RESUMO
Response regulators play significant roles in controlling various biological processes; however, their roles in plant meiosis remain unclear. Here, we report the identification of OsRR24/LEPTOTENE1 (LEPTO1), a rice (Oryza sativa) type-B response regulator that participates in the establishment of key molecular and morphological features of chromosomes in leptotene, an early stage of prophase I in meiosis. Although meiosis initiates normally, as indicated by staining of the centromere-specific histone CENH3, the meiotic chromosomes in lepto1 mutant pollen mother cells fail to form the thin thread-like structures that are typical of leptotene chromosomes in wild-type pollen mother cells. Furthermore, lepto1 mutants fail to form chromosomal double-strand breaks, do not recruit meiosis-specific proteins to the meiotic chromosomes, and show disrupted callose deposition. LEPTO1 also is essential for programmed cell death in tapetal cells. LEPTO1 contains a conserved signal receiver domain (DDK) and a myb-like DNA binding domain at the N terminus. LEPTO1 interacts with two authentic histidine phosphotransfer (AHP) proteins, OsAHP1 and OsAHP2, via the DDK domain, and a phosphomimetic mutation of the DDK domain relieves its repression of LEPTO1 transactivation activity. Collectively, our results show that OsRR24/LEPTO1 plays a significant role in the leptotene phase of meiotic prophase I.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Meiose/genética , Proteínas Nucleares/metabolismo , Oryza/genética , Proteínas de Ciclo Celular/genética , Cromossomos de Plantas/genética , Meiose/fisiologia , Prófase Meiótica I/genética , Prófase Meiótica I/fisiologia , Proteínas Nucleares/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Pólen/metabolismoRESUMO
Prenatal oogenesis produces hundreds of thousands of oocytes, most of which are discarded through apoptosis before birth. Despite this large-scale selection, the survivors do not constitute a perfect population, and the factors at the cellular level that result in apoptosis or survival of any individual oocyte are largely unknown. What then are the selection criteria that determine the size and quality of the ovarian reserve in women? This review focuses on new data at the cellular level, on human prenatal oogenesis, offering clues about the importance of the timing of entry to meiotic prophase I by linking the stages and progress through MPI with the presence or absence of apoptotic markers. The characteristics and responsiveness of cultured human fetal ovarian tissue at different gestational ages to growth factor supplementation and the impact of meiotic abnormalities upon apoptotic markers are discussed. Future work will require the use of a tissue culture model of prenatal oogenesis in order to investigate the fate of individual live oocytes at different stages of development.