RESUMO
Calystegia soldanella is a halophyte and a perennial herb that grows on coastal sand dunes worldwide. Extracts from this plant have been previously revealed to have a variety of bioactive properties in humans. However, their effects on colorectal cancer cells remain poorly understood. In the present study, the potential biological activity of C. soldanella extracts in the colorectal cancer cell line HT29 was examined. First, five solvent fractions [nhexane, dichloromethane (DCM), ethyl acetate, nbutanol and water] were obtained from the crude extracts of C. soldanella through an organic solvent extraction method. In particular, the DCM fraction was demonstrated to exert marked dose and timedependent inhibitory effects according to results from the cell viability assay. Data obtained from the apoptosis assay suggested that the inhibition of HT29 cell viability induced by DCM treatment was attributed to increased apoptosis. The apoptotic rate was markedly increased in a dosedependent manner, which was associated with the protein expression levels of apoptosisrelated proteins, including increased Fas, Bad and Bax, and decreased procaspase8, Bcl2, BclxL, procaspase9, procaspase7 and procaspase3. A mitochondrial membrane potential assay demonstrated that more cells became depolarized and the extent of cytochrome c release was markedly increased in a dosedependent manner in HT29 cells treated with DCM. In addition, cell cycle analysis confirmed Sphase arrest following DCM fraction treatment, which was associated with decreased protein expression levels of cell cyclerelated proteins, such as cyclin A, CDK2, cell division cycle 25 A and cyclin dependent kinase inhibitor 1. Based on these results, the present study suggested that the DCM fraction of the C. soldanella extract can inhibit HT29 cell viability whilst inducing apoptosis through mitochondrial membrane potential regulation and Sphase arrest. These results also suggested that the DCM fraction has potential anticancer activity in HT29 colorectal cells. Further research on the composition of the DCM fraction is warranted.
Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Calystegia/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Extratos Vegetais/farmacologia , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais , Citocromos c/metabolismo , Relação Dose-Resposta a Droga , Células HT29 , Humanos , Cloreto de Metileno/químicaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Zanthoxylum armatum DC is a traditional medicinal plant. It is widely used in clinical treatment and disease prevention in China, India and other regions. Modern studies have reported the phytotoxicity, cytotoxicity and the animal toxicity of Zanthoxylum armatum DC, and the damage of genetic material has been observed in plants, but the detailed mechanism has not been explored. Besides, the toxicity of normal mammalian cells has not been evaluated. AIM OF THE STUDY: To evaluate the effects and underlying mechanism of genetic material damage in BRL 3A cells induced by Zanthoxylum armatum DC. MATERIALS AND METHODS: Ultra-High Performance Liquid Chromatography and Orbitrap High-Resolution Mass Spectrometry was used for identification of compounds in methanol extract of Zanthoxylum armatum DC. BRL 3A cells were incubated with different concentrations of methanol extract of Zanthoxylum armatum DC (24 h). The cytotoxicity of extract was assessed with cell viability, LDH release rate, and ROS production. The damage of genetic material was assessed with OTM value of comet cells, cell cycle and the expression levels of p-ATM, p- Chk2, Cdc25A, and CDK2. RESULTS: Ultra-High Performance Liquid Chromatography and Orbitrap High-Resolution Mass Spectrometry investigation revealed the presence of compounds belonging to flavonoid, fatty acid and alkaloid groups. The viability of BRL 3A cells was reduced in a time-dose dependent manner treated by methanol extract of Zanthoxylum armatum DC. It increased LDH release rate and ROS production, activated the DNA double strand damage marker of γH2AX and produced comet cells. In addition, methanol extract of Zanthoxylum armatum DC caused ATM-mediated DNA damage, further phosphorylated Chk2, inhibited cell cycle related proteins, and arrested the G1/S cycle. CONCLUSIONS: Methanol extract of Zanthoxylum armatum DC induces DNA damage and further leads G1/S cell cycle arrest by triggering oxidative stress in the BRL 3A cells. This study provides some useful evidences for its development as an antitumor drug via activation of ATM/Chk2.
Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Quinase do Ponto de Checagem 2/metabolismo , Dano ao DNA/efeitos dos fármacos , Extratos Vegetais/farmacologia , Zanthoxylum/química , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Linhagem Celular , Sobrevivência Celular , Quinase do Ponto de Checagem 2/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/química , Ratos , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacosRESUMO
This study investigated the roles of low-molecular-weight fucoidan (LMWF) in enhancing the anti-cancer effects of fluoropyrimidine-based chemotherapy. HCT116 and Caco-2 cells were treated with LMWF and 5-FU. Cell viability, cell cycle, apoptosis, and migration were analyzed in both cell types. Potential mechanisms underlying how LMWF enhances the anti-cancer effects of fluoropyrimidine-based chemotherapy were also explored. The cell viability of HCT116 and Caco-2 cells was significantly reduced after treatment with a LMWF--5FU combination. In HCT116 cells, LMWF enhanced the suppressive effects of 5-FU on cell viability through the (1) induction of cell cycle arrest in the S phase and (2) late apoptosis mediated by the Jun-N-terminal kinase (JNK) signaling pathway. In Caco-2 cells, LMWF enhanced the suppressive effects of 5-FU on cell viability through both the c-mesenchymal-epithelial transition (MET)/Kirsten rat sarcoma virus (KRAS)/extracellular signal-regulated kinase (ERK) and the c-MET/phosphatidyl-inositol 3-kinases (PI3K)/protein kinase B (AKT) signaling pathways. Moreover, LMWF enhanced the suppressive effects of 5-FU on tumor cell migration through the c-MET/matrix metalloproteinase (MMP)-2 signaling pathway in both HCT116 and Caco-2 cells. Our results demonstrated that LMWF is a potential complementary therapy for enhancing the efficacies of fluoropyrimidine-based chemotherapy in colorectal cancers (CRCs) with the wild-type or mutated KRAS gene through different mechanisms. However, in vivo studies and in clinical trials are required in order to validate the results of the present study.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Colorretais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células CACO-2 , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Fluoruracila/farmacologia , Células HCT116 , Humanos , Polissacarídeos/farmacologiaRESUMO
Human colon cancer is the third leading cause of mortality in the United States and worldwide. Chemoprevention using diet is widely accepted as a promising approach for cancer management. Numerous population studies indicate a negative correlation between the incidence of colon cancer and consumption of whole grains with a high content of bioactive phenolic compounds. In the current study, we evaluated the anticancer properties of a high phenolic sorghum bran extract prepared using 70% ethanol with 5% citric acid solvent at room temperature. A significant dose-dependent suppression of cell proliferation was observed in human colon cancer cells treated with the high phenolic sorghum bran extract. Apoptosis and S phase growth arrest were induced, while cell migration and invasion were inhibited by this treatment; these effects were accompanied by altered expression of apoptosis, cell cycle, and metastasis-regulating genes. We also found that the high phenolic sorghum bran extract stimulated DNA damage in association with induction of extracellular signal-regulated kinase (ERK) and c-Jun-NH2-terminal kinase (JNK) and subsequent expression of activating transcription factor 3 (ATF3). The present study expands our understanding of the potential use of high phenolic sorghum bran to prevent human colon cancer.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Fenóis/farmacologia , Sorghum/química , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Dano ao DNA/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fenóis/isolamento & purificação , Extratos Vegetais/química , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Sorghum/metabolismo , Regulação para Cima/efeitos dos fármacosRESUMO
Ovarian cancer is considered to be one of the most serious malignant tumors in women. Natural compounds have been considered as important sources in the search for new anti-cancer agents. Saponins are characteristic components of tea (Camellia sinensis) flower and have various biological activities, including anti-tumor effects. In this study, a high purity standardized saponin extract, namely Baiye No.1 tea flower saponin (BTFS), which contained Floratheasaponin A and Floratheasaponin D, were isolated from tea (Camellia sinensis cv. Baiye 1) flowers by macroporous resin and preparative liquid chromatography. Then, the component and purity were detected by UPLC-Q-TOF/MS/MS. This high purity BTFS inhibited the proliferation of A2780/CP70 cancer cells dose-dependently, which is evidenced by the inhibition of cell viability, reduction of colony formation ability, and suppression of PCNA protein expression. Further research found BTFS induced S phase cell cycle arrest by up-regulating p21 proteins expression and down-regulating Cyclin A2, CDK2, and Cdc25A protein expression. Furthermore, BTFS caused DNA damage and activated the ATM-Chk2 signaling pathway to block cell cycle progression. Moreover, BTFS trigged both extrinsic and intrinsic apoptosis-BTFS up-regulated the expression of death receptor pathway-related proteins DR5, Fas, and FADD and increased the ratio of pro-apoptotic/anti-apoptotic proteins of the Bcl-2 family. BTFS-induced apoptosis seems to be related to the AKT-MDM2-p53 signaling pathway. In summary, our results demonstrate that BTFS has the potential to be used as a nutraceutical for the prevention and treatment of ovarian cancer.
Assuntos
Apoptose/efeitos dos fármacos , Camellia sinensis/química , Extratos Vegetais/química , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Saponinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Camellia sinensis/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ciclina A2/genética , Ciclina A2/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Feminino , Flores/química , Flores/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/isolamento & purificação , Ácido Oleanólico/farmacologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Saponinas/química , Saponinas/isolamento & purificação , Proteína Supressora de Tumor p53/metabolismoRESUMO
OBJECTIVE: Polyphenols extracted by table grape have been demonstrated to decrease cell proliferation in vitro and to exert anti-atherosclerotic and antithrombotic activities, regulating cell functions. A grape polyphenolic profile is affected by climate as well as a grape cultivar. This study was aimed to characterize the berry skin polyphenolic composition, antioxidant activity and antiproliferative properties of two black grape cultivars, Autumn Royal and Egnatia. METHODS: The phenolic composition of Grape Skin Extracts (GSEs) was determined by HPLC analyses. The antioxidant activity was determined using DPPH, ABTS and ORAC tests. Caco2, HT29 and SW480 human colon cancer cell lines were used to test the effects of GSEs in vitro. Cell proliferation and cell cycle were assessed with the MTT method and a Muse cell analyzer, respectively. qPCR and Western Blotting analysis were used to evaluate gene and protein expression, respectively. RESULTS: The total polyphenolic content and the total antioxidant capacity were significantly higher in Autumn Royal than in Egnatia. However, table grape Egnatia showed greater ability to affect cell proliferation and apoptosis, as well as to exert a growth arrest in the S phase of the cell cycle, particularly in the Caco2 cell line. CONCLUSION: These data suggest that the new grape variety Egnatia is an interesting source of phenolic compounds that could be of interest in the food and pharmaceutical industries.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Extratos Vegetais/farmacologia , Vitis , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Células CACO-2 , Caspase 3/genética , Caspase 3/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HT29 , Humanos , Fosforilação , Extratos Vegetais/isolamento & purificação , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Vitis/químicaRESUMO
Gypenosides have anticancer activity against many cancers. Gypenoside LI is a gypenoside monomer from Gynostemma pentaphyllum, its pharmacological functions in melanoma have not been reported. In this study, we found that gypenoside LI had a potent cytotoxic effect on melanoma cells. Gypenoside LI can induce intrinsic apoptosis along with S phase arrest. Furthermore, gypenoside LI inhibited the colony formation ability of melanoma through inhibition of the Wnt/ß-catenin signaling pathway. Interestingly, we also found that gypenoside LI can induce the upregulation of the tumor suppressor miR-128-3p during melanoma apoptosis. In contrast, gypenoside LI induced apoptosis, cell cycle arrest, and inhibition of the Wnt/ß-catenin signaling pathway, which were abolished by overexpression of the miR-128-3p inhibitor in A375 cells. Taken together, these results showed that gypenoside LI could inhibit human melanoma cells through inducing apoptosis, arresting cell cycle at the S phase and suppressing the Wnt/ß-catenin signaling pathway in a miR-128-3p dependent manner.
Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Gynostemma/química , Melanoma/metabolismo , MicroRNAs/metabolismo , Extratos Vegetais/farmacologia , Neoplasias Cutâneas/metabolismo , Regulação para Cima/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Humanos , Melanoma/patologia , MicroRNAs/genética , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Neoplasias Cutâneas/patologia , Transfecção , Via de Sinalização Wnt/efeitos dos fármacosRESUMO
The frequency of esophageal adenocarcinoma is rising despite widespread use of proton pump inhibitors (PPIs), which heal reflux esophagitis but do not prevent reflux of weakly acidic gastric juice and bile in Barrett's esophagus patients. We aimed to determine if weakly acidic (pH 5.5) bile salt medium (WABM) causes DNA damage in Barrett's cells. Because p53 is inactivated frequently in Barrett's esophagus and p38 can assume p53 functions, we explored p38's role in DNA damage response and repair. We exposed Barrett's cells with or without p53 knockdown to WABM, and evaluated DNA damage, its response and repair, and whether these effects are p38 dependent. We also measured phospho-p38 in biopsies of Barrett's metaplasia exposed to deoxycholic acid (DCA). WABM caused phospho-H2AX increases that were blocked by a reactive oxygen species (ROS) scavenger. WABM increased phospho-p38 and reduced bromodeoxyuridine incorporation (an index of S phase entry). Repair of WABM-induced DNA damage proceeded through p38-mediated base excision repair (BER) associated with reduction-oxidation factor 1-apurinic/apyrimidinic endonuclease I (Ref-1/APE1). Cells treated with WABM supplemented with ursodeoxycholic acid (UDCA) exhibited enhanced p38-mediated responses to DNA damage. All of these effects were observed in p53-intact and p53-deficient Barrett's cells. In patients, esophageal DCA perfusion significantly increased phospho-p38 in Barrett's metaplasia. WABM exposure generates ROS, causing oxidative DNA damage in Barrett's cells, a mechanism possibly underlying the rising frequency of esophageal adenocarcinoma despite PPI usage. p38 plays a central role in oxidative DNA damage response and Ref-1/APE1-associated BER, suggesting potential chemopreventive roles for agents like UDCA that increase p38 activity in Barrett's esophagus.NEW & NOTEWORTHY We found that weakly acidic bile salt solutions, with compositions similar to the refluxed gastric juice of gastroesophageal reflux disease patients on proton pump inhibitors, cause oxidative DNA damage in Barrett's metaplasia that could contribute to the development of esophageal adenocarcinoma. We also have elucidated a critical role for p38 in Barrett's metaplasia in its response to and repair of oxidative DNA damage, suggesting a potential chemopreventive role for agents like ursodeoxycholic acid that increase p38 activity in Barrett's esophagus.
Assuntos
Esôfago de Barrett/enzimologia , Dano ao DNA , Reparo do DNA , Ácido Desoxicólico/toxicidade , Células Epiteliais/efeitos dos fármacos , Mucosa Esofágica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Esôfago de Barrett/genética , Esôfago de Barrett/patologia , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Mucosa Esofágica/enzimologia , Mucosa Esofágica/patologia , Feminino , Histonas/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Masculino , Fosforilação , Cultura Primária de Células , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ácido Ursodesoxicólico/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/genéticaRESUMO
Anomalous changes of the cell mesenchymal-epithelial transition factor (c-Met) receptor tyrosine kinase signaling pathway play an important role in the occurrence and development of human cancers, including gastric cancer. In this study, we designed and synthesized a novel peptide (CM 7) targeting the tyrosine kinase receptor c-Met, that can inhibit c-Met-mediated signaling in MKN-45 and U87 cells. Its affinity to human c-Met protein or c-Met-positive cells was determined, which showed specific binding to c-Met with high affinity. Its biological activities against MKN-45 c-Met-positive cells were evaluated in vitro and in vivo. As a result, peptide CM 7 exhibited moderate regulation of c-Met-mediated cell proliferation, migration, invasion, and scattering. The inhibitory effect of peptide CM 7 on tumor growth in vivo was investigated by establishing a xenograft mouse model using MKN-45 cells, and the growth inhibition rate of tumor masses for peptide CM 7 was 62%. Based on our data, CM 7 could be a promising therapeutic peptide for c-Met-dependent cancer patients.
Assuntos
Antineoplásicos/farmacologia , Terapia de Alvo Molecular , Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Camundongos Nus , Modelos Moleculares , Invasividade Neoplásica , Peptídeos/síntese química , Peptídeos/química , Proteínas Proto-Oncogênicas c-met/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacosRESUMO
In an effort to understand the molecular events contributing to the cytotoxicity activity of resveratrol (RSV), we investigated its effects on human lung adenocarcinoma epithelial cell line A549 at different concentrations. Cellular nucleoside metabolic profiling was determined by an established liquid chromatography-mass spectrometry method in A549 cells. RSV resulted in significant decreases and imbalances of deoxyribonucleoside triphosphates (dNTPs) pools suppressing subsequent DNA synthesis. Meanwhile, RSV at high concentration caused significant cell cycle arrest at S phase, in which cells required the highest dNTPs supply than other phases for DNA replication. The inhibition of DNA synthesis thus blocked subsequent progression through S phase in A549 cells, which may partly contribute to the cytotoxicity effect of RSV. However, hydroxyurea (HU), an inhibitor of RNR activity, caused similar dNTPs perturbation but no S phase arrest, finally no cytotoxicity effect. Therefore, we believed that the dual effect of high concentration RSV, including S phase arrest and DNA synthesis inhibition, was required for its cytotoxicity effect on A549 cells. In summary, our results provided important clues to the molecular basis for the anticancer effect of RSV on epithelial cells.
Assuntos
Adenocarcinoma de Pulmão/patologia , Ciclo Celular/efeitos dos fármacos , Desoxirribonucleotídeos/metabolismo , Células Epiteliais/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Resveratrol/farmacologia , Células A549 , Adenocarcinoma de Pulmão/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Hidroxiureia/farmacologia , Neoplasias Pulmonares/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacosRESUMO
Ginseng has been widely used as a functional food in the world because of its well-defined health benefits. Previous studies have confirmed that AD-1, a new ginsenoside derived from ginseng, can ameliorate thioacetamide-induced liver injury and fibrosis in mice. Simultaneously, amino acid supplementation is getting more attention as an important adjuvant therapy in the improvement of hepatopathy. The aim of this study was to conjugate AD-1 with several selected amino acids and investigate the cytotoxicity of the obtained conjugates in activated t-HSC/Cl-6 cells and normal human liver cells (LO2). Structure-activity relationships of conjugates and underlying mechanisms of the effect are also explored. The results indicated that conjugate 7c remarkably inhibited cell proliferation in activated t-HSC/Cl-6 cells (IC50 = 3.8 ± 0.4 µM) and appeared to be nontoxic to LO2. Besides, conjugate 7c had a relatively good plasma stability. Further study demonstrated that inducing S-phase arrest and activation of mitochondrial-mediated apoptosis were included in the mechanisms underlying the efficiency of conjugate 7c. These findings provided further insight into designing functional foods (ginsenoside and amino acid) for the application in prevention or improvement of liver fibrosis.
Assuntos
Aminoácidos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ginsenosídeos/farmacologia , Células Estreladas do Fígado/citologia , Aminoácidos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ginsenosídeos/química , Células Estreladas do Fígado/efeitos dos fármacos , Humanos , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacosRESUMO
In this study, the apoptosis induction and antitumor activity of a novel complex, seleno-ß-lactoglobulin (Se-ß-Lg), on H22 cells were explored. In in vitro experiments, the MTT assay showed that Se-ß-Lg was cytotoxic to H22 cells in a concentration- and time-dependent manner and displayed few proliferation inhibition effects on normal liver L02 cells. Annexin V-FITC/PI and PI staining assays showed that Se-ß-Lg induced apoptosis changes of H22 cells from early to late apoptosis and led to S phase cell cycle arrest. Western blot and Z-VAD-FMK inhibitor assays showed that Se-ß-Lg triggered the Fas/FasL-mediated caspase 8-dependent extrinsic death receptor pathway in H22 cells. In in vivo experiments, Se-ß-Lg effectively repressed the growth of transplanted H22 solid tumors in a dose-dependent manner and exhibited few toxic effects on the host animals. H&E and PI staining of tumor tissues showed that Se-ß-Lg caused the occurrence of typical apoptosis morphology features and dose-dependently increased the proportion of apoptosis peaks (Sub-G1 peak) in H22 solid tumors. These results suggest that Se-ß-Lg has the capacity to induce H22 tumor cell apoptosis in vitro and in vivo and support that Se-ß-Lg can be applied as a functional complex in food.
Assuntos
Lactoglobulinas/farmacologia , Leite/química , Selênio/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caspase 8/genética , Caspase 8/metabolismo , Bovinos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Lactoglobulinas/química , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Selênio/químicaRESUMO
Studies have identified the potential of chemopreventive effects of sulforaphane (SFN); however, the underlying mechanisms of its effect on breast cancer require further elucidation. This study investigated the anticancer effects of SFN that specifically induces G1/S arrest in breast ductal carcinoma (ZR-75-1) cells. The proliferation of the cancer cells after treatment with SFN was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. DNA content and cell cycle status were analyzed through flow cytometry. Our results demonstrated the inhibition of growth in ZR-75-1 cells upon SFN exposure. In addition, SERTAD1 (SEI-1) caused the accumulation of SFN-treated G1/S-phase cells. The downregulation of SEI-1, cyclin D2, and histone deacetylase 3 suggested that in addition to the identified effects of SFN against breast cancer prevention, it may also exert antitumor activities in established breast cancer cells. In conclusion, SFN can inhibit growth of and induce cell cycle arrest in cancer cells, suggesting its potential role as an anticancer agent.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Isotiocianatos/farmacologia , Proteínas Nucleares/genética , Transativadores/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/fisiopatologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina D2/genética , Ciclina D2/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Extratos Vegetais/farmacologia , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Sulfóxidos , Transativadores/metabolismo , Fatores de Transcrição , Verduras/químicaRESUMO
Purpurogallin is a natural compound that is extracted from nutgalls and oak bark and it possesses antioxidant, anticancer, and anti-inflammatory properties. However, the anticancer capacity of purpurogallin and its molecular target have not been investigated in esophageal squamous cell carcinoma (ESCC). Herein, we report that purpurogallin suppresses ESCC cell growth by directly targeting the mitogen-activated protein kinase kinase 1/2 (MEK1/2) signaling pathway. We found that purpurogallin inhibits anchorage-dependent and -independent ESCC growth. The results of in vitro kinase assays and cell-based assays indicated that purpurogallin also strongly attenuates the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway and also directly binds to and inhibits MEK1 and MEK2 activity. Furthermore, purpurogallin contributed to S and G2 phase cell cycle arrest by reducing cyclin A2 and cyclin B1 expression and also induced apoptosis by activating poly (ADP ribose) polymerase (PARP). Notably, purpurogallin suppressed patient-derived ESCC tumor growth in an in vivo mouse model. These findings indicated that purpurogallin is a novel MEK1/2 inhibitor that could be useful for treating ESCC.
Assuntos
Antineoplásicos/farmacologia , Benzocicloeptenos/farmacologia , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclina A2/biossíntese , Ciclina B1/biossíntese , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Camundongos , Preparações de Plantas/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Although several studies have investigated the cytotoxic effects of different Dianthus species, there has been only limited research into the cytotoxic effect of Dianthus carmelitarum. The purpose of this research was to evaluate the phenolic characterization and the cytotoxic effect of D. carmelitarum on human colon cancer (WiDr) cells and the possible mechanisms involved. Total polyphenolic contents (TPC) and phenolic characterization of the extract were evaluated using the Folin-Cioceltau method and reversed-phase high performance liquid chromatography (RP-HPLC), respectively. The cytotoxic activity of the extract was determined using the methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. The mechanism involved in the extract's cytotoxic effect was then evaluated in terms of apoptosis and the cell cycle using flow cytometry, while mitochondrial membrane potential (MMP) was investigated using the fluorometric method. The TPC value of the extract was 784.8 ± 40.3 mg gallic acid equivalent per 100 g sample, and sinapic acid and benzoic acid were detected as major phenolics in the extract. D. carmelitarum extract exhibited a selective cytotoxic effect (3.6-fold) on WiDr cells compared to normal colon cells. The extract induced cell cycle arrest at the S phase and apoptosis via reduced MMP in WiDr cells. Phytomedical and nutraceutical applications of D. carmelitarum may represent promising approaches in the treatment of cancer.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Dianthus/química , Extratos Vegetais/farmacologia , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Dimetil Sulfóxido/química , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Extratos Vegetais/química , Polifenóis/análiseRESUMO
Polyphyllin VI (PP-VI) is one of the major saponins present in Paris polyphylla Sm., a medicinal plant primarily used for cancer treatment in China and India. However, its anti-metastatic activity remains largely unknown. The current study thus investigated the anti-metastatic activity of PP-VI in mouse mammary carcinoma 4T1 and human breast cancer MDA-MB-231 cells. The anti-metastatic effect of PP-VI was investigated at a sub-cytotoxic dose in migration and invasion assays in vitro. Experimental metastasis mouse model was used to examine the anti-metastatic effect of PP-VI in vivo. Additionally, target prediction, real-time PCR, Western blotting and luciferase assay were performed to identify the target gene of a pro-metastatic microRNA, miR-18a in 4T1 cells. The effect of PP-VI on the identified target of miR-18a was further investigated. The results showed that PP-VI impaired the viability of 4T1 and MDA-MB-231 cells. Moreover, when applied at a sub-cytotoxic dose, PP-VI suppressed the metastatic potential of 4T1 and MDA-MB-231 cells. Receptor expressed in lymphoid tissue (RELT)-like 2 (Rell2) was identified as a direct target of miR-18a with anti-metastatic functions in 4T1 and MDA-MB-231 cells. PP-VI treatment resulted in increased expression of Rell2 and decreased level of miR-18a in 4T1 and MDA-MB-231 cells. PP-VI treatment also attenuated miR-18a mimic or Rell2 siRNA-augmented migration of MDA-MB-231 cells. The current work thus demonstrates for the first time that targeted regulation of Rell2 by miR-18a is in part implicated in the anti-metastatic effect of PP-VI in breast cancer cells, providing novel pharmacological insights into the anti-cancer effect of PP-VI.
Assuntos
Neoplasias da Mama/patologia , Proteínas de Transporte/genética , Proteínas de Membrana/genética , MicroRNAs/genética , Saponinas/farmacologia , Animais , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase S do Ciclo Celular/genéticaRESUMO
CONTEXT: Dicranopteris linearis (Burm.f.) Underw. (Gleicheniaceae) has been scientifically proven to exert various pharmacological activities. Nevertheless, its anti-proliferative potential has not been extensively investigated. OBJECTIVE: To investigate the anti-proliferative potential of D. linearis leaves and determine possible mechanistic pathways. MATERIALS AND METHODS: MTT assay was used to determine the cytotoxic effects of D. linearis methanol (MEDL) and petroleum ether (PEEDL) extracts at concentrations of 100, 50, 25, 12.5, 6.25 and 3.125 µg/mL against a panel of cancer cell lines (breast [MCF-7 and MDA-MB-231], cervical [HeLa], colon [HT-29], hepatocellular [HepG2] and lung [A549]), as compared to negative (untreated) and positive [5-fluorouracil (5-FU)-treated] control groups. Mouse fibroblast cells (3T3) were used as normal cells. The mode of cell death was examined using morphological analysis via acridine orange (AO) and propidium iodide (PI) double staining. Cell cycle arrest was determined using flow cytometer, followed by annexin V-PI apoptosis detection kit. RESULTS: MEDL demonstrated the most significant growth inhibition against MDA-MB-231 cells (IC50 22.4 µg/mL). PEEDL showed no cytotoxic effect. Induction of apoptosis by MEDL was evidenced via morphological analysis and acridine orange propidium iodide staining. MEDL could induce S phase cell cycle arrest after 72 h of incubation. Early apoptosis induction in MDA-MB-231 cells was confirmed by annexin V-FITC and PI staining. Significant increase in apoptotic cells were detected after 24 h of treatment with 15.07% cells underwent apoptosis, and the amount escalated to 18.24% with prolonged 48 h incubation. CONCLUSIONS: MEDL has potential as a potent cytotoxic agent against MDA-MB-231 adenocarcinoma.
Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Extratos Vegetais/farmacologia , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Células 3T3 , Células A549 , Animais , Apiaceae , Apoptose/fisiologia , Neoplasias da Mama/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Camundongos , Extratos Vegetais/isolamento & purificação , Pontos de Checagem da Fase S do Ciclo Celular/fisiologiaRESUMO
The high incidence of prostate carcinogenesis has prompted the search for novel effective treatment approaches. We have employed curcumin (Curc) and diethylstilbestrol (DES) to synthesize a series of polyacetal (PA)-based combination conjugates for prostate cancer (PCa) treatment. Given their bihydroxyl functionalities, Curc and DES molecules were incorporated into a PA mainchain using a one-pot reaction between diols and divinyl ethers. The PA-conjugates released both drugs under acidic conditions, such as those found in the tumor microenvironment, endosomes, or lysosomes, while remaining stable at neutral pH 7.4. The drug ratio was optimized to achieve anticancer drug synergism with elevated cytotoxicity against LNCaP-hormone-dependent human PCa cells conferred via the induction of S phase cell cycle arrest by the upregulation of p53 and CDK inhibitors p21Waf/CIP1 and downregulation of cyclin D1. The application of rationally designed PA-Curc-DES combination conjugates represents a potentially exciting new treatment for prostate cancer.
Assuntos
Acetais/química , Antineoplásicos , Curcumina/química , Dietilestilbestrol/química , Polímeros/química , Neoplasias da Próstata/tratamento farmacológico , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Humanos , Masculino , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologiaRESUMO
Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) has a specific antitumour activity against many malignant tumours. However, more than half of lung cancer cells are resistant to TRAIL-relevant drugs. Trichosanthin (TCS) is a traditional Chinese medicine with strong inhibitive effects on various malignancies. Nevertheless, its function on TRAIL resistance has not been revealed in non-small cell lung cancer (NSCLC). To examine the molecular mechanisms of TCS-induced TRAIL sensitivity, we administrated TCS to TRAIL-resistance NSCLC cells, and found that the combination treatment of TCS and TRAIL inhibited cancer cell proliferation and invasion, and induced cell apoptosis and S-phase arrest. This combined therapeutic method regulated the expression levels of extrinsic apoptosis-associated proteins Caspase 3/8 and PARP; intrinsic apoptosis-associated proteins BCL-2 and BAX; invasion-associated proteins E-cadherin, N-cadherin, Vimentin, ICAM-1, MMP-2 and MMP-9; and cell cycle-associated proteins P27, CCNE1 and CDK2. Up-expression and redistribution of death receptors (DRs) on the cell surface were also observed in combined treatment. In conclusion, our results indicated that TCS rendered NSCLC cells sensitivity to TRAIL via upregulating and redistributing DR4 and DR5, inducing apoptosis, and regulating invasion and cell cycle related proteins. Our results provided a potential therapeutic method to enhance TRAIL-sensitivity.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Tricosantina/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Combinação de Medicamentos , Humanos , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF/fisiologiaRESUMO
Previous studies have shown that the ethanolic extracts from Sophora moorcroftiana seeds (ee-Sms) have in vitro anticancer properties. The anti-proliferation effects of ee-Sms on HepG2 cells were assessed by MTT assay and cell cycle analysis. Total cell proteins were separated by two-dimensional electrophoresis (2-DE), and protein spots with more than two-fold difference were analysed by MALDI-TOF/TOF-MS. MTT assay showed that the anti-proliferation of ee-Sms demonstrates dose- and time dependently. HepG2 cells were treated with ee-Sms at 1.30 mg/mL for 48 h induced cell cycle arrest in S phase. The differentially-expressed proteins were involved in DNA repair, cell proliferation, cell metabolism and immunoreaction. This study sheds new insights into the molecular mechanisms underlying the anti-proliferation properties of ee-Sms in HepG2 cells.