Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Gen Virol ; 102(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33709906

RESUMO

Single aphids can simultaneously or sequentially acquire and transmit multiple potato virus Y (PVY) strains. Multiple PVY strains are often found in the same field and occasionally within the same plant, but little is known about how PVY strains interact in plants or in aphid stylets. Immuno-staining and confocal microscopy were used to examine the spatial and temporal dynamics of PVY strain mixtures (PVYO and PVYNTN or PVYO and PVYN) in epidermal leaf cells of 'Samsun NN' tobacco and 'Goldrush' potato. Virus binding and localization was also examined in aphid stylets following acquisition. Both strains systemically infected tobacco and co-localized in cells of all leaves examined; however, the relative amounts of each virus changed over time. Early in the tobacco infection, when mosaic symptoms were observed, PVYO dominated the infection although PVYNTN was detected in some cells. As the infection progressed and vein necrosis developed, PVYNTN was prevalent. Co-localization of PVYO and PVYN was also observed in epidermal cells of potato leaves with most cells infected with both viruses. Furthermore, two strains could be detected binding to the distal end of aphid stylets following virus acquisition from a plant infected with a strain mixture. These data are in contrast with the traditional belief of spatial separation of two closely related potyviruses and suggest apparent non-antagonistic interaction between PVY strains that could help explain the multitude of emerging recombinant PVY strains discovered in potato in recent years.


Assuntos
Afídeos/virologia , Nicotiana/virologia , Potyvirus/patogenicidade , Solanum tuberosum/virologia , Animais , Transmissão de Doença Infecciosa , Células Epidérmicas/virologia , Doenças das Plantas , Folhas de Planta/virologia , Potyvirus/classificação , Potyvirus/genética
2.
Sci Rep ; 11(1): 2242, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500488

RESUMO

Potato virus Y (PVY) and zebra chip (ZC) disease are major threats to solanaceous crop production in North America. PVY can be spread by aphid vectors and through vegetative propagation in potatoes. ZC is associated with "Candidatus Liberibacter solanacearum" (Lso), which is transmitted by the tomato/potato psyllid, Bactericera cockerelli Sulc (Hemiptera: Triozidae). As these two pathosystems may co-occur, we studied whether the presence of one virus strain, PVY°, affected the host preference, oviposition, and egg hatch rate of Lso-free or Lso-carrying psyllids in tomato plants. We also examined whether PVY infection influenced Lso transmission success by psyllids, Lso titer and plant chemistry (amino acids, sugars, and phytohormones). Lso-carrying psyllids showed a preference toward healthy hosts, whereas the Lso-free psyllids preferentially settled on the PVY-infected tomatoes. Oviposition of the Lso-carrying psyllids was lower on PVY-infected than healthy tomatoes, but Lso transmission, titer, and psyllid egg hatch were not significantly affected by PVY. The induction of salicylic acid and its related responses, and not nutritional losses, may explain the reduced attractiveness of the PVY-infected host to the Lso-carrying psyllids. Although our study demonstrated that pre-existing PVY infection can reduce oviposition by the Lso-carrying vector, the preference of the Lso-carrying psyllids to settle on healthy hosts could contribute to Lso spread to healthy plants in the presence of PVY infection in a field.


Assuntos
Oviposição/fisiologia , Doenças das Plantas/virologia , Potyvirus/patogenicidade , Solanum tuberosum/virologia , Animais , Ácido Salicílico
3.
Plant J ; 104(3): 645-661, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32772469

RESUMO

Whereas the activation of resistance (R) proteins has been intensively studied, the downstream signaling mechanisms leading to the restriction of the pathogen remain mostly unknown. We studied the immunity network response conditioned by the potato Ny-1 gene against potato virus Y. We analyzed the processes in the cell death zone and surrounding tissue on the biochemical and gene expression levels in order to reveal the spatiotemporal regulation of the immune response. We show that the transcriptional response in the cell death zone and surrounding tissue is dependent on salicylic acid (SA). For some genes the spatiotemporal regulation is completely lost in the SA-deficient line, whereas other genes show a different response, indicating multiple connections between hormonal signaling modules. The induction of NADPH oxidase RBOHD expression occurs specifically on the lesion border during the resistance response. In plants with silenced RBOHD, the functionality of the resistance response is perturbed and the spread of the virus is not arrested at the site of infection. RBOHD is required for the spatial accumulation of SA, and conversely RBOHD is under the transcriptional regulation of SA. Using spatially resolved RNA-seq, we also identified spatial regulation of an UDP-glucosyltransferase, another component in feedback activation of SA biosynthesis, thus deciphering a novel aspect of resistance signaling.


Assuntos
Potyvirus/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/virologia , Regulação da Expressão Gênica de Plantas/genética , Doenças das Plantas/genética , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Potyvirus/patogenicidade , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo
4.
Virus Res ; 288: 198125, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32835742

RESUMO

Plant viral infections lead to accumulation of virus-derived small interfering RNAs (vsiRNAs) as a result of host defense mechanisms. High-throughput sequencing technology enables vsiRNA profiling analyses from virus infected plants, which provide important insights into virus-host interactions. Potato virus Y (PVY) is a detrimental plant pathogen that can infect a variety of solanaceous crops, e.g., potato, tobacco, tomato, and pepper. We analyzed and characterized vsiRNAs derived from Nicotiana tabacum cv. Samsun infected with two recombinant PVY strains, N-Wi and NTN. We observed that the average percentage of vsiRNAs derived from plants infected with N-Wi was higher than from plants infected with NTN, indicating that N-Wi invokes a stronger host response than NTN in tobacco. The size distribution pattern and polarity of vsiRNAs were similar between both virus strains with the 21 and 22 nucleotide (nt) vsiRNA classes as most predominant and the sense/antisense vsiRNAs ratio nearly equal in the 20-24 nt class. However, the percentage of sense vsiRNAs was significantly higher in the 25-26 nt long vsiRNAs. Distinct vsiRNA hotspots, identifying highly abundant reads of different unique vsiRNA sequences, were observed in both viral genomes. Previous studies found an A or U bias at the 5' terminal nucleotide position of 21 nt vsiRNAs; in contrast, our analysis revealed a C and U nucleotide bias. This study provides insights that will help further elucidate differential processing of vsiRNAs in plant antiviral defense.


Assuntos
Genoma Viral , Interações Hospedeiro-Patógeno/genética , Potyvirus/genética , RNA Interferente Pequeno/genética , RNA Viral/genética , Solanum tuberosum/virologia , Perfilação da Expressão Gênica , Doenças das Plantas/virologia , Potyvirus/classificação , Potyvirus/patogenicidade , Nicotiana/virologia
5.
BMC Plant Biol ; 20(1): 355, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727361

RESUMO

BACKGROUND: Infection of plants by viruses interferes with expression and subcellular localization of plant proteins. Potyviruses comprise the largest and most economically damaging group of plant-infecting RNA viruses. In virus-infected cells, at least two potyviral proteins localize to nucleus but reasons remain partly unknown. RESULTS: In this study, we examined changes in the nuclear proteome of leaf cells from a diploid potato line (Solanum tuberosum L.) after infection with potato virus A (PVA; genus Potyvirus; Potyviridae) and compared the data with that acquired for healthy leaves. Gel-free liquid chromatography-coupled to tandem mass spectrometry was used to identify 807 nuclear proteins in the potato line v2-108; of these proteins, 370 were detected in at least two samples of healthy leaves. A total of 313 proteins were common in at least two samples of healthy and PVA-infected leaves; of these proteins, 8 showed differential accumulation. Sixteen proteins were detected exclusively in the samples from PVA-infected leaves, whereas other 16 proteins were unique to healthy leaves. The protein Dnajc14 was only detected in healthy leaves, whereas different ribosomal proteins, ribosome-biogenesis proteins, and RNA splicing-related proteins were over-represented in the nuclei of PVA-infected leaves. Two virus-encoded proteins were identified in the samples of PVA-infected leaves. CONCLUSIONS: Our results show that PVA infection alters especially ribosomes and splicing-related proteins in the nucleus of potato leaves. The data increase our understanding of potyvirus infection and the role of nucleus in infection. To our knowledge, this is the first study of the nuclear proteome of potato leaves and one of the few studies of changes occurring in nuclear proteomes in response to plant virus infection.


Assuntos
Folhas de Planta/metabolismo , Folhas de Planta/virologia , Proteínas de Plantas/metabolismo , Potyvirus/patogenicidade , Solanum tuberosum/virologia , Núcleo Celular/metabolismo , Núcleo Celular/virologia , GTP Fosfo-Hidrolases/metabolismo , Interações Hospedeiro-Patógeno , Proteínas Nucleares/metabolismo , Doenças das Plantas/virologia , Ploidias , Proteoma/metabolismo , Solanum tuberosum/metabolismo , Proteínas Virais/metabolismo
6.
PLoS Pathog ; 16(6): e1008608, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32574227

RESUMO

Transmission is a crucial part of a viral life cycle and transmission mode can have an important impact on virus biology. It was demonstrated that transmission mode can influence the virulence and evolution of a virus; however, few empirical data are available to describe the direct underlying changes in virus population structure dynamics within the host. Potato virus Y (PVY) is an RNA virus and one of the most damaging pathogens of potato. It comprises several genetically variable strains that are transmitted between plants via different transmission modes. To investigate how transmission modes affect the within-plant viral population structure, we have used a deep sequencing approach to examine the changes in the genetic structure of populations (in leaves and tubers) of three PVY strains after successive passages by horizontal (aphid and mechanical) and vertical (via tubers) transmission modes. Nucleotide diversities of viral populations were significantly influenced by transmission modes; lineages transmitted by aphids were the least diverse, whereas lineages transmitted by tubers were the most diverse. Differences in nucleotide diversities of viral populations between leaves and tubers were transmission mode-dependent, with higher diversities in tubers than in leaves for aphid and mechanically transmitted lineages. Furthermore, aphid and tuber transmissions were shown to impose stronger genetic bottlenecks than mechanical transmission. To better understand the structure of virus populations within the host, transmission mode, movement of the virus within the host, and the number of replication cycles after transmission event need to be considered. Collectively, our results suggest a significant impact of virus transmission modes on the within-plant diversity of virus populations and provide quantitative fundamental data for understanding how transmission can shape virus diversity in the natural ecosystems, where different transmission modes are expected to affect virus population structure and consequently its evolution.


Assuntos
Modelos Biológicos , Doenças das Plantas/virologia , Folhas de Planta , Tubérculos , Potyvirus , Solanum tuberosum , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Tubérculos/metabolismo , Tubérculos/virologia , Potyvirus/metabolismo , Potyvirus/patogenicidade , Solanum tuberosum/metabolismo , Solanum tuberosum/virologia
7.
Viruses ; 12(2)2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32075268

RESUMO

Potato virus Y (PVY) is the most economically important virus affecting potato production. PVY manipulates the plant cell machinery in order to successfully complete the infecting cycle. On the other side, the plant activates a sophisticated multilayer immune defense response to combat viral infection. The balance between these mechanisms, depending on the plant genotype and environment, results in a specific outcome that can be resistance, sensitivity, or tolerance. In this review, we summarize and compare the current knowledge on molecular events, leading to different phenotypic outcomes in response to PVY and try to link them with the known molecular mechanisms.


Assuntos
Doenças das Plantas/virologia , Imunidade Vegetal , Potyvirus/patogenicidade , Solanum tuberosum/genética , Solanum tuberosum/virologia , Genótipo , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Solanum tuberosum/imunologia
8.
Theor Appl Genet ; 133(3): 967-980, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31950199

RESUMO

KEY MESSAGE: Novel major gene resistance against Potato virus Y in diploid populations of Solanum tuberosum Groups Phureja and Tuberosum was biologically and genetically characterised. Named Ry(o)phu, it mapped to chromosome 9. A new source of genetic resistance derived from Solanum tuberosum Group Phureja against Potato virus Y (PVY) was identified and genetically characterised in three diploid biparental potato populations. Segregation data for two populations (05H1 and 08H1) suggested the presence of a single dominant gene for resistance to PVY which, following DaRT analysis of the 08H1 cross, was mapped to chromosome 9. More detailed genetic analysis of resistance utilised a well-characterised SNP-linkage map for the 06H1 population, together with newly generated marker data. In these plants, which have both S. tuberosum Group Phureja and S. tuberosum Group Tuberosum in their pedigree, the resistance was shown to map to chromosome 9 at a locus not previously associated with PVY resistance, although there is evidence for at least one other genetic factor controlling PVY infection. The resistance factor location on chromosome 9 (named as Ry(o)phu) suggests a potential role of NB-LRR genes in this resistance. Phenotypic analysis using a GUS-tagged virus revealed that a small amount of PVY replication occurred in occasional groups of epidermal cells in inoculated leaves of resistant plants, without inducing any visible hypersensitive response. However, the virus did not enter the vascular system and systemic spread was completely prevented.


Assuntos
Resistência à Doença/genética , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Potyvirus/patogenicidade , Solanum tuberosum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Genes de Plantas , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Ploidias , Polimorfismo de Nucleotídeo Único , Potyvirus/genética , Potyvirus/metabolismo , Locos de Características Quantitativas , Solanum tuberosum/metabolismo , Solanum tuberosum/virologia
9.
Plant Biotechnol J ; 18(3): 655-667, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31397954

RESUMO

Potato virus Y (PVY) is a major potato (Solanum tuberosum L.) pathogen that causes severe annual crop losses worth billions of dollars worldwide. PVY is transmitted by aphids, and successful control of virus transmission requires the extensive use of environmentally damaging insecticides to reduce vector populations. Rysto , from the wild relative S. stoloniferum, confers extreme resistance (ER) to PVY and related viruses and is a valuable trait that is widely employed in potato resistance breeding programmes. Rysto was previously mapped to a region of potato chromosome XII, but the specific gene has not been identified to date. In this study, we isolated Rysto using resistance gene enrichment sequencing (RenSeq) and PacBio SMRT (Pacific Biosciences single-molecule real-time sequencing). Rysto was found to encode a nucleotide-binding leucine-rich repeat (NLR) protein with an N-terminal TIR domain and was sufficient for PVY perception and ER in transgenic potato plants. Rysto -dependent extreme resistance was temperature-independent and requires EDS1 and NRG1 proteins. Rysto may prove valuable for creating PVY-resistant cultivars of potato and other Solanaceae crops.


Assuntos
Resistência à Doença , Genes de Plantas , Doenças das Plantas/virologia , Potyvirus/patogenicidade , Solanum tuberosum/imunologia , Animais , Afídeos/virologia , Cruzamento , Proteínas NLR/imunologia , Doenças das Plantas/imunologia , Plantas Geneticamente Modificadas/virologia , Solanum tuberosum/virologia
10.
Sensors (Basel) ; 19(24)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842326

RESUMO

There is a growing demand in both food quality and quantity, but as of now, one-third of all food produced for human consumption is lost due to pests and other pathogens accounting for roughly 40% of pre-harvest loss in potatoes. Pathogens in potato plants, like the Erwinia bacteria and the PVYNTN virus for example, exhibit symptoms of varying severity that are not easily captured by pixel-based classes (as these ignore shape, texture, and context in general). The aim of this research is to develop an object-based image analysis (OBIA) method for trait retrieval of individual potato plants that maximizes information output from Unmanned Aerial Vehicle (UAV) RGB very high resolution (VHR) imagery and its derivatives, to be used for disease detection of the Solanum tuberosum. The approach proposed can be split in two steps: (1) object-based mapping of potato plants using an optimized implementation of large scale mean-shift segmentation (LSMSS), and (2) classification of disease using a random forest (RF) model for a set of morphological traits computed from their associative objects. The approach was proven viable as the associative RF model detected presence of Erwinia and PVY pathogens with a maximum F1 score of 0.75 and an average Matthews Correlation Coefficient (MCC) score of 0.47. It also shows that low-altitude imagery acquired with a commercial UAV is a viable off-the-shelf tool for precision farming, and potato pathogen detection.


Assuntos
Processamento de Imagem Assistida por Computador , Doenças das Plantas/virologia , Potyvirus/isolamento & purificação , Solanum tuberosum/virologia , Altitude , Componentes Aéreos da Planta/virologia , Potyvirus/patogenicidade , Solanum tuberosum/crescimento & desenvolvimento
11.
Plant Biotechnol J ; 17(9): 1814-1822, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30803101

RESUMO

CRISPR/Cas systems provide bacteria and archaea with molecular immunity against invading phages and foreign plasmids. The class 2 type VI CRISPR/Cas effector Cas13a is an RNA-targeting CRISPR effector that provides protection against RNA phages. Here we report the repurposing of CRISPR/Cas13a to protect potato plants from a eukaryotic virus, Potato virus Y (PVY). Transgenic potato lines expressing Cas13a/sgRNA (small guide RNA) constructs showed suppressed PVY accumulation and disease symptoms. The levels of viral resistance correlated with the expression levels of the Cas13a/sgRNA construct in the plants. Our data further demonstrate that appropriately designed sgRNAs can specifically interfere with multiple PVY strains, while having no effect on unrelated viruses such as PVA or Potato virus S. Our findings provide a novel and highly efficient strategy for engineering crops with resistances to viral diseases.


Assuntos
Sistemas CRISPR-Cas , Resistência à Doença/genética , Doenças das Plantas/genética , Potyvirus/patogenicidade , Solanum tuberosum/genética , Doenças das Plantas/virologia , RNA Guia de Cinetoplastídeos/genética , Solanum tuberosum/virologia
12.
Pak J Biol Sci ; 22(12): 614-622, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31930861

RESUMO

BACKGROUND AND OBJECTIVE: Potato is one of the world's leading vegetable crops. Potato viral diseases cause adversely effects on the agricultural sector. Recently there is a growing interest to control plant viruses using spices and herbs (including curcumin). Poor solubility of curcumin in water limited its applications. Therefore, the main objective of the present study was to evaluate the effect of antiviral activity of curcumin-milk proteins nanoparticles against potato virus Y (PVY). MATERIALS AND METHODS: Curcumin-milk proteins nanoparticles were prepared via ionic gelation method. The antiviral activity of the resultant nanoparticles against PVY was evaluated at different concentrations (500, 1000 and 1500 mg/100 mL). Chlorophyll content as well as the activity of peroxidase (POX) and polyphenol oxidase (PPO) was examined. RESULTS: Curcumin-milk proteins nanoparticles showed inhibitory effect on PVY in a concentration dependent manner. CONCLUSION: Curcumin-milk proteins nanoparticles displayed a successful tool to control the PVY under green house conditions.


Assuntos
Antivirais/administração & dosagem , Curcumina/administração & dosagem , Proteínas do Leite/administração & dosagem , Potyvirus/efeitos dos fármacos , Catecol Oxidase/metabolismo , Quitosana/administração & dosagem , Clorofila/metabolismo , Nanogéis/administração & dosagem , Nanopartículas/administração & dosagem , Peroxidase/metabolismo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Imunidade Vegetal , Potyvirus/patogenicidade , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/metabolismo , Solanum tuberosum/virologia
13.
Sensors (Basel) ; 18(11)2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445792

RESUMO

A simple approach was proposed to decrease the detection limit of sandwich lateral flow immunoassay (LFIA) by changing the conditions for binding between a polyvalent antigen and a conjugate of gold nanoparticles (GNPs) with antibodies. In this study, the potato virus Y (PVY) was used as the polyvalent antigen, which affects economically important plants in the Solanaceae family. The obtained polyclonal antibodies that are specific to PVY were characterized using a sandwich enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR). For LFIA, the antibodies were conjugated with GNPs with a diameter of 17.4 ± 1.0 nm. We conducted LFIAs using GNP conjugates in a dried state on the test strip and after pre-incubation with a sample. Pre-incubating the GNP conjugates and sample for 30 s was found to decrease the detection limit by 60-fold from 330 ng∙mL-1 to 5.4 ng∙mL-1 in comparison with conventional LFIA. The developed method was successfully tested for its ability to detect PVY in infected and uninfected potato leaves. The quantitative results of the proposed LFIA with pre-incubation were confirmed by ELISA, and resulted in a correlation coefficient of 0.891. The proposed approach is rapid, simple, and preserves the main advantages of LFIA as a non-laboratory diagnostic method.


Assuntos
Anticorpos/imunologia , Antígenos/isolamento & purificação , Técnicas Biossensoriais , Potyvirus/isolamento & purificação , Anticorpos/química , Antígenos/imunologia , Ensaio de Imunoadsorção Enzimática , Imunoconjugados/química , Limite de Detecção , Nanopartículas Metálicas/química , Potyvirus/patogenicidade , Solanum tuberosum/virologia , Ressonância de Plasmônio de Superfície
14.
Int J Mol Sci ; 19(8)2018 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-30081556

RESUMO

One type of monitoring system in a plant cell is the cell wall, which intensively changes its structure during interaction with pathogen-stress factors. The wall plays a role as a dynamic and controlled structure, although it is not fully understood how relevant these modifications are to the molecular mechanisms during plant⁻virus interactions. In this work we localise the non-cellulosic polysaccharides such as xyloglucan, xylan (xylan-1) and xyloglucosyl transferase (XTH-Xet5), the enzyme that participates in the metabolism of xyloglucan. This provided us with information about the in situ distribution of the components of the hemicellulotic cell wall matrix in hypersensitive and susceptible potato⁻PVYNTN interactions. The loosening of the cell wall was accompanied by an increase in xylan depositions during susceptible interactions, whereas, during the hypersensitive response, when the cell wall was reinforced, the xylan content decreased. Moreover, the PVY inoculation significantly redirected XTH-Xet5 depositions, regardless of types of interactions, compared to mock-inoculated tissues. Furthermore, the immunogold localisation clearly revealed the domination of Xet5 in the cell wall and in vesicles in the susceptible host. In contrast, in the resistant host increased levels of Xet5 were observed in cytoplasm, in the cell wall and in the trans-Golgi network. These findings show that the hypersensitive reaction activated XTH-Xet5 in the areas of xyloglucan endo-transglycosylase (XET) synthesis, which was then actively transported to cytoplasm, cell wall and to vacuoles. Our results provide novel insight into cell wall reorganisation during PVYNTN infection as a response to biotic stress factors. These novel findings help us to understand the mechanisms of defence responses that are incorporated into the cell wall signalling network.


Assuntos
Parede Celular/metabolismo , Glucanos/metabolismo , Glicosiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Potyvirus/patogenicidade , Solanum tuberosum/metabolismo , Solanum tuberosum/virologia , Xilanos/metabolismo , Doenças das Plantas/virologia
15.
Int J Mol Sci ; 19(3)2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29543714

RESUMO

The cell wall provides the structure of the plant, and also acts as a barier against biotic stress. The vein necrosis strain of Potato virus Y (PVYNTN) induces necrotic disease symptoms that affect both plant growth and yield. Virus infection triggers a number of inducible basal defense responses, including defense proteins, especially those involved in cell wall metabolism. This study investigates the comparison of cell wall host dynamics induced in a compatible (potato cv. Irys) and incompatible (potato cv. Sárpo Mira with hypersensitive reaction gene Ny-Smira) PVYNTN-host-plant interaction. Ultrastructural analyses revealed numerous cell wall changes induced by virus infection. Furthermore, the localization of essential defensive wall-associated proteins in susceptible and resistant potato host to PVYNTN infection were investigated. The data revealed a higher level of detection of pathogenesis-related protein 2 (PR-2) in a compatible compared to an incompatible (HR) interaction. Immunofluorescence analyses indicated that hydroxyproline-rich glycoproteins (HRGP) (extensin) synthesis was induced, whereas that of cellulose synthase catalytic subunits (CesA4) decreased as a result of PVYNTN infection. The highest level of extensin localization was found in HR potato plants. Proteins involved in cell wall metabolism play a crucial role in the interaction because they affect the spread of the virus. Analysis of CesA4, PR-2 and HRGP deposition within the apoplast and symplast confirmed the active trafficking of these proteins as a step-in potato cell wall remodeling in response to PVYNTN infection. Therefore, cell wall reorganization may be regarded as an element of "signWALLing"-involving apoplast and symplast activation as a specific response to viruses.


Assuntos
Parede Celular/ultraestrutura , Interações Hospedeiro-Patógeno , Potyvirus/patogenicidade , Solanum tuberosum/virologia , Parede Celular/metabolismo , Parede Celular/virologia , Glucosiltransferases/metabolismo , Glicoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo
16.
Microb Ecol ; 76(2): 453-458, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29290035

RESUMO

Insect endosymbionts (hereafter, symbionts) can modify plant virus epidemiology by changing the physiology or behavior of vectors, but their role in nonpersistent virus pathosystems remains uninvestigated. Unlike propagative and circulative viruses, nonpersistent plant virus transmission occurs via transient contamination of mouthparts, making direct interaction between symbiont and virus unlikely. Nonpersistent virus transmission occurs during exploratory intracellular punctures with styletiform mouthparts when vectors assess potential host-plant quality prior to phloem feeding. Therefore, we used an electrical penetration graph (EPG) to evaluate plant probing of the cowpea aphid, Aphis craccivora Koch, an important vector of cucurbit viruses, in the presence and absence of two facultative, intracellular symbionts. We tested four isolines of A. craccivora: two isolines were from a clone from black locust (Robinia pseudoacacia L.), one infected with Arsenophonus sp. and one cured, and two derived from a clone from alfalfa (Medicago sativa L.), one infected with Hamiltonella defensa and one cured. We quantified exploratory intracellular punctures, indicated by a waveform potential drop recorded by the EPG, initiation speed and frequency within the initial 15 min on healthy and watermelon mosaic virus-infected pumpkins. Symbiont associations differentially modified exploratory intracellular puncture frequency by aphids, with H. defensa-infected aphids exhibiting depressed probing, and Arsenophonus-infected aphids an increased frequency of probing. Further, there was greater overall aphid probing on virus-infected plants, suggesting that viruses manipulate their vectors to enhance acquisition-transmission rates, independent of symbiont infection. These results suggest facultative symbionts differentially affect plant-host exploration behaviors and potentially nonpersistent virus transmission by vectors.


Assuntos
Afídeos/microbiologia , Enterobacteriaceae/virologia , Insetos Vetores/virologia , Vírus de Plantas/fisiologia , Simbiose , Animais , Afídeos/fisiologia , Bacteriófagos , Enterobacteriaceae/fisiologia , Interações Hospedeiro-Patógeno , Insetos Vetores/fisiologia , Medicago sativa/virologia , Doenças das Plantas/virologia , Vírus de Plantas/patogenicidade , Potyvirus/patogenicidade , Potyvirus/fisiologia , Robinia/virologia
17.
Sci Rep ; 7(1): 16925, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29208970

RESUMO

Potato (Solanum tuberosum L.) is the fourth most important crop worldwide. Potato virus A (PVA) is one of the most harmful viruses infecting potatoes. However, the molecular mechanisms governing the responses to PVA infection in potato at the transcriptional and post-transcriptional levels are not well understood. In this study, we performed both mRNA and small RNA sequencing in potato leaves to identify the genes and miRNAs involved in the response to PVA infection. A total of 2,062 differentially expressed genes (DEGs) and 201 miRNAs (DEMs) were identified, respectively. Gene ontology (GO) and KEGG analysis revealed that these DEGs were involved in the transduction of pathogen signals, transcriptional reprogramming, induction of hormone signaling, activation of pathogenesis-related (PR) genes, and changes in secondary metabolism. Small RNA sequencing revealed 58 miRNA-mRNA interactions related to PVA infection. Some of the miRNAs (stu-miR482d-3p, stu-miR397-5p, etc) which target PR genes showed negative correlations between the DEMs and DEGs. Eight of the DEGs and three DEMs with their target genes were further validated by quantitative real time-PCR (qRT-PCR). Overall, this study provides a transcriptome-wide insight into the molecular basis of resistance to PVA infection in potato leaves and potenital candidate genes for improving resistance cultivars.


Assuntos
MicroRNAs/genética , Potyvirus/patogenicidade , RNA Mensageiro/genética , Solanum tuberosum/genética , Solanum tuberosum/virologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Doenças das Plantas/virologia , Reguladores de Crescimento de Plantas/genética , Folhas de Planta/genética , Folhas de Planta/virologia , RNA de Plantas , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Fatores de Transcrição/genética
18.
G3 (Bethesda) ; 7(11): 3587-3595, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28903982

RESUMO

Potato tuber necrotic ringspot disease (PTNRD) is a tuber deformity associated with infection by the tuber necrotic strain of Potato virus Y (PVYNTN). PTNRD negatively impacts tuber quality and marketability, and poses a serious threat to seed and commercial potato production worldwide. PVYNTN symptoms differ in the cultivars Waneta and Pike: Waneta expresses severe PTNRD and foliar mosaic with vein and leaf necrosis, whereas Pike does not express PTNRD and mosaic is the only foliar symptom. To map loci that influence tuber and foliar symptoms, 236 F1 progeny of a cross between Waneta and Pike were inoculated with PVYNTN isolate NY090029 and genotyped using 12,808 potato SNPs. Foliar symptom type and severity were monitored for 10 wk, while tubers were evaluated for PTNRD expression at harvest and again after 60 d in storage. Pairwise correlation analyses indicate a strong association between PTNRD and vein necrosis (τ = 0.4195). QTL analyses revealed major-effect QTL on chromosomes 4 and 5 for mosaic, 4 for PTNRD, and 5 for foliar necrosis symptoms. Locating QTL associated with PVY-related symptoms provides a foundation for breeders to develop markers that can be used to eliminate potato clones with undesirable phenotypes, e.g., those likely to develop PTNRD or to be symptomless carriers of PVY.


Assuntos
Ligação Genética , Loci Gênicos , Imunidade Vegetal/genética , Potyvirus/patogenicidade , Solanum tuberosum/genética , Genes de Plantas , Melhoramento Vegetal/métodos , Folhas de Planta/genética , Folhas de Planta/virologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Solanum tuberosum/imunologia , Solanum tuberosum/virologia , Tetraploidia
19.
Virus Res ; 241: 116-124, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28666897

RESUMO

In the past decade recombinant strains of Potato virus Y (PVY) have overtaken the ordinary strain, PVYO, as the predominant viruses affecting the US seed potato crop. Aphids may be a contributing factor in the emergence of the recombinant strains, but studies indicate that differences in transmission efficiency of individual PVY strains either from single or mixed infections, although variable, are not generally significant. Multiple strains of PVY are present in all potato production areas and common in many potato fields. Therefore, it is likely that individual alate aphids moving through a potato field will sequentially encounter multiple strains as they "taste test" multiple potato plants while looking for a suitable host. This study examined the transmission likelihood and efficiency of three common PVY strains when acquired sequentially by individual aphids. Green peach aphids (Myzus persicae, Sulzer) were allowed a 2-3min acquisition access period (AAP) on potato leaves infected with PVYO, PVYN:O or PVYNTN, followed by another 2-3min AAP on a second potato leaf infected with a different PVY strain before being transferred to healthy potato seedlings for a 24h inoculation access period. All possible combinations of the three strains were tested. Strain-specific infection of the recipient plants was determined by TAS-ELISA and RT-PCR 3-4wk post-inoculation. The recombinant strains, PVYN:O and PVYNTN, were transmitted more efficiently than PVYO when they were sequentially acquired regardless of the order acquired. PVYN:O and PVYNTN were transmitted with similar efficiencies when they were sequentially acquired regardless of the order. The recombinant strains appear to preferentially bind to the aphid stylet over PVYO or they may be preferentially released during inoculation. This may contribute to the increased incidence of the recombinant strains over PVYO in fields or production regions where multiple PVY strains are detected.


Assuntos
Afídeos/virologia , Transmissão de Doença Infecciosa , Doenças das Plantas/virologia , Potyvirus/patogenicidade , Recombinação Genética/genética , Solanum tuberosum/virologia , Sequência de Aminoácidos , Animais , Potyvirus/classificação , Potyvirus/genética , Alinhamento de Sequência
20.
Virol J ; 14(1): 129, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28716126

RESUMO

BACKGROUND: Potato virus Y (PVY) is one of the most economically important pathogen of potato that is present as biologically distinct strains. The virus-derived small interfering RNAs (vsiRNAs) from potato cv. Russet Burbank individually infected with PVY-N, PVY-NTN and PVY-O strains were recently characterized. Plant defense RNA-silencing mechanisms deployed against viruses produce vsiRNAs to degrade homologous viral transcripts. Based on sequence complementarity, the vsiRNAs can potentially degrade host RNA transcripts raising the prospect of vsiRNAs as pathogenicity determinants in virus-host interactions. This study investigated the global effects of PVY vsiRNAs on the host potato transcriptome. METHODS: The strain-specific vsiRNAs of PVY, expressed in high copy number, were analyzed in silico for their proclivity to target potato coding and non-coding RNAs using psRobot and psRNATarget algorithms. Functional annotation of target coding transcripts was carried out to predict physiological effects of the vsiRNAs on the potato cv. Russet Burbank. The downregulation of selected target coding transcripts was further validated using qRT-PCR. RESULTS: The vsiRNAs derived from biologically distinct strains of PVY displayed diversity in terms of absolute number, copy number and hotspots for siRNAs on their respective genomes. The vsiRNAs populations were derived with a high frequency from 6 K1, P1 and Hc-Pro for PVY-N, P1, Hc-Pro and P3 for PVY-NTN, and P1, 3' UTR and NIa for PVY-O genomic regions. The number of vsiRNAs that displayed interaction with potato coding transcripts and number of putative coding target transcripts were comparable between PVY-N and PVY-O, and were relatively higher for PVY-NTN. The most abundant target non-coding RNA transcripts for the strain specific PVY-derived vsiRNAs were found to be MIR821, 28S rRNA,18S rRNA, snoR71, tRNA-Met and U5. Functional annotation and qRT-PCR validation suggested that the vsiRNAs target genes involved in plant hormone signaling, genetic information processing, plant-pathogen interactions, plant defense and stress response processes in potato. CONCLUSIONS: The findings suggested that the PVY-derived vsiRNAs could act as a pathogenicity determinant and as a counter-defense strategy to host RNA silencing in PVY-potato interactions. The broad range of host genes targeted by PVY vsiRNAs in infected potato suggests a diverse role for vsiRNAs that includes suppression of host stress responses and developmental processes. The interactome scenario is the first report on the interaction between one of the most important Potyvirus genome-derived siRNAs and the potato transcripts.


Assuntos
Interações Hospedeiro-Patógeno , Doenças das Plantas/virologia , Potyvirus/patogenicidade , RNA de Plantas/análise , RNA Interferente Pequeno/metabolismo , RNA Viral/metabolismo , Solanum tuberosum/virologia , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA de Plantas/química , DNA de Plantas/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Perfilação da Expressão Gênica , Filogenia , Potyvirus/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , RNA Viral/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA