Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biomater Sci Polym Ed ; 34(17): 2356-2375, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37622439

RESUMO

A chronic skin disorder called atopic dermatitis (AD) is brought on by the deterioration of the skin's barrier function marked by inflammation, dryness, and bacterial infection along with immunological changes. Althaea officinalis (AO), known for its anti-inflammatory and immunomodulatory properties, has been explored as a potential treatment for AD. This study aimed to develop and evaluate a novel transliposomes (TL) formulation containing AO for AD treatment. Using rotary evaporation, AO-TL formulations were created and optimized employing Box Behnken Design. The optimized AO-TL formulation showed consistent characteristics: vesicle size of 145.8 nm, polydispersity index of 0.201, zeta potential of -28.22 mV, and entrapment efficiency of 86.21%. TEM imaging shows the spherical shapes of the vesicle. These findings demonstrate the formulation's stability and ability to encapsulate AO effectively. In vitro drug release studies revealed that the AO-TL formulation released 81.28% of the drug, outperforming conventional AO dispersion (56.80%). Additionally, when applied to rat skin, the TL gel demonstrated deeper penetration (30 µm) in comparison to the standard solution (5.0 µm) based on confocal laser scanning microscopy (CLSM). Ex vivo and dermatokinetics studies showed improved penetration of drug-loaded transliposomes gel in rat skin than the conventional AO gel. Overall, the optimized AO-TL formulation offers promising characteristics and performance for the topical treatment of AD. Its drug release, antioxidant activity, and deeper penetration suggest enhanced therapeutic effects. Further research and clinical trials are needed to validate its efficacy and safety in AD patients.


Assuntos
Althaea , Dermatite Atópica , Ratos , Humanos , Animais , Absorção Cutânea , Administração Cutânea , Portadores de Fármacos/metabolismo , Dermatite Atópica/tratamento farmacológico , Pele , Tamanho da Partícula
2.
Pharm Dev Technol ; 28(5): 425-439, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37078715

RESUMO

The aim of the study was to enhance curcumin skin permeability through the preparation of spanlastics. Spanlastics were prepared using the ethanol injection technique through a central composite design using Span 60 concentration (X1), edge activator type (X2), and its concentration (X3) as the independent variables. The spanlastics were characterized for particle size (PS), encapsulation efficiency (EE), and dissolution efficiency (%DE24h). Formulae with the highest desirability (FN1 and FN2) were prepared and further characterized. They were elastic, spherical, nonirritant, and compatible with the used excipients. They had particle sizes of 147 and 198 nm, encapsulation efficiencies of 84.00% and 89.63%, zeta potential values of -45.50 and -39.10 mV, permeation enhancement ratios of 11.51 and 8.34 folds, and amounts retained of 7.25 and 10.44 µg/cm2 after 24 h, respectively. Formulae FN1 and FN2 showed cytotoxic effects after 48 h on human melanoma A375 with IC50 of 10.9 and 75.6 µg/mL, respectively. They increased the apoptotic effect confirming the success of the spanlastics to be a potential delivery for melanoma treatment.


Assuntos
Curcumina , Melanoma , Humanos , Portadores de Fármacos/metabolismo , Curcumina/farmacologia , Pele/metabolismo , Absorção Cutânea , Melanoma/tratamento farmacológico , Tamanho da Partícula , Sistemas de Liberação de Medicamentos/métodos
3.
Adv Drug Deliv Rev ; 182: 114108, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34990792

RESUMO

Within the past decades, extracellular vesicles (EVs) have emerged as important mediators of intercellular communication in both prokaryotes and higher eukaryotes to regulate a diverse range of biological processes. Besides EVs, exosome-like nanoparticles (ELNs) derived from plants were also emerging. Comparing to EVs, ELNs are source-widespread, cost-effective and easy to obtain. Their definite activities can be utilized for potential prevention/treatment of an abundance of diseases, including metabolic syndrome, cancer, colitis, alcoholic hepatitis and infectious diseases, which highlights ELNs as promising biotherapeutics. In addition, the potential of ELNs as natural or engineered drug carriers is also attractive. In this review, we tease out the timeline of plant EVs and ELNs, introduce the arising separation, purification and characterization techniques, state the stability and transport manner, discuss the therapeutic opportunities as well as the potential as novel drug carriers. Finally, the challenges and the direction of efforts to realize the clinical transformation of ELNs are also discussed.


Assuntos
Química Farmacêutica/métodos , Portadores de Fármacos/farmacologia , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Plantas/metabolismo , Animais , Biomarcadores , Comunicação Celular/fisiologia , Portadores de Fármacos/metabolismo , Portadores de Fármacos/toxicidade , Estabilidade de Medicamentos , Humanos , Sistemas de Liberação de Fármacos por Nanopartículas/metabolismo , Sistemas de Liberação de Fármacos por Nanopartículas/farmacologia , Sistemas de Liberação de Fármacos por Nanopartículas/toxicidade
4.
Curr Drug Deliv ; 19(5): 614-624, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34238191

RESUMO

OBJECTIVE: Develop and assess a transdermal emulsion loaded with nanostructured lipid carriers for vitamin D3 supplementation. METHODS: Vitamin D3 loaded nanostructured lipid carriers, produced via high shear homogenization and ultrasonication, were assessed for their particle size, distribution, morphology, zeta potential, entrapment efficiency, and cytotoxicity. They were incorporated into a transdermal vehicle, and the stability and ex vivo permeation were evaluated. RESULTS: Spherical nanoparticles were developed with a particle size of 192.5 nm, a polydispersity index of 0.13, a zeta potential of -29.0 mV, and an entrapment efficiency of 99.75%. They were stable (particle size and distribution) for 15 days when stored in a refrigerator, and for 30 days at room temperature and 32°C. The nanoparticles decreased the drug cytotoxicity against fibroblasts, as shown by IC50 (nanoparticle: 32.48 µg mL-1 vitamin D3: 16.73 µg mL-1). The emulsion loaded with nanoparticles minimized the degradation of vitamin D3 when compared with the nanoparticle dispersion. Additionally, the emulsion provided the skin permeation of vitamin D3 following the recommended daily allowance. CONCLUSION: To the best of our knowledge, this is the first study to use nanostructured lipid carriers for transdermal delivery of vitamin D. The developed formulation is a promising strategy to overcome the vitamin D3 variable oral bioavailability. It also represents a comfortable route of administration; thus it could be beneficial for patients and clinicians. However, further studies are needed to allow the permeation of larger amounts of vitamin D3, and the combination of these nanoparticles with microneedles would be interesting.


Assuntos
Nanopartículas , Nanoestruturas , Administração Cutânea , Colecalciferol/metabolismo , Portadores de Fármacos/metabolismo , Emulsões , Humanos , Lipídeos , Tamanho da Partícula , Pele/metabolismo
5.
Carbohydr Polym ; 273: 118592, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560993

RESUMO

N-trimethyl chitosan (TMC) is a multifunctional polymer that can be used in various nanoparticle forms in the pharmaceutical, nutraceutical and biomedical fields. In this study, TMC was used as a mucoadhesive adjuvant to enhance the oral bioavailability and hence antitumour effects of gemcitabine formulated into nanocomplexes composed of poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) conjugated with d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS). A central composite design was applied to achieve the optimal formulation. Cellular uptake and drug transportation studies revealed the nanocomplexes permeate over the intestinal cells via adsorptive-mediated and caveolae-mediated endocytosis. Pharmacokinetic studies demonstrated the oral drug bioavailability of the nanocomplexes was increased 5.1-fold compared with drug solution. In pharmacodynamic studies, the formulation reduced tumour size 3.1-fold compared with the drug solution. The data demonstrates that TMC modified nanocomplexes can enhance gemcitabine oral bioavailability and promote the anticancer efficacy.


Assuntos
Antineoplásicos/uso terapêutico , Desoxicitidina/análogos & derivados , Portadores de Fármacos/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Quitosana/síntese química , Quitosana/química , Quitosana/metabolismo , Desoxicitidina/química , Desoxicitidina/farmacocinética , Desoxicitidina/uso terapêutico , Portadores de Fármacos/síntese química , Portadores de Fármacos/metabolismo , Liberação Controlada de Fármacos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/síntese química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/metabolismo , Ratos Sprague-Dawley , Vitamina E/síntese química , Vitamina E/química , Vitamina E/metabolismo , Gencitabina
6.
Pharm Dev Technol ; 26(9): 953-966, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34374616

RESUMO

The study aims at formulation and optimization of resveratrol and humic acid co-encapsulated colloidal polymeric nanocarriers to improve stability, oral bioavailability, and antiradical activity of water-insoluble, resveratrol. The eudragit E100 polymeric material was used to fabricate resveratrol and humic acid co-encapsulated oral colloidal polymeric nanocarriers (Res-HA-co-CPNs) using emulsification-diffusion-evaporation method. Taguchi orthogonal array design was employed to check the effect of formulation factors on in vitro physicochemical characteristics. The optimized formulation was further evaluated for oral bioavailability as well as for antiradical potential. Optimized Res-HA-co-CPNs demonstrated spherical and smooth surface including mean particle size, 120.56 ± 18.8 nm; polydispersity index, 0.122; zeta potential, +38.25 mV; and entrapment efficiency, 82.37 ± 1.49%. Solid-state characterization confirmed the amorphous characteristic of optimized Res-HA-co-CPNs. In vitro release profile of Res-HA-co-CPNs showed sustained release behavior up to 48 h and CPNs were found to remain stable at the refrigerated condition for 6 months. In vivo pharmacokinetic studies revealed significant (p < 0.05) improvement of ∼62.76-fold in oral bioavailability. The radical-scavenging activity was found to be increased with time and after 72 h, it was analogous to pure Res. IC50 values were reported to be decreased with time. Henceforth, developed Res-HA-co-CPNs was proven to be a proficient dosage form to increase stability, oral bioavailability, and antiradical activity of resveratrol.HighlightsResveratrol-humic acid co-encapsulated colloidal polymeric nanocarriers (Res-HA-co-CPNs) were fabricated by emulsification-diffusion-evaporation method and optimized by Taguchi orthogonal array design.The Res-HA-co-CPNs revealed favorable mean particle size and percent encapsulation efficiency with a spherical and smooth surface.The Res-HA-co-CPNs showed diffusion-controlled release of Res and were found to be stable at the refrigerated condition for 6 months.The optimized Res-HA-co-CPNs demonstrated significantly (p < 0.05) higher oral bioavailability with respect to pure Res and PM.The optimized Res-HA-co-CPNs demonstrated higher radical-scavenging activity with respect to time.


Assuntos
Portadores de Fármacos/síntese química , Composição de Medicamentos/métodos , Substâncias Húmicas , Nanopartículas/química , Polímeros/síntese química , Resveratrol/síntese química , Administração Oral , Animais , Antioxidantes/síntese química , Antioxidantes/metabolismo , Quelantes/síntese química , Quelantes/metabolismo , Coloides , Portadores de Fármacos/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Masculino , Nanopartículas/metabolismo , Tamanho da Partícula , Polímeros/metabolismo , Ratos , Resveratrol/metabolismo
7.
Reprod Sci ; 28(12): 3361-3379, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34231166

RESUMO

The use of exogenous antioxidants or the combination of them during in vitro oocyte/embryo culture media is reasonable. Co-delivery by nanocarrier has been designed to overcome the limitations of combining them traditionally. In this work, amphiphilic chitosan nanocarrier (ACN) was applied to co-encapsulate melatonin (Mel) and tretinoin (TTN) by the self-assembled method and evaluate their synergistic antioxidant efficacy in mice oocytes/embryos. The formation of single/dual-ACN was confirmed by Fourier-transformed infrared spectroscopy (FT-IR). The average particle diameter, size distribution, polydispersity index (PDI), and zeta potential of them were measured by dynamic light scattering (DLS), and the morphology was evaluated by TEM and SEM technologies. Also, the encapsulation efficiency (EE%) and drug loading content (DL%) of the nanocapsules were determined by UV-vis spectrophotometry. Studies of the in vitro release showed a continued drug release without any bursting effect of Mel+TTN-ACNs compared with single Mel/TTN-ACNs. Then, in both experiments, nuclear staining (Aceto-orcein and Hoechst 33342), fluorescent staining of H2DCFDA, chemiluminescence test, and qRT-PCR technique were performed as in vitro toxicity studies. The results of all these evaluations demonstrated that the dual delivery of Mel and TTN could accumulate a safety (without high-dose toxicity) synergistic anti-oxidative effect in oocyte/embryo by passive controlled, and inhibit intra/extracellular ROS levels by an enhanced intracellular penetration.


Assuntos
Antioxidantes/administração & dosagem , Quitosana/administração & dosagem , Melatonina/administração & dosagem , Mórula/efeitos dos fármacos , Nanocápsulas/administração & dosagem , Oócitos/efeitos dos fármacos , Tretinoína/administração & dosagem , Animais , Antioxidantes/metabolismo , Quitosana/metabolismo , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/metabolismo , Sinergismo Farmacológico , Técnicas de Cultura Embrionária/métodos , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/fisiologia , Feminino , Masculino , Melatonina/metabolismo , Camundongos , Mórula/metabolismo , Oócitos/metabolismo , Tretinoína/metabolismo
8.
Carbohydr Polym ; 268: 118237, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34127219

RESUMO

The application of traditional chemotherapy drugs for lung cancer has obvious limitations, such as toxic side effects, uncontrolled drug-release, poor bioavailability, and drug-resistance. Thus, to address the limitations of free drugs and improve treatment effects, we developed novel T7 peptide-modified nanoparticles (T7-CMCS-BAPE, CBT) based on carboxymethyl chitosan (CMCS), which is capable of targeted binding to the transferrin receptor (TfR) expressed on lung cancer cells and precisely regulating drug-release according to the pH value and reactive oxygen species (ROS) level. The results showed that the drug-loading content of docetaxel (DTX) and curcumin (CUR) was approximately 7.82% and 6.48%, respectively. Good biosafety was obtained even when the concentration was as high as 500 µg/mL. More importantly, the T7-CMCS-BAPE-DTX/CUR (CBT-DC) complexes exhibited better in vitro and in vivo anti-tumor effects than DTX monotherapy and other nanocarriers loaded with DTX and CUR alone. Furthermore, we determined that CBT-DC can ameliorate the immunosuppressive micro-environment to promote the inhibition of tumor growth. Collectively, the current findings help lay the foundation for combinatorial lung cancer treatment.


Assuntos
Antineoplásicos/uso terapêutico , Curcumina/uso terapêutico , Docetaxel/uso terapêutico , Portadores de Fármacos/química , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Quitosana/análogos & derivados , Quitosana/metabolismo , Quitosana/farmacocinética , Quitosana/toxicidade , Curcumina/química , Curcumina/farmacocinética , Docetaxel/química , Docetaxel/farmacocinética , Portadores de Fármacos/metabolismo , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Pulmão/patologia , Neoplasias Pulmonares/patologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Células Supressoras Mieloides/efeitos dos fármacos , Nanopartículas/metabolismo , Nanopartículas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Pharm Dev Technol ; 26(6): 682-692, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33952085

RESUMO

Although there are several treatments for rheumatoid arthritis (RA), outcomes are unsatisfactory and often associated with many side effects. We attempted to improve RA therapeutic outcomes by intra-articular administration of dual drug-loaded poly(lactic) acid (PLA)-coated herbal colloidal carriers (HCCs). Curcumin (CU) and resveratrol (RES) were loaded into HCCs because of their safety and significant anti-inflammatory activity. HCCs were prepared using a high-pressure, hot homogenization technique and evaluated in vitro and in vivo using a complete Freund's adjuvant-induced arthritis model. Transmission electron microscope (TEM) evaluated coating selected formulations with PLA, which increased particle sizes from 52 to 89.14 nm. The entrapment efficiency of both formulations was approximately 76%. HCCs significantly increased the amount of RES and CU released compared with the drug suspensions alone. The in vivo treated groups showed a significant improvement in joint healing. PLA-coated HCCs, followed by uncoated HCCs, yielded the highest reductions in knee diameter, myeloperoxidase (MPO) levels, and tumor necrosis factor-alpha (TNFα) levels. Histological examination of the dissected joints revealed that PLA-coated HCCs followed by uncoated HCCs exhibited the most significant joint healing effects. Our results demonstrate the superiority of intra-articularly administered HCCs to suppress RA progression compared with RES or CU suspensions alone.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Coloides/administração & dosagem , Portadores de Fármacos/administração & dosagem , Preparações de Plantas/administração & dosagem , Poliésteres/administração & dosagem , Animais , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/metabolismo , Coloides/metabolismo , Portadores de Fármacos/metabolismo , Adjuvante de Freund/toxicidade , Injeções Intra-Articulares/métodos , Masculino , Preparações de Plantas/metabolismo , Poliésteres/metabolismo , Ratos
10.
Pharm Dev Technol ; 26(1): 81-91, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33070668

RESUMO

Nanostructured lipid carriers (NLC) have become a research hotspot, wherein cancer-targeting effects are enhanced and side effects of chemotherapy are overcome. Usually, accelerated blood clearance (ABC) occurs after repeated injections, without changing the immunologic profile, despite PEGylation which prolongs the circulation function. To overcome these problems, we designed a red blood cell-membrane-coated NLC (RBCm-NLC), which was round-like, with a particle size of 60.33 ± 3.04 nm and a core-shell structure. Its stability was good, the drug paclitaxel (PTX) release from RBCm-PTX-NLC was less than 30% at pH7.4 and pH6.5, and the integrity of RBC membrane surface protein was maintained before and after preparation. Additionally, in vitro assays showed that, with the RBCm coating, the cellular uptake of the NLC by cancer cells was significantly enhanced. RBCm-NLC can avoid recognition by macrophage cells and prolong circulation time in vivo. In S180 tumor-bearing mice, the DiR-labeled RBCm-NLC group showed a stronger fluorescence signal and longer retention in tumor tissues, indicating a prompt tumor-targeting effect and extended blood circulation. Importantly, RBCm-PTX-NLC enhanced the antitumor effect and extended the survival period significantly in vivo. In summary, biomimetic NLC offered a novel strategy for drug delivery in cancer therapy.


Assuntos
Antineoplásicos/síntese química , Materiais Biomiméticos/síntese química , Biomimética/métodos , Portadores de Fármacos/síntese química , Nanoestruturas/química , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/metabolismo , Materiais Biomiméticos/administração & dosagem , Materiais Biomiméticos/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Lipídeos , Masculino , Camundongos , Nanoestruturas/administração & dosagem , Células RAW 264.7 , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
11.
Cell Mol Neurobiol ; 41(5): 1019-1029, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33025416

RESUMO

Brain tumors are hard to treat with the currently available therapy. The major obstacle in the treatment of brain tumors is the lack of therapeutic strategies capable to penetrate the blood-brain barrier (BBB). The BBB is an endothelial interface that separates the brain from the circulatory blood system and prevents the exposure of the central nervous system (CNS) to circulating toxins and potentially harmful compounds. Unfortunately, the BBB prevents also the penetration of therapeutic compounds into the brain. We present here a drug-delivery liposomal carrier, conjugated to a peptide inserted in the liposomal membrane, which is putatively recognized by BBB transporters. The peptide is a short sequence of 5 amino acids (RERMS) present in the amyloid precursor protein (APP). This APP-targeted liposomal system was designed specifically for transporting compounds with anti-cancer activity via the BBB into the brain in an effective manner. This drug-delivery liposomal carrier loaded with the anti-cancer compounds temozolomide (TMZ), curcumin, and doxorubicin crossed the BBB in an in vitro model as well as in vivo (mice model). In the in vitro model, the targeted liposomes crossed the BBB model fourfold higher than the non-targeted liposomes. Labeled targeted liposomes penetrated the brain in vivo 35% more than non-targeted liposomes. Treatment of mice that underwent intracranial injection of human U87 glioblastoma, with the targeted liposomes loaded with the three tested anti-cancer agents, delayed the tumor growth and prolonged the mice survival in a range of 45% -70%. It appears that the targeted liposomal drug-delivery system enables better therapeutic efficacy in a SCID mouse model of glioblastoma compared to the corresponding non-targeted liposomes and the free compounds.


Assuntos
Precursor de Proteína beta-Amiloide/administração & dosagem , Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Portadores de Fármacos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Fragmentos de Peptídeos/administração & dosagem , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Animais Recém-Nascidos , Antineoplásicos/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Portadores de Fármacos/metabolismo , Humanos , Lipossomos , Camundongos , Camundongos SCID , Fragmentos de Peptídeos/metabolismo , Ratos , Ratos Wistar , Suínos , Resultado do Tratamento
12.
Adv Drug Deliv Rev ; 170: 312-339, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32946921

RESUMO

Although nanocarriers offer many advantages as drug delivery systems, their poor stability in circulation, premature drug release and nonspecific uptake in non-target organs have prompted biomimetic approaches using natural cell membranes to camouflage nanovehicles. Among them, erythrocytes, representing the most abundant blood circulating cells, have been extensively investigated for biomimetic coating on artificial nanocarriers due to their upgraded biocompatibility, biodegradability, non-immunogenicity and long-term blood circulation. Due to the cell surface mimetic properties combined with customized core material, erythrocyte-mimicking nanovehicles (EM-NVs) have a wide variety of applications, including drug delivery, imaging, phototherapy, immunomodulation, sensing and detection, that foresee a huge potential for therapeutic and diagnostic applications in several diseases. In this review, we summarize the recent advances in the biomedical applications of EM-NVs in cancer, infection, heart-, autoimmune- and CNS-related disorders and discuss the major challenges and opportunities in this research area.


Assuntos
Sistemas de Liberação de Medicamentos , Eritrócitos/metabolismo , Nanopartículas/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Eritrócitos/química , Humanos , Nanopartículas/química
13.
Eur J Pharm Biopharm ; 158: 371-378, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33309846

RESUMO

The encapsulation of nanoparticles within microparticles designed for specific delivery to the colon is a relevant strategy to avoid premature degradation or release of nanoparticles during their passage through the stomach and upper gastrointestinal tract (GIT), allowing the targeted delivery of chemotherapeutics to the colon after oral administration. Here, we designed an oral multiparticulate system to achieve targeted release in the colon. In this sense, chitosan nanoparticles (CS NPs) encapsulated with 5-fluorouracil (5-FU) and incorporated into retrograded starch and pectin (RS/P) microparticles were developed and their in vivo distribution along the mouse GIT after oral administration was monitored using multispectral optical imaging. In vitro release studies revealed that the encapsulation of CS NPs into RS/P microparticles promoted greater control of 5-FU release rates, with a significant reduction (53%) in acid media that might replicate that found in the stomach following oral administration. The evaluation of the in vivo biodistribution of the CS NPs in mice showed a faster clearance in the distribution pattern along the mouse GIT, i.e., a shorter transit time of CS NPs compared to CS NPs-loaded RS/P microparticles. Additionally, CS NPs alone showed non-specific absorption into the blood-stream with associated kidney accumulation, while for the CS NPs-loaded RS/P microparticles no significant accumulation was observed in blood or major clearance organs. This suggests the specific degradability of RS/P by the colon microbiota appears to have been decisive in the higher protection of the CS NPs along the GIT until release in the colon, preventing unwanted absorption into the bloodstream and major organs following oral administration. Our findings represent a proof of concept for the use of RS/P microparticles as potential carriers for delivering drug-loaded nanoparticles to the colon and this work will contribute to the development of oral-systems for colorectal cancer therapy.


Assuntos
Antineoplásicos/farmacocinética , Neoplasias Colorretais/tratamento farmacológico , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Nanopartículas/administração & dosagem , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Disponibilidade Biológica , Quitosana/administração & dosagem , Colo/metabolismo , Colo/microbiologia , Portadores de Fármacos/metabolismo , Liberação Controlada de Fármacos , Feminino , Fluoruracila/administração & dosagem , Fluoruracila/farmacocinética , Microbioma Gastrointestinal/fisiologia , Humanos , Absorção Intestinal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Modelos Animais , Tamanho da Partícula , Pectinas/química , Pectinas/metabolismo , Estudo de Prova de Conceito , Amido/química , Amido/metabolismo , Distribuição Tecidual
14.
ACS Appl Mater Interfaces ; 12(49): 54316-54327, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33236884

RESUMO

Helicobacter pylori infection is one of the leading causes of several gastroduodenal diseases, such as gastritis, peptic ulcer, and gastric cancer. In fact, H. pylori eradication provides a preventive effect against the incidence of gastric cancer. Amoxicillin is a commonly used antibiotic for H. pylori eradication. However, due to its easy degradation by gastric acid, it is necessary to administer it in a large dosage and to combine it with other antibiotics. This complexity and the strong side effects of H. pylori eradication therapy often lead to treatment failure. In this study, the chitosan/poly (acrylic acid) particles co-loaded with superparamagnetic iron oxide nanoparticles and amoxicillin (SPIO/AMO@PAA/CHI) are used as drug nano-carriers for H. pylori eradication therapy. In vitro and in vivo results show that the designed SPIO/AMO@PAA/CHI nanoparticles are biocompatible and could retain the biofilm inhibition and the bactericidal effect of amoxicillin against H. pylori. Moreover, the mucoadhesive property of chitosan allows SPIO/AMO@PAA/CHI nanoparticles to adhere to the gastric mucus layer and rapidly pass through the mucus layer after exposure to a magnetic field. When PAA is added, it competes with amoxicillin for chitosan, so that amoxicillin is quickly and continuously released between the mucus layer and the gastric epithelium and directly acts on H. pylori. Consequently, the use of this nano-carrier can extend the drug residence time in the stomach, reducing the drug dose and treatment period of H. pylori eradication therapy.


Assuntos
Amoxicilina/farmacologia , Antibacterianos/uso terapêutico , Infecções por Helicobacter/tratamento farmacológico , Helicobacter pylori/efeitos dos fármacos , Nanopartículas de Magnetita/química , Resinas Acrílicas/química , Amoxicilina/química , Amoxicilina/uso terapêutico , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Biofilmes/efeitos dos fármacos , Linhagem Celular , Quitosana/química , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Compostos Férricos/química , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/veterinária , Helicobacter pylori/isolamento & purificação , Helicobacter pylori/fisiologia , Humanos , Campos Magnéticos , Camundongos , Camundongos Endogâmicos BALB C , Fatores de Tempo
15.
Bioconjug Chem ; 31(12): 2697-2711, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33232129

RESUMO

Nonmesoporous Janus silica nanobowls (NBs) are unique in that they possess two different nonporous surfaces per particle for loading biological molecules and can thus be designed with multifunctional properties. Although silica NBs have been successfully employed for both targeted therapeutic and diagnostic applications, their ability to deliver DNA has not yet been fully explored. The purpose of this study was to design and develop an in vitro transfection agent that would exploit the distinct characteristics of the silica NB. First, we determined that the NB surface can be linked to either supercoiled cDNA plasmids or vectorless, linear cDNA constructs. Additionally, the linearized cDNA can be functionalized and chemisorbed on NBs to obtain a controlled release. Second, the successful transfection of cells studied was dependent on lipid coating of the NB (LNBs). Although both NBs and LNBs were capable of undergoing endocytosis, NBs appeared to remain within vesicles as shown by transmission electron microscopy (TEM). Third, fluorescence microscopy and Western blotting assays revealed that transfection of four different cell lines and acutely isolated rat sensory neurons with LNBs loaded with either linear or supercoiled cDNA constructs coding for the fluorescent protein, clover and tdTomato, resulted in protein expression. Fourth, two separate opioid receptor-ion channel signaling pathways were functionally reconstituted in HEK cells transfected with LNBs loaded with three separate cDNA constructs. Overall, these results lay the foundation for the use and further development of LNBs as in vitro transfection agents.


Assuntos
Portadores de Fármacos/química , Lipídeos/química , Nanoestruturas/química , Dióxido de Silício/química , Cápsulas , DNA Complementar/química , DNA Complementar/genética , Portadores de Fármacos/metabolismo , Liberação Controlada de Fármacos , Endocitose , Células HEK293 , Humanos , Plasmídeos/genética , Porosidade , Dióxido de Silício/metabolismo , Transfecção
16.
Drug Deliv ; 27(1): 1369-1377, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32998576

RESUMO

The aim of this work is to apply Solutol® HS15 and TPGS to prepare self-assembled micelles loading with ginsenoside Rh2 to increase the solubility of ginsenoside Rh2, hence, improving the antitumor efficacy. Ginsenoside Rh2-mixed micelles (Rh2-M) were prepared by thin film dispersion method. The optimal Rh2-M was characterized by particle size, morphology, and drug encapsulation efficiency. The enhancement of in vivo anti-tumor efficacy of Rh2-M was evaluated by nude mice bearing tumor model. The solubility of Rh2 in self-assembled micelles was increased approximately 150-folds compared to free Rh2. In vitro results demonstrated that the particle size of Rh2-M is 74.72 ± 2.63 nm(PDI = 0.147 ± 0.15), and the morphology of Rh2-M is spherical or spheroid, and the EE% and LE% are 95.27 ± 1.26% and 7.68 ± 1.34%, respectively. The results of in vitro cell uptake and in vivo imaging showed that Rh2-M could not only increase the cell uptake of drugs, but also transport drug to tumor sites, prolonging the retention time. In vitro cytotoxicity and in vivo antitumor results showed that the anti-tumor effect of Rh2 can be effectively improved by Rh2-M. Therefore, Solutol® HS15 and TPGS could be used to entrapping Rh2 into micelles, enhancing solubility and antitumor efficacy.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Ginsenosídeos/administração & dosagem , Micelas , Células A549 , Animais , Antineoplásicos/metabolismo , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Relação Dose-Resposta a Droga , Portadores de Fármacos/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Ginsenosídeos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
17.
AAPS PharmSciTech ; 21(4): 123, 2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-32337654

RESUMO

The objective of this work was to investigate the capacity of mogroside V (MOG-V), a food additive, as a novel carrier to improve the bioavailability and liver distribution of silybin (SLY). Solid dispersion particles (SDPs) of SLY/MOG-V were prepared utilizing the solvent evaporation method. The physicochemical characterizations of SDPs were evaluated by using dynamic light scattering (DLS), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD) measurements. DLS results demonstrated the formation of nanoparticles (206 nm) of SDPs in water. DSC and PXRD analysis revealed that SLY was in amorphous form or molecularly dispersed in SDPs. SDPs also exhibited a major increase in both dissolution rate and saturation solubility, as evidenced by a 1931-fold improvement (2201 µg/mL) in solubility compared with pure SLY (1.14 µg/mL). The pharmacokinetic study in rats showed that oral absorption of SLY/MOG-V SDPs was dramatically increased. The mean value of AUC until 12 h for SLY/MOG-V SDPs (27,481 ng·min/mL) was 24.5-fold higher than that of pure SLY (1122 ng·min/mL). In vivo tissue distribution experiment in mice confirmed that the major distribution tissue was changed from lungs to liver after SLY was loaded into MOG-V. In addition, even orally administrated to mice at a high dose (4.2 g/kg), MOG-V exhibited no undesirable effect on the plasma glucose concentrations. Thus, MOG-V may have the applicability to serve as an ideal excipient for solubilization or as a novel liver targeting carrier for the delivery of SLY.


Assuntos
Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Fígado/metabolismo , Silibina/metabolismo , Triterpenos/metabolismo , Administração Oral , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/metabolismo , Disponibilidade Biológica , Portadores de Fármacos/administração & dosagem , Avaliação Pré-Clínica de Medicamentos/métodos , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Ratos , Ratos Sprague-Dawley , Silibina/administração & dosagem , Edulcorantes/administração & dosagem , Edulcorantes/metabolismo , Triterpenos/administração & dosagem , Difração de Raios X/métodos
18.
Int J Pharm ; 580: 119213, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32165229

RESUMO

In-situ forming implants receive great attention for repairing serious bone injuries. The aim of the present study was to prepare novel chitosan in-situ forming implants (CIFI) loaded with bioactive glass nanoparticles and/or raloxifene hydrochloride (RLX). Incorporating raloxifene hydrochloride (RLX) as a selective estrogen receptor modulator was essential to make use of its anti-resorptive properties. The prepared formulae were tested for their in-vitro gelation time, drug release, injectability, rheological properties, erosion rate and morphological properties. Results revealed that the formulation composed of 1% (w/v) chitosan with 2% (w/v) NaHCO3 and 1% (w/v) bioactive glass nanoparticles (CIFI-BG) possessed the most sustained drug release profile which extended over four months with low burst release effect compared to the same formulation lacking bioactive glass nanoparticles (CIFI). Selected formulations were tested for their ability to enhance bone regeneration in induced puncture in rate tibia. Results declared that these formulations were able to enhance bone regeneration after 12 weeks in comparison to the untreated tibial punctures and that containing bioactive glass could be considered as novel approach for treatment of serious bone injuries which require long term treatment and internal mechanical bone support during healing.


Assuntos
Conservadores da Densidade Óssea/síntese química , Quitosana/síntese química , Composição de Medicamentos/métodos , Nanopartículas/química , Cloridrato de Raloxifeno/síntese química , Tíbia/efeitos dos fármacos , Animais , Conservadores da Densidade Óssea/administração & dosagem , Conservadores da Densidade Óssea/metabolismo , Regeneração Óssea/efeitos dos fármacos , Regeneração Óssea/fisiologia , Quitosana/administração & dosagem , Quitosana/metabolismo , Modelos Animais de Doenças , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Implantes de Medicamento/administração & dosagem , Implantes de Medicamento/síntese química , Implantes de Medicamento/metabolismo , Vidro/química , Masculino , Nanopartículas/administração & dosagem , Nanopartículas/metabolismo , Cloridrato de Raloxifeno/administração & dosagem , Cloridrato de Raloxifeno/metabolismo , Ratos , Ratos Sprague-Dawley , Tíbia/lesões , Tíbia/metabolismo , Resultado do Tratamento
19.
J Biomater Sci Polym Ed ; 31(9): 1127-1143, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32174218

RESUMO

In this study, biodegradable starch-based nano films were developed by turmeric extract curcuma longa (CC), octaphenyl-polyhedral oligomeric silsesquioxane (POSS), garlic extract with antibacterial properties (GC) and clay nanoparticles. Ag+-Mt-POSS-CC-CS, Mt-CC-CS and Mt-GC-CS nanofilms were synthesized as the final products. The antibacterial and surface-active corn starch-based nanofilms that were synthesized were analyzed by using the methods of X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and scanning electron microscopy (SEM). After this, the antibacterial resistances of the corn starch nanofilms against the bacteria Salmonella and Staphylococcus aureus (S. aureus) and their surface-active properties against the bacteria S. aureus, E. coli, Listeria monocytogenes and Salmonella were examined. The synthesized nano films were subjected to migration analyses, which are an important criterion for food packaging films, and their results were compared.According to the results of the analysis, while the starch nanofilms containing garlic showed antibacterial resistance against salmonella and S. aureus bacteria, the starch nano films containing curcumin and octaphenyl-POSS did not form an inhibition zone. Comparing surface activity properties, curcumin and octaphenyl-POSS-containing nano films showed surface activity, while the garlic-containing nanofilms did not show surface activity. This result shows that the mechanical properties of nanofilm containing garlic have given stronger results. Migration analysis results show that the synthesized nanofilm has found to suitable for use in the packaging of all food products such as milk products, fatty foods, liquid, acidic and dry foods according to the results of all migration analyses.


Assuntos
Antibacterianos/química , Curcumina/química , Portadores de Fármacos/química , Embalagem de Alimentos , Alho/química , Nanoestruturas/química , Amido/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Portadores de Fármacos/metabolismo , Portadores de Fármacos/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Amido/metabolismo , Amido/farmacologia
20.
Int J Biol Macromol ; 139: 1035-1045, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31412265

RESUMO

Colorectal cancer (CRC) is a prevalent and fatal cancer. Oral administration provided the potential for in situ treatment of the colorectal cancer. However, drugs couldn't be well-absorbed mainly due to its degradation in the gastric area and poor intestinal permeability. In this study, we synthesized deoxycholic acid and hydroxybutyl decorated chitosan nanoparticles (DAHBC NPs) as oral curcumin (CUR) delivery system for colorectal cancer treatment. DAHBC with lower critical solution temperature (LCST) below 37 °C (27-33 °C) was obtained. DAHBC NPs were correspondingly stable in simulated gastric conditions (pH 1.2, 37 °C), due to the offset of size change between pH-responsive expansion and thermo-responsive shrinkage. In simulated intestinal tract (pH 7.0-7.4, 37 °C), DAHBC NPs exhibited burst release of CUR owing to the onefold effect of thermo-responsive shrinkage. DAHBC27 NPs showed the minimum CUR leakage (~10%) in simulated gastric conditions, because a furthest temperature-sensitive shrinkage caused by the lowest LCST offset the expansion in acid environment. DAHBC27 NPs induced ~10-fold increased (P < 0.05) CUR absorption by paracellular transport pathway, compared to the free CUR. Thus, DAHBC NPs stabilized in the gastric environment may be a promising oral drugs delivery system for effective in situ colorectal cancer therapy.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Curcumina/administração & dosagem , Curcumina/química , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Mucosa Gástrica/metabolismo , Administração Oral , Adsorção , Células CACO-2 , Quitosana/análogos & derivados , Quitosana/química , Curcumina/uso terapêutico , Ácido Desoxicólico/química , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Hemólise/efeitos dos fármacos , Humanos , Absorção Intestinal , Teste de Materiais , Nanopartículas/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA