Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 618
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Behav Brain Res ; 466: 114974, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38554850

RESUMO

Polygala tenuifolia Wild is an ancient traditional Chinese medicine. Its main component, tenuifolin (TEN), has been proven to improve cognitive impairment caused by neurodegenerative diseases and ovariectomy. However, there was hardly any pharmacological research about TEN and its potential gender differences. Considering the reduction of TEN on learning and memory dysfunction in ovariectomized animals, therefore, we focused on the impact of TEN in different mice genders in the current study. Spontaneous alternation behavior (SAB), light-dark discrimination, and Morris water maze (MWM) tests were used to evaluate the mice's learning and memory abilities. The field excitatory postsynaptic potential (fEPSP) of the hippocampal CA1 region was recorded using an electrophysiological method, and the morphology of the dendritic structure was examined using Golgi staining. In the behavioral experiments, TEN improved the correct rate in female mice in the SAB test, the correct rate in the light-dark discrimination test, and the number of crossing platforms in the MWM test. Additionally, TEN reduced the latency of female mice rather than male mice in light-dark discrimination and MWM tests. Moreover, TEN could significantly increase the slope of fEPSP in hippocampal Schaffer-CA1 and enhance the total length and the number of intersections of dendrites in the hippocampal CA1 area in female mice but not in male mice. Collectively, the results of the current study showed that TEN improved learning and memory by regulating long-term potentiation (LTP) and dendritic structure of hippocampal CA1 area in female mice but not in males. These findings would help to explore the improvement mechanism of TEN on cognition and expand the knowledge of the potential therapeutic value of TEN in the treatment of cognitive impairment.


Assuntos
Região CA1 Hipocampal , Dendritos , Diterpenos do Tipo Caurano , Potenciação de Longa Duração , Animais , Feminino , Masculino , Região CA1 Hipocampal/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Camundongos , Dendritos/efeitos dos fármacos , Memória/efeitos dos fármacos , Fatores Sexuais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia
2.
Pain ; 165(8): 1824-1839, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38452223

RESUMO

ABSTRACT: Secreted microRNAs (miRNAs) have been detected in various body fluids including the cerebrospinal fluid, yet their direct role in regulating synaptic transmission remains uncertain. We found that intrathecal injection of low dose of let-7b (1 µg) induced short-term (<24 hours) mechanical allodynia and heat hyperalgesia, a response that is compromised in Tlr7-/- or Trpa1-/- mice. Ex vivo and in vivo calcium imaging in GCaMP6-report mice revealed increased calcium signal in spinal cord afferent terminals and doral root ganglion/dorsal root ganglia neurons following spinal perfusion and intraplantar injection of let-7b. Patch-clamp recordings also demonstrated enhanced excitatory synaptic transmission (miniature excitatory postsynaptic currents [EPSCs]) in spinal nociceptive neurons following let-7b perfusion or optogenetic activation of axonal terminals. The elevation in spinal calcium signaling and EPSCs was dependent on the presence of toll-like receptor-7 (TLR7) and transient receptor potential ion channel subtype A1 (TRPA1). In addition, endogenous let-7b is enriched in spinal cord synaptosome, and peripheral inflammation increased let-7b in doral root ganglion/dorsal root ganglia neurons, spinal cord tissue, and the cerebrospinal fluid. Notably, let-7b antagomir inhibited inflammatory pain and inflammation-induced synaptic plasticity (EPSC increase), suggesting an endogenous role of let-7b in regulating pain and synaptic transmission. Furthermore, intrathecal injection of let-7b, at a higher dose (10 µg), induced persistent mechanical allodynia for >2 weeks, which was abolished in Tlr7-/- mice. The high dose of let-7b also induced microgliosis in the spinal cord. Of interest, intrathecal minocycline only inhibited let-7b-induced mechanical allodynia in male but not female mice. Our findings indicate that the secreted microRNA let-7b has the capacity to provoke pain through both neuronal and glial signaling, thereby establishing miRNA as an emerging neuromodulator.


Assuntos
MicroRNAs , Microglia , Medula Espinal , Transmissão Sináptica , Animais , Masculino , Camundongos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Gânglios Espinais/metabolismo , Hiperalgesia/fisiopatologia , Hiperalgesia/metabolismo , Glicoproteínas de Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios/metabolismo , Nociceptores/metabolismo , Nociceptores/fisiologia , Transdução de Sinais/fisiologia , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia , Transmissão Sináptica/fisiologia , Receptor 7 Toll-Like/metabolismo , Receptor 7 Toll-Like/genética , Canal de Cátion TRPA1/metabolismo , Canal de Cátion TRPA1/genética
3.
Neuroscience ; 498: 125-143, 2022 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-35792195

RESUMO

In presymptomatic amyotrophic lateral sclerosis (ALS), spinal motoneurons (MNs) have reduced firing patterns and synaptic excitation levels. Preliminary data indicated that in the SOD1 G93A mouse model of ALS, monosynaptic excitatory postsynaptic potentials (EPSPs) evoked in spinal MN by Ia proprioceptive afferent stimulation could be facilitated by trans-spinal direct current stimulation (tsDCS). However, which element of the Ia afferent-MN circuit is affected by tsDCS, and whether tsDCS-induced EPSP facilitation is a general phenomenon or specific to the superoxide dismutase type-1 (SOD1) Glycine to Alanine substitution at position 93 (G93A) mutation, remain to be determined. In this study, we have applied 15-minute tsDCS to the lumbar segments of presymptomatic SOD1 and wildtype (WT) mice and explored its impact on MN passive membrane properties, EPSP amplitude, and Ia afferent activity. While anodal tsDCS induced short-lasting EPSP facilitation in both SOD1 and WT mice, Ia afferent activity and passive membrane properties were altered only in SOD1 mice. Interestingly, EPSP amplitudes of SOD1 mice remained facilitated for at least 1 h after current application, but no long-lasting effect was observed in WT mice. Moreover, anodal tsDCS failed to induce any long-lasting changes in MN passive membrane properties in both SOD1 and WT mice. Conversely, cathodal tsDCS decreased Ia afferent induced EPSP amplitudes only during current application in SOD1 MNs, and no significant effects on Ia afferents excitability were observed. Our findings indicate the high susceptibility of SOD1 MNs to tsDCS and highlight the potential of this neuromodulation technique for the treatment of ALS.


Assuntos
Terapia por Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores , Alanina , Esclerose Lateral Amiotrófica , Animais , Terapia por Estimulação Elétrica/métodos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Glicina , Camundongos , Neurônios Motores/fisiologia , Medula Espinal , Superóxido Dismutase , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
4.
Brain Res Bull ; 188: 1-10, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35850188

RESUMO

The anterior nucleus of the paraventricular thalamus (aPVT) integrates various synaptic inputs and conveys information to the downstream brain regions for arousal and pain regulation. Recent studies have indicated that the PVT plays a crucial role in the regulation of chronic pain, but the plasticity mechanism of neuronal excitability and synaptic inputs for aPVT neurons in neuropathic pain remains unclear. Here, we report that spinal nerve ligation (SNL) significantly increased the neuronal excitability and reset the excitatory/inhibitory (E/I) synaptic inputs ratio of aPVT neurons in mice. SNL significantly increased the membrane input resistance, firing frequency, and the half-width of action potential. Additionally, SNL enlarged the area of afterdepolarization and prolonged the rebound low-threshold spike following a hyperpolarized current injection. Further results indicate that an inwardly rectifying current density was decreased in SNL animals. SNL also decreased the amplitude, but not the frequency of spontaneous excitatory postsynaptic currents (sEPSCs), nor the amplitude or frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) of aPVT neurons. Moreover, SNL disrupted the E/I synaptic ratio, caused a decrease in weighted tau and half-width of averaged sIPSCs, but did not change these physiological properties of averaged sEPSCs. Finally, pharmacological activation of the GABAA receptor at aPVT could effective relieve SNL-induced mechanical allodynia in mice. These results reveal the plasticity of intrinsic neuronal excitability and E/I synaptic balance in the aPVT neurons after nerve injury and it may play an important role in the development of pain sensitization.


Assuntos
Neuralgia , Nervos Espinhais , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Camundongos , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Tálamo
5.
J Neurophysiol ; 126(5): 1622-1634, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34495785

RESUMO

Choline is an essential nutrient under evaluation as a cognitive enhancing treatment for fetal alcohol spectrum disorders (FASD) in clinical trials. As a result, there is increased pressure to identify therapeutic mechanism(s) of action. Choline is not only a precursor for several essential cell membrane components and signaling molecules but also has the potential to directly affect synaptic mechanisms that are believed important for cognitive processes. In the current work, we study how the direct application of choline can affect synaptic transmission in the dentate gyrus (DG) of hippocampal slices obtained from adolescent (postnatal days 21-28) Sprague-Dawley rats (Rattus norvegicus). The acute administration of choline chloride (2 mM) reliably induced a long-term depression (LTD) of field excitatory postsynaptic potentials (fEPSPs) in the DG in vitro. The depression required the involvement of M1 receptors, and the magnitude of the effect was similar in slices obtained from male and female animals. To further study the impact of choline in an animal model of FASD, we examined offspring from dams fed an ethanol-containing diet (35.5% ethanol-derived calories) throughout gestation. In slices from the adolescent animals that experienced prenatal ethanol exposure (PNEE), we found that the choline induced an LTD that uniquely involved the activation of N-methyl-d-aspartate (NMDA) and M1 receptors. This study provides a novel insight into how choline can modulate hippocampal transmission at the level of the synapse and that it can have unique effects following PNEE.NEW & NOTEWORTHY Choline supplementation is a nutraceutical therapy with significant potential for a variety of developmental disorders; however, the mechanisms involved in its therapeutic effects remain poorly understood. Our research shows that choline directly impacts synaptic communication in the brain, inducing a long-term depression of synaptic efficacy in brain slices. The depression is equivalent in male and female animals, involves M1 receptors in control animals, but uniquely involves NMDA receptors in a model of FASD.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Colina/farmacologia , Giro Denteado/efeitos dos fármacos , Etanol/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Transtornos do Espectro Alcoólico Fetal/fisiopatologia , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Nootrópicos/farmacologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Receptor Muscarínico M1/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Feminino , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Ratos Sprague-Dawley
6.
J Physiol ; 599(21): 4883-4900, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34510418

RESUMO

Paraventricular thalamus (PVT) is a midline thalamic area that receives dense GABA projections from zona incerta (ZI) for the regulation of feeding behaviours. Activation of central serotonin (5-HT) signalling is known to inhibit food intake. Although previous studies have reported both 5-HT fibres and receptors in the PVT, it remains unknown how 5-HT regulates PVT neurons and whether PVT 5-HT signalling is involved in the control of food intake. Using slice patch-clamp recordings in combination with optogenetics, we found that 5-HT not only directly excited PVT neurons by activating 5-HT7 receptors to modulate hyperpolarization-activated cyclic nucleotide-gated (HCN) channels but also disinhibited these neurons by acting on presynaptic 5-HT1A receptors to reduce GABA inhibition. Specifically, 5-HT depressed photostimulation-evoked inhibitory postsynaptic currents (eIPSCs) in PVT neurons innervated by channelrhodopsin-2-positive GABA axons from ZI. Using paired-pulse photostimulation, we found 5-HT increased paired-pulse ratios of eIPSCs, suggesting 5-HT decreases ZI-PVT GABA release. Furthermore, we found that exposure to a high-fat-high-sucrose diet for 2 weeks impaired both 5-HT inhibition of ZI-PVT GABA transmission and 5-HT excitation of PVT neurons. Using retrograde tracer in combination with immunocytochemistry and slice electrophysiology, we found that PVT-projecting dorsal raphe neurons expressed 5-HT and were inhibited by food deprivation. Together, our study reveals the mechanism by which 5-HT activates PVT neurons through both direct excitation and indirect disinhibition from the ZI. The downregulation in 5-HT excitation and disinhibition of PVT neurons may contribute to the development of overeating and obesity after chronic high-fat diet. KEY POINTS: Serotonin (5-HT) depolarizes and excites paraventricular thalamus (PVT) neurons. 5-HT7 receptors are responsible for 5-HT excitation of PVT neurons and the coupling of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels to 5-HT receptors in part mediates the excitatory effect of 5-HT. 5-HT depresses the frequency of spontaneous inhibitory but not excitatory postsynaptic currents in PVT neurons. 5-HT1A receptors contribute to the depressive effect of 5-HT on inhibitory transmissions. 5-HT inhibits GABA release from zona incerta (ZI) GABA terminals in PVT. Chronic high-fat diet not only impairs 5-HT inhibition of the ZI-PVT GABA transmission but also downregulates 5-HT excitation of PVT neurons. PVT-projecting dorsal raphe neurons express 5-HT and are inhibited by food deprivation.


Assuntos
Serotonina , Zona Incerta , Potenciais Pós-Sinápticos Excitadores , Neurônios , Tálamo
7.
Nat Commun ; 12(1): 5080, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34426574

RESUMO

Bed nucleus of the stria terminalis (BNST) neurons that synthesize corticotropin-releasing factor (CRF) drive binge alcohol drinking and anxiety. Here, we found that female C57BL/6J mice binge drink more than males and have greater basal BNSTCRF neuron excitability and synaptic excitation. We identified a dense VGLUT2 + synaptic input from the paraventricular thalamus (PVT) that releases glutamate directly onto BNSTCRF neurons but also engages a large BNST interneuron population to ultimately inhibit BNSTCRF neurons, and this polysynaptic PVTVGLUT2-BNSTCRF circuit is more robust in females than males. Chemogenetic inhibition of the PVTBNST projection promoted binge alcohol drinking only in female mice, while activation reduced avoidance behavior in both sexes. Lastly, repeated binge drinking produced a female-like phenotype in the male PVT-BNSTCRF excitatory synapse without altering the function of PVTBNST neurons per se. Our data describe a complex, feedforward inhibitory PVTVGLUT2-BNSTCRF circuit that is sex-dependent in its function, behavioral roles, and alcohol-induced plasticity.


Assuntos
Consumo de Bebidas Alcoólicas/patologia , Aprendizagem da Esquiva , Hormônio Liberador da Corticotropina/metabolismo , Sistema Límbico/patologia , Neurônios/patologia , Sinapses/patologia , Tálamo/patologia , Consumo de Bebidas Alcoólicas/fisiopatologia , Animais , Ansiedade/fisiopatologia , Comportamento Animal , Potenciais Pós-Sinápticos Excitadores , Feminino , Ácido Glutâmico/metabolismo , Potenciais Pós-Sinápticos Inibidores , Integrases/metabolismo , Sistema Límbico/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Fenótipo , Núcleos Septais/patologia , Núcleos Septais/fisiopatologia , Caracteres Sexuais , Tálamo/fisiopatologia
8.
Metab Brain Dis ; 36(8): 2299-2311, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34463942

RESUMO

Ginkgo biloba extract 761 (EGb761), a standardized extract from the Ginkgo biloba leaf, is purported to inhibit NMDA receptor-mediated neuronal excitotoxicity and protect neurons form ischemic injury. However, the specific signal pathway involved in the effects of EGb761 on synaptic plasticity is still in dispute. In this article, effects of EGb761 and its monomer component ginkgolide A (GA), ginkgolide B (GB), ginkgolide C (GC) and quercetin on rat hippocampal synaptic plasticity were studied. The evoked Excitatory postsynaptic currents (EPSCs) and miniature EPSCs were recorded on hippocampal slices from SD rats (14-21 days of age) by whole-cell patch-clamp recording and long-term potentiation (LTP) was induced by theta-burst stimulation. Acutely applied EGb761 inhibited the LTP, but bilaterally affect the evoked EPSCs. The evoked EPSCs were increased by incubation of lower concentration of EGb761, then the evoked EPSCs were decreased by incubation of higher concentration of EGb761. EGb761 monomer component GA, GB and GC could also inhibit the TBS-induced LTP and EPSC amplitude but not paired-pulse ratio (PPR). But quercetin, another monomer component of EGb761, led to increase in EPSC amplitude and decrease in PPR. Simultaneously, EGb761 and its monomer component ginkgolides inhibited the post-ischemic LTP (i-LTP) by inhibiting the EPSCs and the AMPA receptor subunit GluA1 expression on postsynaptic membrane. The results indicated that high concentration of EGb761 might inhibit LTP and i-LTP through inhibition effects of GA, GB and GC on AMPA receptors.


Assuntos
Ginkgo biloba , Potenciação de Longa Duração , Animais , Potenciais Pós-Sinápticos Excitadores , Hipocampo/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Ratos , Ratos Sprague-Dawley
9.
Neurosci Lett ; 761: 136091, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34197904

RESUMO

Cortical neurons undergo continuous remodelling throughout development and into adulthood, associated with long-term changes in the synaptic transmission of thalamocortical pathways, i.e., long-term potentiation (LTP); such plasticity is input-specific, reflected in the frequency-specificity of the auditory system. It is well established that thalamocortical LTP is dependent on the activation of N-methyl-d-aspartate (NMDA) receptors. In this study, the roles of NMDA receptor subunits GluN2A and GluN2B in LTP induction were examined in thalamocortical pathways of the auditory system using subunit-selective pharmacological inhibition and in vivo tetanic stimulation of the auditory thalamus, while recording neural response in the primary auditory cortex. Long-term enhancement of thalamocortical field excitatory postsynaptic potentials (i.e., thalamocortical LTP) were induced by high frequency tetanic stimulation of the ventral division of the medial geniculate body. Such enhancement in thalamocortical fEPSPs was decreased when a GluN2A blocker (NVP-M077) was applied to the recording site in the primary auditory cortex and was increased when a GluN2B blocker (Ro25-6981) was applied. Our data suggest that the induction of thalamocortical LTP is dependent on the differential expression of the GluN2A and GluN2B subunits of NMDA receptors in thalamocortical circuits.


Assuntos
Potenciação de Longa Duração , Receptores de N-Metil-D-Aspartato/metabolismo , Tálamo/metabolismo , Animais , Córtex Auditivo/metabolismo , Córtex Auditivo/fisiologia , Potenciais Pós-Sinápticos Excitadores , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de N-Metil-D-Aspartato/genética , Tálamo/fisiologia
10.
Exp Neurol ; 342: 113736, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33945790

RESUMO

Severe neonatal intraventricular hemorrhage (IVH) patients incur long-term neurologic deficits such as cognitive disabilities. Recently, the intraventricular transplantation of allogeneic human umbilical cord blood-derived mesenchymal stem cells (MSCs) has drawn attention as a therapeutic potential to treat severe IVH. However, its pathological synaptic mechanism is still elusive. We here demonstrated that the integration of the somatosensory input was significantly distorted by suppressing feed-forward inhibition (FFI) at the thalamocortical (TC) inputs in the barrel cortices of neonatal rats with IVH by using BOLD-fMRI signal and brain slice patch-clamp technique. This is induced by the suppression of Hebbian plasticity via an increase in tumor necrosis factor-α expression during the critical period, which can be effectively reversed by the transplantation of MSCs. Furthermore, we showed that MSC transplantation successfully rescued IVH-induced learning deficits in the sensory-guided decision-making in correlation with TC FFI in the layer 4 barrel cortex.


Assuntos
Córtex Cerebral/fisiologia , Hemorragia Cerebral Intraventricular/terapia , Disfunção Cognitiva/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Plasticidade Neuronal/fisiologia , Tálamo/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Córtex Cerebral/diagnóstico por imagem , Hemorragia Cerebral Intraventricular/diagnóstico por imagem , Hemorragia Cerebral Intraventricular/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/fisiopatologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Humanos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Imageamento por Ressonância Magnética/métodos , Masculino , Ratos , Ratos Sprague-Dawley , Tálamo/diagnóstico por imagem
11.
Sci Rep ; 11(1): 6345, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737568

RESUMO

The medial (DMS) and lateral (DLS) dorsal striatum differentially drive goal-directed and habitual/compulsive behaviors, respectively, and are implicated in a variety of neuropsychiatric disorders. These subregions receive distinct inputs from cortical and thalamic regions which uniquely determine dorsal striatal activity and function. Adenosine A1 receptors (A1Rs) are prolific within striatum and regulate excitatory glutamate transmission. Thus, A1Rs may have regionally-specific effects on neuroadaptive processes which may ultimately influence striatally-mediated behaviors. The occurrence of A1R-driven plasticity at specific excitatory inputs to dorsal striatum is currently unknown. To better understand how A1Rs may influence these behaviors, we first sought to understand how A1Rs modulate these distinct inputs. We evaluated A1R-mediated inhibition of cortico- and thalamostriatal transmission using in vitro whole-cell, patch clamp slice electrophysiology recordings in medium spiny neurons from both the DLS and DMS of C57BL/6J mice in conjunction with optogenetic approaches. In addition, conditional A1R KO mice lacking A1Rs at specific striatal inputs to DMS and DLS were generated to directly determine the role of these presynaptic A1Rs on the measured electrophysiological responses. Activation of presynaptic A1Rs produced significant and prolonged synaptic depression (A1R-SD) of excitatory transmission in the both the DLS and DMS of male and female animals. Our findings indicate that A1R-SD at corticostriatal and thalamostriatal inputs to DLS can be additive and that A1R-SD in DMS occurs primarily at thalamostriatal inputs. These findings advance the field's understanding of the functional roles of A1Rs in striatum and implicate their potential contribution to neuropsychiatric diseases.


Assuntos
Comportamento Compulsivo/genética , Corpo Estriado/fisiologia , Depressão Sináptica de Longo Prazo/genética , Receptor A1 de Adenosina/genética , Adenosina/farmacologia , Animais , Comportamento Animal/fisiologia , Potenciais Pós-Sinápticos Excitadores , Feminino , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Camundongos , Camundongos Knockout , Neurônios/patologia , Neurônios/fisiologia , Técnicas de Patch-Clamp , Sinapses/fisiologia , Transmissão Sináptica , Tálamo/efeitos dos fármacos , Tálamo/fisiologia
12.
J Neurosci ; 40(44): 8543-8555, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33020214

RESUMO

A rare mutation affecting the Forkhead-box protein P2 (FOXP2) transcription factor causes a severe monogenic speech and language disorder. Mice carrying an identical point mutation to that observed in affected patients (Foxp2+/R552H mice) display motor deficits and impaired synaptic plasticity in the striatum. However, the consequences of the mutation on neuronal function, in particular in the cerebral cortex, remain little studied. Foxp2 is expressed in a subset of Layer VI cortical neurons. Here, we used Ntsr1-EGFP mice to identify Foxp2+ neurons in the mouse auditory cortex ex vivo. We studied the functional impact of the R552H mutation on the morphologic and functional properties of Layer VI cortical neurons from Ntsr1-EGFP; Foxp2+/R552H male and female mice. The complexity of apical, but not basal dendrites was significantly lower in Foxp2+/R552H cortico-thalamic neurons than in control Foxp2+/+ neurons. Excitatory synaptic inputs, but not inhibitory synaptic inputs, were decreased in Foxp2+/R552H mice. In response, homeostatic mechanisms would be expected to increase neuronal gain, i.e., the conversion of a synaptic input into a firing output. However, the intrinsic excitability of Foxp2+ cortical neurons was lower in Foxp2+/R552H neurons. A-type and delayed-rectifier (DR) potassium currents, two putative transcriptional targets of Foxp2, were not affected by the mutation. In contrast, GABAB/GIRK signaling, another presumed target of Foxp2, was increased in mutant neurons. Blocking GIRK channels strongly attenuated the difference in intrinsic excitability between wild-type (WT) and Foxp2+/R552H neurons. Our results reveal a novel role for Foxp2 in the control of neuronal input/output homeostasis.SIGNIFICANCE STATEMENT Mutations of the Forkhead-box protein 2 (FOXP2) gene in humans are the first known monogenic cause of a speech and language disorder. The Foxp2 mutation may directly affect neuronal development and function in neocortex, where Foxp2 is expressed. Brain imaging studies in patients with a heterozygous mutation in FOXP2 showed abnormalities in cortical language-related regions relative to the unaffected members of the same family. However, the role of Foxp2 in neocortical neurons is poorly understood. Using mice with a Foxp2 mutation equivalent to that found in patients, we studied functional modifications in auditory cortex neurons ex vivo We found that mutant neurons exhibit alterations of synaptic input and GABAB/GIRK signaling, reflecting a loss of neuronal homeostasis.


Assuntos
Córtex Cerebral/fisiologia , Fatores de Transcrição Forkhead/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/fisiologia , Neurônios/fisiologia , Receptores de GABA-B/fisiologia , Proteínas Repressoras/genética , Tálamo/fisiologia , Animais , Córtex Cerebral/citologia , Canais de Potássio de Retificação Tardia/fisiologia , Espinhas Dendríticas/fisiologia , Fenômenos Eletrofisiológicos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/antagonistas & inibidores , Antagonistas GABAérgicos/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Vias Neurais/citologia , Vias Neurais/fisiologia , Sinapses/fisiologia , Tálamo/citologia
13.
Mol Pain ; 16: 1744806920943334, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32686583

RESUMO

The neurohypophysial hormone oxytocin (OXT) is synthesized in the hypothalamic paraventricular and supraoptic nuclei. Recently, some studies have considered OXT to be important in sensory modulation and that the OXT protein is upregulated by acute and chronic nociception. However, the mechanism by which OXT is upregulated in neurons is unknown. In this study, we examined the resting membrane potentials and excitatory postsynaptic currents in OXT-ergic neurons in the paraventricular nucleus in adjuvant arthritis rat model, a model of chronic inflammation, using whole-cell patch-clamping. Transgenic rats expressing OXT and monomeric red fluorescent protein 1 (mRFP1) fusion protein to visualize the OXT-ergic neurons were used, and the OXT-mRFP1 transgenic rat model of adjuvant arthritis was developed by injection of heat-killed Mycobacterium butyricum. Furthermore, the feedback system of synthesized OXT was also examined using the OXT receptor antagonist L-368,899. We found that the resting membrane potentials and frequency of miniature excitatory postsynaptic currents and spontaneous excitatory postsynaptic currents in OXT-monomeric red fluorescent protein 1 neurons in the paraventricular nucleus were significantly increased in adjuvant arthritis rats. Furthermore, L-368,899 dose-dependently increased the frequency of miniature excitatory postsynaptic currents and spontaneous excitatory postsynaptic currents in OXT-ergic neurons. Following bath application of the GABAA receptor antagonist picrotoxin and the cannabinoid receptor 1 antagonist AM 251, L-368,899 still increased the frequency of miniature excitatory postsynaptic currents. However, following bath application of the nitric oxide synthase inhibitor Nω-Nitro-L-arginine methyl ester hydrochloride, L-368,899 did not alter the miniature excitatory postsynaptic current frequency. Thus, it is suggested that OXT-ergic neuron activity is upregulated via an increase in glutamate release, and that the upregulated OXT neurons have a feedback system with released endogenous OXT. It is possible that nitric oxide, but not GABA, may contribute to the feedback system of OXT neurons in chronic inflammation.


Assuntos
Artrite Experimental/metabolismo , Retroalimentação , Glutamatos/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Ocitocina/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica , Animais , Canfanos/farmacologia , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Proteínas Luminescentes/metabolismo , Masculino , Modelos Biológicos , NG-Nitroarginina Metil Éster/farmacologia , Neurônios/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Técnicas de Patch-Clamp , Picrotoxina/farmacologia , Piperazinas/farmacologia , Piperidinas/farmacologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Pirazóis/farmacologia , Ratos Transgênicos , Ratos Wistar , Receptores de Ocitocina/antagonistas & inibidores , Receptores de Ocitocina/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Proteína Vermelha Fluorescente
14.
PLoS One ; 15(7): e0236760, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32726372

RESUMO

The neural mechanisms underlying forward suppression in the auditory cortex remain a puzzle. Little attention is paid to thalamic contribution despite the important fact that the thalamus gates upstreaming information to the auditory cortex. This study compared the time courses of forward suppression in the auditory thalamus, thalamocortical inputs and cortex using the two-tone stimulus paradigm. The preceding and succeeding tones were 20-ms long. Their frequency and amplitude were set at the characteristic frequency and 20 dB above the minimum threshold of given neurons, respectively. In the ventral division of the medial geniculate body of the thalamus, we found that the duration of complete forward suppression was about 75 ms and the duration of partial suppression was from 75 ms to about 300 ms after the onset of the preceding tone. We also found that during the partial suppression period, the responses to the succeeding tone were further suppressed in the primary auditory cortex. The forward suppression of thalamocortical field excitatory postsynaptic potentials was between those of thalamic and cortical neurons but much closer to that of thalamic ones. Our results indicate that early suppression in the cortex could result from complete suppression in the thalamus whereas later suppression may involve thalamocortical and intracortical circuitry. This suggests that the complete suppression that occurs in the thalamus provides the cortex with a "silence" window that could potentially benefit cortical processing and/or perception of the information carried by the preceding sound.


Assuntos
Córtex Auditivo/fisiologia , Potenciais Pós-Sinápticos Inibidores , Tálamo/fisiologia , Animais , Córtex Auditivo/citologia , Potenciais Pós-Sinápticos Excitadores , Feminino , Corpos Geniculados/citologia , Corpos Geniculados/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Tálamo/citologia
15.
J Integr Neurosci ; 19(2): 217-227, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32706186

RESUMO

Centella asiatica is notable for its wide range of biological activities beneficial to human health, particularly its cognitive enhancement and neuroprotective effects. The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors are ionotropic glutamate receptors mediating fast excitatory neurotransmission essential in long-term potentiation widely thought to be the cellular mechanism of learning and memory. The method of whole-cell patch-clamp was used to study the effect of the acute application of Centella asiatica extract on the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated spontaneous excitatory postsynaptic currents in the entorhinal cortex of rat brain slices. The respective low dose of test compounds significantly increased the amplitude of spontaneous excitatory postsynaptic currents while having no significant effects on the frequency. The findings suggested that Centella asiatica extract increased the response of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors at the postsynaptic level, revealing the potential role of Centella asiatica in modulating the glutamatergic responses in the entorhinal cortex of rat brain slices to produce cognitive enhancement effects.


Assuntos
Córtex Entorrinal/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Nootrópicos/farmacologia , Receptores de AMPA/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Centella , Nootrópicos/administração & dosagem , Técnicas de Patch-Clamp , Extratos Vegetais , Ratos , Triterpenos/administração & dosagem
16.
Cereb Cortex ; 30(7): 4064-4075, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32163129

RESUMO

The acquisition of fear memories involves plasticity of the thalamic and cortical pathways to the lateral amygdala (LA). In turn, the maintenance of synaptic plasticity requires the interplay between input-specific synaptic tags and the allocation of plasticity-related proteins. Based on this interplay, weakly activated synapses can express long-lasting forms of synaptic plasticity by cooperating with strongly activated synapses. Increasing the number of activated synapses can shift cooperation to competition. Synaptic cooperation and competition can determine whether two events, separated in time, are associated or whether a particular event is selected for storage. The rules that determine whether synapses cooperate or compete are unknown. We found that synaptic cooperation and competition, in the LA, are determined by the temporal sequence of cortical and thalamic stimulation and that the strength of the synaptic tag is modulated by the endocannabinoid signaling. This modulation is particularly effective in thalamic synapses, supporting a critical role of endocannabinoids in restricting thalamic plasticity. Also, we found that the availability of synaptic proteins is activity-dependent, shifting competition to cooperation. Our data present the first evidence that presynaptic modulation of synaptic activation, by the cannabinoid signaling, functions as a temporal gating mechanism limiting synaptic cooperation and competition.


Assuntos
Tonsila do Cerebelo/metabolismo , Córtex Auditivo/metabolismo , Endocanabinoides/metabolismo , Potenciação de Longa Duração/fisiologia , Células Piramidais/metabolismo , Receptores de Canabinoides/metabolismo , Tálamo/metabolismo , Animais , Potenciais Pós-Sinápticos Excitadores , Medo , Memória/fisiologia , Plasticidade Neuronal , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
17.
Epilepsy Behav ; 104(Pt A): 106897, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028126

RESUMO

INTRODUCTION: Epilepsy is a most common neurological disorder that has negative effects on cognition. In the present study, we investigated the protective effect of Nigella sativa (NS) and probiotics on seizure activity, cognitive performance, and synaptic plasticity in pentylenetetrazole (PTZ) kindling model of epilepsy. METHODS: One hundred and forty-four rats were divided into 2 experiments: In experiment 1, animals were grouped and treated as follows: 1) control (PTZ + saline), 2) NS treatment, 3) probiotic treatment, and 4) NS and probiotic treatment. Six weeks after the treatment, PTZ kindling were performed, and 48 h after kindling, spatial learning and memory were measured in Morris water maze (MWM) test. Animals in experiment 2 received the same treatment as experiment 1: in control nonkindled groups, control animals were treated with probiotics, NS, and probiotics + NS. Six weeks after the treatment, PTZ kindling were performed, and 48 h after kindling, field potentials were recorded from the dentate gyrus area of the hippocampus; synaptic transmission and long-term potentiation (LTP) was measured. RESULTS: The results showed that the probiotic and NS supplementation significantly reduces kindling development so that animals in PTZ + NS + probiotic did not show full kindling. In MWM test, the escape latency and traveled path in the kindled group were significantly higher than the control group. In PTZ + NS + probiotics, these parameters were significantly lower than those in the PTZ + saline group. Adding probiotic and NS supplementation significantly reduced population spike (PS)-LTP as compared with the PTZ + saline group. CONCLUSION: Probiotic and NS supplementation have some protection against seizure, seizure-induced cognitive impairment, and hippocampal LTP in kindled rats.


Assuntos
Nigella sativa , Pentilenotetrazol/toxicidade , Extratos Vegetais/administração & dosagem , Probióticos/administração & dosagem , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Animais , Cognição/efeitos dos fármacos , Cognição/fisiologia , Suplementos Nutricionais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Excitação Neurológica/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Memória/fisiologia , Extratos Vegetais/isolamento & purificação , Ratos , Ratos Wistar , Convulsões/psicologia
18.
Cereb Cortex ; 30(6): 3528-3542, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32026946

RESUMO

Acetylcholine (ACh) is known to regulate cortical activity during different behavioral states, for example, wakefulness and attention. Here we show a differential expression of muscarinic ACh receptors (mAChRs) and nicotinic ACh receptors (nAChRs) in different layer 6A (L6A) pyramidal cell (PC) types of somatosensory cortex. At low concentrations, ACh induced a persistent hyperpolarization in corticocortical (CC) but a depolarization in corticothalamic (CT) L6A PCs via M 4 and M1 mAChRs, respectively. At ~ 1 mM, ACh depolarized exclusively CT PCs via α4ß2 subunit-containing nAChRs without affecting CC PCs. Miniature EPSC frequency in CC PCs was decreased by ACh but increased in CT PCs. In synaptic connections with a presynaptic CC PC, glutamate release was suppressed via M4 mAChR activation but enhanced by nAChRs via α4ß2 nAChRs when the presynaptic neuron was a CT PC. Thus, in L6A, the interaction of mAChRs and nAChRs results in an altered excitability and synaptic release, effectively strengthening CT output while weakening CC synaptic signaling.


Assuntos
Acetilcolina/metabolismo , Neocórtex/metabolismo , Células Piramidais/metabolismo , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/metabolismo , Transmissão Sináptica/fisiologia , Acetilcolina/farmacologia , Animais , Agonistas Colinérgicos/farmacologia , Potenciais Pós-Sinápticos Excitadores , Ácido Glutâmico/metabolismo , Neocórtex/efeitos dos fármacos , Vias Neurais , Técnicas de Patch-Clamp , Células Piramidais/efeitos dos fármacos , Ratos , Receptor Muscarínico M1/efeitos dos fármacos , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M4/efeitos dos fármacos , Receptor Muscarínico M4/metabolismo , Receptores Muscarínicos/efeitos dos fármacos , Receptores Nicotínicos/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Tálamo
19.
Brain ; 143(1): 161-174, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31800012

RESUMO

Inborn errors of CACNA1A-encoded P/Q-type calcium channels impair synaptic transmission, producing early and lifelong neurological deficits, including childhood absence epilepsy, ataxia and dystonia. Whether these impairments owe their pathologies to defective channel function during the critical period for thalamic network stabilization in immature brain remains unclear. Here we show that mice with tamoxifen-induced adult-onset ablation of P/Q channel alpha subunit (iKOp/q) display identical patterns of dysfunction, replicating the inborn loss-of-function phenotypes and, therefore demonstrate that these neurological defects do not rely upon developmental abnormality. Unexpectedly, unlike the inborn model, the adult-onset pattern of excitability changes believed to be pathogenic within the thalamic network is non-canonical. Specifically, adult ablation of P/Q channels does not promote Cacna1g-mediated burst firing or T-type calcium current (IT) in the thalamocortical relay neurons; however, burst firing in thalamocortical relay neurons remains essential as iKOp/q mice generated on a Cacna1g deleted background show substantially diminished seizure generation. Moreover, in thalamic reticular nucleus neurons, burst firing is impaired accompanied by attenuated IT. Interestingly, inborn deletion of thalamic reticular nucleus-enriched, human childhood absence epilepsy-linked gene Cacna1h in iKOp/q mice reduces thalamic reticular nucleus burst firing and promotes rather than reduces seizure, indicating an epileptogenic role for loss-of-function Cacna1h gene variants reported in human childhood absence epilepsy cases. Together, our results demonstrate that P/Q channels remain critical for maintaining normal thalamocortical oscillations and motor control in the adult brain, and suggest that the developmental plasticity of membrane currents regulating pathological rhythmicity is both degenerate and age-dependent.


Assuntos
Ataxia/genética , Canais de Cálcio Tipo N/genética , Córtex Cerebral/metabolismo , Epilepsia Tipo Ausência/genética , Neurônios/metabolismo , Tálamo/metabolismo , Potenciais de Ação , Fatores Etários , Animais , Ataxia/metabolismo , Ataxia/fisiopatologia , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/metabolismo , Córtex Cerebral/fisiopatologia , Modelos Animais de Doenças , Epilepsia Tipo Ausência/metabolismo , Epilepsia Tipo Ausência/fisiopatologia , Potenciais Pós-Sinápticos Excitadores/genética , Potenciais Pós-Sinápticos Inibidores/genética , Potenciais da Membrana/genética , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Núcleos Talâmicos/citologia , Tálamo/fisiopatologia
20.
Neuroscience ; 426: 141-153, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31863796

RESUMO

Increasing evidence suggests that long-term opioids and pain induce similar adaptive changes in the brain's reward circuits, however, how pain alters the addictive properties of opioids remains poorly understood. In this study using a rat model of morphine self-administration (MSA), we found that short-term pain, induced by an intraplantar injection of complete Freund's adjuvant (CFA), acutely decreased voluntary morphine intake, but not food intake, only at a morphine dose that did not affect pain itself. Pre-treatment with indomethacin, a non-opioid inhibitor of pain, before the pain induction blocked the decrease in morphine intake. In rats with steady MSA, the protein level of GluA1 subunits of glutamate AMPA receptors (AMPARs) was significantly increased, but that of GluA2 was decreased, resulting in an increased GluA1/GluA2 ratio in central nucleus of the amygdala (CeA). In contrast, pain decreased the GluA1/GluA2 ratio in the CeA of rats with MSA. Microinjection of NASPM, a selective inhibitor of homomeric GluA1-AMPARs, into CeA inhibited morphine intake. Furthermore, viral overexpression of GluA1 protein in CeA maintained morphine intake at a higher level than controls and reversed the pain-induced reduction in morphine intake. These findings suggest that CeA GluA1 promotes opioid use and its upregulation is sufficient to increase opioid consumption, which counteracts the acute inhibitory effect of pain on opioid intake. These results demonstrate that the CeA GluA1 is a shared target of opioid and pain in regulation of opioid use, which may aid in future development of therapeutic applications in opioid abuse.


Assuntos
Analgésicos Opioides/farmacologia , Núcleo Central da Amígdala/efeitos dos fármacos , Dor Crônica/tratamento farmacológico , Morfina/farmacologia , Receptores de AMPA/efeitos dos fármacos , Animais , Núcleo Central da Amígdala/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Masculino , Ratos Wistar , Receptores de AMPA/metabolismo , Receptores de Glutamato/metabolismo , Recompensa , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA