quality, past present and future'.


Assuntos
Produtos Agrícolas , Florestas , Pradaria , Ozônio/toxicidade , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Ecossistema , Meio Ambiente , Monitoramento Ambiental , Humanos , Modelos Biológicos , Ozônio/análise , Medição de Risco
13.
Philos Trans A Math Phys Eng Sci ; 378(2183): 20190330, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32981439

RESUMO

Future air quality will be driven by changes in air pollutant emissions, but also changes in climate. Here, we review the recent literature on future air quality scenarios and projected changes in effects on human health, crops and ecosystems. While there is overlap in the scenarios and models used for future projections of air quality and climate effects on human health and crops, similar efforts have not been widely conducted for ecosystems. Few studies have conducted joint assessments across more than one sector. Improvements in future air quality effects on human health are seen in emission reduction scenarios that are more ambitious than current legislation. Larger impacts result from changing particulate matter (PM) abundances than ozone burdens. Future global health burdens are dominated by changes in the Asian region. Expected future reductions in ozone outside of Asia will allow for increased crop production. Reductions in PM, although associated with much higher uncertainty, could offset some of this benefit. The responses of ecosystems to air pollution and climate change are long-term, complex, and interactive, and vary widely across biomes and over space and time. Air quality and climate policy should be linked or at least considered holistically, and managed as a multi-media problem. This article is part of a discussion meeting issue 'Air quality, past present and future'.


Assuntos
Poluição do Ar/efeitos adversos , Produtos Agrícolas , Ecossistema , Poluição do Ar/prevenção & controle , Mudança Climática , Meio Ambiente , Saúde Ambiental , Saúde Global , Humanos , Modelos Biológicos
14.
Philos Trans A Math Phys Eng Sci ; 378(2183): 20190324, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32981443

RESUMO

Atmospheric reactive nitrogen (Nr) has been a cause of serious environmental pollution in China. Historically, China used too little Nr in its agriculture to feed its population. However, with the rapid increase in N fertilizer use for food production and fossil fuel consumption for energy supply over the last four decades, increasing gaseous Nr species (e.g. NH3 and NOx) have been emitted to the atmosphere and then deposited as wet and dry deposition, with adverse impacts on air, water and soil quality as well as plant biodiversity and human health. This paper reviews the issues associated with this in a holistic way. The emissions, deposition, impacts, actions and regulations for the mitigation of atmospheric Nr are discussed systematically. Both NH3 and NOx make major contributions to environmental pollution but especially to the formation of secondary fine particulate matter (PM2.5), which impacts human health and light scattering (haze). In addition, atmospheric deposition of NH3 and NOx causes adverse impacts on terrestrial and aquatic ecosystems due to acidification and eutrophication. Regulations and practices introduced by China that meet the urgent need to reduce Nr emissions are explained and resulting effects on emissions are discussed. Recommendations for improving future N management for achieving 'win-win' outcomes for Chinese agricultural production and food supply, and human and environmental health, are described. This article is part of a discussion meeting issue 'Air quality, past present and future'.


Assuntos
Poluição do Ar/efeitos adversos , Poluição Ambiental/efeitos adversos , Nitrogênio/efeitos adversos , Chuva Ácida/efeitos adversos , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Biodiversidade , China , Ecossistema , Meio Ambiente , Poluição Ambiental/análise , Poluição Ambiental/prevenção & controle , Eutrofização , Política de Saúde , Humanos , Ozônio/efeitos adversos , Plantas/efeitos dos fármacos , Espécies Reativas de Nitrogênio/efeitos adversos , Solo/química
15.
Environ Sci Technol ; 54(19): 12447-12455, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32845142

RESUMO

China is the world's largest producer and consumer of coal, but the country has recently set ambitious targets for cleaner energy sources. These include goals to capture and utilize methane from coal seams as a source of unconventional natural gas. We investigate the impacts of using coal methane to displace coal power plants and residential coal combustion across northern China. We compare the greenhouse gas emissions, air quality, and public health impacts of several scenarios for coal methane utilization. We find that China's existing goals would decrease the country's total carbon emissions by ∼2.3% (284 million tons CO2eq). Furthermore, these reductions are dominated by mitigated methane emissions and therefore confer a much larger climate benefit than would be expected from other forms of natural gas. Our results also indicate that the air quality and health impacts strongly depend on how the methane is utilized. Using the methane to displace coal-fired electricity would reduce annual mean ambient PM2.5 concentrations by up to >2.5 µg/m3 and prevent up to 9290 premature mortalities annually (95% confidence interval: 7862-9992). By contrast, utilizing coal methane in home heating yields smaller changes to ambient air quality (∼0.6 µg/m3), but improvements to indoor air quality could produce comparable reductions in premature mortality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , China , Carvão Mineral/análise , Metano , Centrais Elétricas
16.
J Air Waste Manag Assoc ; 70(5): 557-567, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32255399

RESUMO

The regenerative thermal oxidizer (RTO) is widely used in the treatment of volatile organic compounds (VOCs). The RTO with three packed beds has a backflushing process, which makes its operation quite different from common regenerative combustion devices with two beds. However, the published research regarding this kind of RTO was far from sufficient. Thus, models based on an industrial RTO with three beds were developed. Temperature distributions for the RTO were simulated based on the standard k-ε model, heat balance model, DO model, and finite chemical-rate/eddy-dissipation model after model validation. Four operating parameters were selected, and these parameters have a significant impact on key factors, such as the oxidation chamber temperature (OCT), outlet temperature, and thermal efficiency. Multi-factor analysis was performed by orthogonal experiment and regression analysis of the key factors, revealing that different parameters imposed various impacts on the key factors. A linear relationship between the OCT and RTO outlet temperature was identified, yielding a useful formula for engineering applications.Implications: A regenerative thermal oxidizer (RTO) used in volatile organic compounds (VOCs) treatment was studied between engineering and simulation. The simulation results showed a few error compared to the engineering ones. Single parameter simulations, orthogonal experiments and regression analysis were applied to study key factors such as oxidation chamber temperature, outlet temperature, and thermal efficiency. The influence and regularity of the four main operating parameters on the key factors were quite different. The best condition for this RTO was got. The linear formula of the oxidation chamber temperature and the outlet temperature are obtained, respectively.


Assuntos
Poluentes Atmosféricos , Poluição do Ar/prevenção & controle , Compostos Orgânicos Voláteis , Temperatura Alta , Oxirredução
17.
Artigo em Inglês | MEDLINE | ID: mdl-31438480

RESUMO

This study aimed to assess the efficiency of removal of volatile organic compounds (VOCs) from process gases from a food industry plant in East Poland, producing high-quality animal (goose, duck, and pig) and vegetable fats, using a two-stage method which is a combination of biological purification and membrane-separation. The research, conducted on the semi-technical scale, compared the effects of traditional and two-stage biofiltration carried out under the same process conditions. The concentrations of VOCs in process gases were measured by means of a multi-gas detector. Additionally the temperature and humidity of gases were determined by a thermoanemometer under filter bed, following the EU and Polish National Standard Methods Two different types of filling materials (the mix of stumpwood chips and bark, and the mix of stumpwood chips, bark, and compost) and two types of membranes (three-layer semi-permeable membrane fabrics were used, with differences in air permeability and water tightness) were analyzed. During all processes basic operational parameters, the biofilters were controlled, including surface load, volumetric load, duration of gas contact with the filling layer, flow rate, and pressure drops (in the biofilter and on the membrane). The analyzed gases were characterized by very high variability of VOC concentrations (ranging from 350 ppb to 11,170 ppb). The effectiveness of VOC removal (REvoc) was calculated by comparing the analytical results of raw and purified gases. The effectiveness of VOC removal with the application of traditional biofiltration during the experiment varied between 82% to 97% and was related to different parameters of the filling materials (mainly specific surface and moisture), reaching lower value for the mix of stumpwood chips and bark filling. The obtained results showed that the application of membrane improved the efficiency of biofiltration in all the analysed cases from 7% to 9%. The highest effectiveness was obtained using the filter bed in the form of stumpwood chips, bark, and compost in connection with the more permeable membrane. It was maintained between 96% to 99%, reaching an average value of 98%. The selection of the membrane should be determined by its permeability and the values of flow resistance.


Assuntos
Poluentes Atmosféricos , Gorduras , Indústria Alimentícia , Compostos Orgânicos Voláteis , Poluição do Ar/prevenção & controle , Animais , Compostagem , Filtração/métodos , Gases , Umidade , Membranas Artificiais , Casca de Planta , Temperatura
18.
Environ Pollut ; 252(Pt B): 1464-1475, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31265957

RESUMO

In this study, a proposed integrated high-gravity technology for air pollution control, CO2 capture, and alkaline waste utilization was comprehensively evaluated from engineering, environmental, and economic perspectives. After high-gravity technology and coal fly ash (CFA) leaching processes were integrated, flue gas air emissions removal (e.g., sulfate dioxide (SO2), nitrogen oxides (NOx), total suspended particulates (TSP)) and CO2 capture were studied. The CFA, which contains calcium oxide and thus, had high alkalinity, was used as an absorbent in removing air pollution residues. To elucidate the availability of technology for pilot-scale high-gravity processes, the engineering performance, environmental impact, and economic cost were simultaneously investigated. The results indicated that the maximal CO2, SO2, NOx, and TSP removal efficiencies of 96.3 ±â€¯2.1%, 99.4 ±â€¯0.3%, 95.9 ±â€¯2.1%, and 83.4 ±â€¯2.6% were respectively achieved. Moreover, a 112 kWh/t-CO2 energy consumption for a high-gravity process was evaluated, with capture capacities of 510 kg CO2 and 0.468 kg NOx per day. In addition, the fresh, water-treated, acid-treated, and carbonated CFA was utilized as supplementary cementitious materials in the blended cement mortar. The workability, durability, and compressive strength of 5% carbonated CFA blended into cement mortar showed superior performance, i.e., 53 MPa ±2.5 MPa at 56 days. Furthermore, a higher engineering performance with a lower environmental impact and lower economic cost could potentially be evaluated to determine the best available operating condition of the high-gravity process for air pollution reduction, CO2 capture, and waste utilization.


Assuntos
Poluentes Atmosféricos/química , Poluição do Ar/prevenção & controle , Compostos de Cálcio/química , Dióxido de Carbono/química , Recuperação e Remediação Ambiental/métodos , Gravitação , Óxidos/química , Carbonatos/química , Carvão Mineral/análise , Cinza de Carvão/química , Óxidos de Nitrogênio
19.
J Air Waste Manag Assoc ; 69(9): 1059-1069, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31050600

RESUMO

Xylene is the main component of many volatile industrial pollution sources, and the use of biotechnology to remove volatile organic compounds (VOCs) has become a growing trend. In this study, a biotrickling filter for gaseous xylene treatment was developed using activated sludge as raw material to study the biodegradation process of xylene. Reaction conditions were optimized, and long-term operation was performed. The optimal pH was 7.0, gas-liquid ratio was 15:1 (v/v), and temperature was 25 °C. High-throughput sequencing technique was carried out to analyze microbial communities in the top, middle, and bottom layers of the reactor. Characteristics of microbial diversity were elucidated, and microbial functions were predicted. The result showed that the removal efficiency (RE) was stable at 86%-91%, the maximum elimination capacity (EC) was 303.61 g·m-3·hr-1, residence time was 33.75 sec, and the initial inlet xylene concentration was 3000 mg·m-3, which was the highest known degradation concentration reported. Kinetic analysis of the xylene degradation indicated that it was a very high-efficiency-activity bioprocess. The rmax was 1059.8 g·m-3·hr-1, and Ks value was 4.78 g·m-3 in stationary phase. In addition, microbial community structures in the bottom and top layers were significantly different: Pseudomonas was the dominant genus in the bottom layer, whereas Sphingobium was dominant in the top layer. The results showed that intermediate metabolites of xylene could affect the distribution of community structure. Pseudomonas sp. can adapt to high concentration xylene-contaminated environments. Implications: We combined domesticated active sludge and reinforced microbial agent on biotrickling filter. This system performed continuously under a reduced residence time at 33.75 sec and high elimination capacity at 303.61 g·m-3·hr-1 in the biotrickling reactor for about 260 days. In this case, predomestication combined with reinforcing of microorganisms was very important to obtaining high-efficiency results. Analysis of microbial diversity and functional prediction indicated a gradient distribution along with the concentration of xylene. This implied a rational design of microbial reagent and optimizing the inoculation of different sites of reactor could reduce the preparation period of the technology.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Recuperação e Remediação Ambiental/métodos , Microbiota , Xilenos/análise , Biodegradação Ambiental , Recuperação e Remediação Ambiental/instrumentação , Filtração/métodos , Gases/análise
20.
Sci Total Environ ; 670: 932-940, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-30921725

RESUMO

In this study, a method to reduce the emission of NOx precursors (e.g., hydrogen cyanide (HCN) and ammonia (NH3)) while simultaneously reclaim more plant-available P was proposed through pyrolyzing ferric sludge (sludge conditioned by Fenton's reagents) rather than raw sludge. The nitrogen and phosphorus transformation at different pyrolysis temperatures was investigated. The results indicated that in comparison with the pyrolysis of raw sludge, the remaining iron compounds in ferric sludge can fix char-N in more stable forms (e.g., appearance of pyrrole-N at 900 °C). The secondary cracking of amine-N compounds in tar-N (e.g., 81.67% increase of amine-N at 900 °C) can be inhibited. Hence, more amine-N was remained and less heterocyclic-N and nitrile-N compounds were generated in tarN. Less generation of NH3-N and HCN-N was also observed in NOx precursors (e.g., 5.46% decrease of NH3-N and 6.91% decrease of HCN-N at 900 °C). Moreover, the results of X-ray diffractometry, liquid 31P nuclear magnetic resonance spectroscopic, X-ray photoelectron spectroscopic, and chemical analyses collectively indicated that iron present in ferric sludge also favored reclamation of more plant-available P. In comparison with the pyrolysis of raw sludge, an increase in the total phosphorus pool was noted (18.06-36.26 versus 15.54-30.59 mg g-1 dry solids). A decrease in mobility with the predominant P as sodium hydroxide (NaOH)-P, and an increase in plant-available P can be also obtained. This study indicated that pyrolysis of ferric sludge was a feasible way to simultaneously reduce emission of NOx precursors, reclaim plant-available P, and reuse ferric sludge.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Conservação dos Recursos Naturais/métodos , Nitrogênio/análise , Oxigênio/análise , Fósforo/análise , Eliminação de Resíduos Líquidos/métodos , Peróxido de Hidrogênio , Ferro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA