Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 329: 118145, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38582153

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Kai-Xin-San (KXS) is a classic famous prescription that has been utilized for centuries to address dementia. New investigations have shown that the anti-dementia effect of KXS is connected with improved neuroinflammation. Nevertheless, the underlying mechanism is not well elucidated. AIM OF THE STUDY: We propose to discover the ameliorative impact of KXS on Alzheimer's disease (AD) and its regulatory role on the mitochondrial autophagy-nod-like receptor protein 3 (NLRP3) inflammasome pathway. MATERIALS AND METHODS: The Y maze, Morris water maze, and new objection recognition tests were applied to ascertain the spatial learning and memory capacities of amyloid precursor protein/presenilin 1 (APP/PS1) mice after KXS-treatment. Meanwhile, the biochemical indexes of the hippocampus were detected by reagent kits. The pathological alterations and mitochondrial autophagy in the mice' hippocampus were detected utilizing hematoxylin and eosin (H&E), immunohistochemistry, immunofluorescence staining, and transmission electron microscopy. Besides, the PTEN-induced putative kinase 1 (PINK1)/Parkin and NLRP3 inflammasome pathways protein expressions were determined employing the immunoblot analysis. RESULTS: The results of behavioral tests showed that KXS significantly enhanced the AD mice' spatial learning and memory capacities. Furthermore, KXS reversed the biochemical index levels and reduced amyloid-ß protein deposition in AD mice brains. Besides, H&E staining showed that KXS remarkably ameliorated the neuronal damage in AD mice. Concurrently, the results of transmission electron microscopy suggest that KXS ameliorated the mitochondrial damage in microglia and promoted mitochondrial autophagy. Moreover, the immunofluorescence outcomes exhibited that KXS promoted the expression of protein 1 light chain 3B (LC3B) associated with microtubule and the generation of autophagic flux. Notably, the immunofluorescence co-localization results confirmed the presence of mitochondrial autophagy in microglia. Finally, KXS promoted the protein expressions of the PINK1/Parkin pathway and reduced the activation of NLRP3 inflammasome. Most importantly, these beneficial effects of KXS were attenuated by the mitochondrial autophagy inhibitor chloroquine. CONCLUSION: KXS ameliorates AD-related neuropathology and cognitive impairment in APP/PS1 mice by enhancing the mitochondrial autophagy and suppressing the NLRP3 inflammasome pathway.


Assuntos
Doença de Alzheimer , Autofagia , Disfunção Cognitiva , Medicamentos de Ervas Chinesas , Inflamassomos , Camundongos Transgênicos , Mitocôndrias , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Camundongos , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Masculino , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Modelos Animais de Doenças , Presenilina-1/genética , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Transdução de Sinais/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteínas Quinases
2.
J Tradit Chin Med ; 44(2): 289-302, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504535

RESUMO

OBJECTIVE: To discuss the influence of Sailuotong (, SLT) on the Neurovascular Unit (NVUs) of amyloid precursor protein (APP)/presenilin-1(PS1) mice and evaluate the role of gas supplementation in activating blood circulation during the progression of Alzheimer's disease (AD). METHODS: The mice were allocated into the following nine groups: (a) the C57 Black (C57BL) sham-operated group (control group), (b) ischaemic treatment in C57BL mice (the C57 ischaemic group), (c) the APP/PS1 sham surgery group (APP/PS1 model group), (d) ischaemic treatment in APP/PS1 mice (APP/PS1 ischaemic group), (e) C57BL mice treated with aspirin following ischaemic treatment (C57BL ischaemic + aspirin group), (f) C57BL mice treated with SLT following ischaemic treatment (C57BL ischaemic + SLT group), (g) APP/PS1 mice treated with SLT (APP/PS1 + SLT group), (h) APP/PS1 mice treated with donepezil hydrochloride following ischaemic treatment (APP/PS1 ischaemic + donepezil hydrochloride group) and (i) APP/PS1 mice treated with SLT following ischaemic treatment (APP/PS1 ischaemic + SLT group). The ischaemic model was established by operating on the bilateral common carotid arteries and creating a microembolism. The Morris water maze and step-down tests were used to detect the spatial behaviour and memory ability of mice. The hippocampus of each mouse was observed by haematoxylin and eosin (HE) and Congo red staining. The ultrastructure of NVUs in each group was observed by electron microscopy, and various biochemical indicators were detected by enzyme-linked immunosorbent assay (ELISA). The protein expression level was detected by Western blot. The mRNA expression was detected by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: The results of the Morris water maze and step-down tests showed that ischemia reduced learning and memory in the mice, which were restored by SLT. The results of HE staining showed that SLT restored the pathological changes of the NVUs. The Congo red staining results revealed that SLT also improved the scattered orange-red sediments in the upper cortex and hippocampus of the APP/PS1 and APP/PS1 ischaemic mice. Furthermore, SLT significantly reduced the content of Aß, improved the vascular endothelium and repaired the mitochondrial structures. The ELISA detection, western blot detection and qRT-PCR showed that SLT significantly increased the vascular endothelial growth factor (VEGF), angiopoietin and basic fibroblast growth factor, as well as the levels of gene and protein expression of low-density lipoprotein receptor-related protein-1 (LRP-1) and VEGF in brain tissue. CONCLUSIONS: By increasing the expression of VEGF, SLT can promote vascular proliferation, up-regulate the expression of LRP-1, promote the clearance of Aß and improve the cognitive impairment of APP/PS1 mice. These results confirm that SLT can improve AD by promoting vascular proliferation and Aß clearance to protect the function of NVUs.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Medicamentos de Ervas Chinesas , Camundongos , Animais , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Fator A de Crescimento do Endotélio Vascular , Donepezila , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Vermelho Congo , Camundongos Endogâmicos C57BL , Aspirina , Modelos Animais de Doenças
3.
Brain Res ; 1831: 148744, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163562

RESUMO

BACKGROUND: Electroacupuncture, recognized as a crucial non-pharmacological therapeutic approach, has demonstrated notable efficacy in enhancing cognitive function among Alzheimer's disease (AD) patients. This study aimed to investigate the neuroprotective properties of electroacupuncture in APP/PS1 mice with AD. METHODS: A total of thirty APP/PS1 mice were randomly assigned to three groups: the Alzheimer's disease group (AD), the electroacupuncture treatment group (EA), and the ferroptosis inhibitor deferasirox treatment group (DFX). Additionally, ten C57BL/6 mice were included as a control group (Control). In the EA group, mice underwent flat needling at Baihui and Yintang, as well as point needling at Renzhong, once daily for 15 min each time. In the DFX group, mice received intraperitoneal injections of deferasirox at a dosage of 100 mg/kg/day. Following the 28-day treatment period, behavioral evaluation, morphological observation of neurons, and detection of neuronal ferroptosis were conducted. RESULTS: The electroacupuncture treatment demonstrated a significant improvement in spatial learning, memory ability, and neuronal damage in mice with AD. Analysis of neuronal ferroptosis markers indicated that electroacupuncture interventions reduced the elevated levels of malondialdehyde, iron, and ptgs2 expression, while also increasing superoxide dismutase activity, Ferroportin 1 and glutathione peroxidase 4 expression. Moreover, the regulatory impact of electroacupuncture on ferroptosis may be attributed to its ability to enhance the expression and nuclear translocation of Nrf2. CONCLUSIONS: This study suggested that electroacupuncture could inhibit the neuronal ferroptosis by activating the antioxidant function in neurons through p62/Keap1/Nrf2 signal pathway, thereby improve the cognitive function of AD mice by the neuronal protection effect.


Assuntos
Doença de Alzheimer , Eletroacupuntura , Ferroptose , Animais , Camundongos , Doença de Alzheimer/terapia , Secretases da Proteína Precursora do Amiloide/genética , Cognição , Deferasirox , Hipocampo/metabolismo , Hipocampo/patologia , Proteína 1 Associada a ECH Semelhante a Kelch , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Presenilina-1/genética
4.
Nutrients ; 15(19)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37836528

RESUMO

The deterioration of brain glucose metabolism predates the clinical onset of Alzheimer's disease (AD). Medium-chain triglycerides (MCTs) and docosahexaenoic acid (DHA) positively improve brain glucose metabolism and decrease the expression of AD-related proteins. However, the effects of the combined intervention are unclear. The present study explored the effects of the supplementation of MCTs combined with DHA in improving brain glucose metabolism and decreasing AD-related protein expression levels in APP/PS1 mice. The mice were assigned into four dietary treatment groups: the control group, MCTs group, DHA group, and MCTs + DHA group. The corresponding diet of the respective groups was fed to mice from the age of 3 to 11 months. The results showed that the supplementation of MCTs combined with DHA could increase serum octanoic acid (C8:0), decanoic acid (C10:0), DHA, and ß-hydroxybutyrate (ß-HB) levels; improve glucose metabolism; and reduce nerve cell apoptosis in the brain. Moreover, it also aided with decreasing the expression levels of amyloid beta protein (Aß), amyloid precursor protein (APP), ß-site APP cleaving enzyme-1 (BACE1), and presenilin-1 (PS1) in the brain. Furthermore, the supplementation of MCTs + DHA was significantly more beneficial than that of MCTs or DHA alone. In conclusion, the supplementation of MCTs combined with DHA could improve energy metabolism in the brain of APP/PS1 mice, thus decreasing nerve cell apoptosis and inhibiting the expression of Aß.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Camundongos , Animais , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Camundongos Transgênicos , Ácido Aspártico Endopeptidases/metabolismo , Modelos Animais de Doenças , Doença de Alzheimer/tratamento farmacológico , Encéfalo/metabolismo , Suplementos Nutricionais , Triglicerídeos/metabolismo
5.
Molecules ; 28(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36677642

RESUMO

As aging progresses, ß-amyloid (Aß) deposition and the resulting oxidative damage are key causes of aging diseases such as senior osteoporosis (SOP). Humulus lupulus L. (hops) is an important medicinal plant widely used in the food, beverage and pharmaceutical industries due to its strong antioxidant ability. In this study, APP/PS1 mutated transgenic mice and Aß-injured osteoblasts were used to evaluate the protective effects of hops extracts (HLE) on SOP. Mice learning and memory levels were assessed by the Morris water maze. Mice femurs were prepared for bone micro-structures and immunohistochemistry experiments. The deposition of Aß in the hippocampus, cortex and femurs were determined by Congo red staining. Moreover, protein expressions related to antioxidant pathways were evaluated by Western blotting. It was found that HLE markedly improved learning abilities and ameliorated memory impairment of APP/PS1 mice, as well as regulated antioxidant enzymes and bone metabolism proteins in mice serum. Micro-CT tests indicated that HLE enhanced BMD and improved micro-architectural parameters of mice femur. More importantly, it was discovered that HLE significantly reduced Aß deposition both in the brain and femur. Further in vitro results showed HLE increased the bone mineralization nodule and reduced the ROS level of Aß-injured osteoblasts. Additionally, HLE increased the expression of antioxidant related proteins Nrf2, HO-1, NQO1, FoxO1 and SOD-2. These results indicated that Humulus lupulus L. extract could protect against senior osteoporosis through inhibiting Aß deposition and oxidative stress, which provides a reference for the clinical application of hops in the prevention and treatment of SOP.


Assuntos
Doença de Alzheimer , Humulus , Osteoporose , Extratos Vegetais , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Antioxidantes/metabolismo , Modelos Animais de Doenças , Humulus/química , Camundongos Transgênicos , Osteoblastos/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle , Estresse Oxidativo , Presenilina-1/genética , Presenilina-1/metabolismo , Extratos Vegetais/farmacologia
6.
Biomed Pharmacother ; 158: 114192, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36587558

RESUMO

Alzheimer's disease (AD) has become a major public health problem affecting the elderly population, and there is currently no effective treatment. Although the pathogenesis of AD is unclear, neurotoxicity induced by oxidative stress plays an important role in the progression of AD. Ginseng, the root and rhizome of Panax ginseng C. A. Meyer, is used not only as an herbal medicine but also as a functional food to support bodily functions. Ginsenoside Rk3 (Rk3), the main bioactive component in ginseng, has a strong antioxidant effect and has not been reported in AD. In this study, we showed that Rk3 improved neuronal apoptosis, decreased intracellular reactive oxygen species (ROS) production and restored mitochondrial membrane potential in PC12 and primary neuronal cells. In vivo, we found that Rk3 improved spatial learning and memory deficit in precursor protein (APP)/presenilin 1 (PS1) double transgenic mouse model of AD. Additionally, Rk3 increases glutathione reductase (GSH) and superoxide dismutase (SOD) levels while inhibits malondialdehyde (MDA) production, apoptosis and activation of glial cells in APP/PS1 mice. Mechanistically, we found that the protective effect of Rk3 is in correlation with the activation of AMPK/Nrf2 signaling pathway. In conclusion, the findings of this study provide support for Rk3 as a new strategy for the treatment of AD.


Assuntos
Proteínas Quinases Ativadas por AMP , Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Presenilina-1/genética , Transdução de Sinais
7.
J Neuroinflammation ; 19(1): 253, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36217178

RESUMO

BACKGROUND: The immune system has been implicated in synaptic plasticity, inflammation, and the progression of Alzheimer's disease (AD). However, there were few studies on improving the niche microenvironment of neural stem cells (NSCs) in the brain of AD to promote adult hippocampal neurogenesis (AHN) by regulating the function of non-parenchymal immune cells. METHODS: The lymph nodes of amyloid precursor protein/presenilin 1 (APP/PS1) and 3xTg (APP/PS1/tau) mouse models of AD were treated with photobiomodulation therapy (PBMT) for 10 J/cm2 per day for 1 month (10 min for each day), T lymphocytes isolated from these two AD models were treated with PBMT for 2 J/cm2 (5 min for each time). The NSCs isolated from hippocampus of these two AD models at E14, and the cells were co-cultivated with PBMT-treated T lymphocyte conditioned medium for NSCs differentiation. RESULTS: Our results showed that PBMT treatment could promote AHN and reverse cognitive deficits in AD mouse model. The expression of interferon-γ (IFN-γ) and interleukin-10 (IL-10) was upregulated in the brain of these two AD models after PBMT treated, which was induced by the activation of Janus kinase 2 (JAK2)-mediated signal transducer and activator of transcription 4 (STAT4)/STAT5 signaling pathway in CD4+ T cells. In addition, elevated CD4+ T cell levels and upregulated transforming growth factor-ß1 (TGFß1)/insulin-like growth factors-1 (IGF-1)/brain-derived neurotrophic factor (BDNF) protein expression levels were also detected in the brain. More importantly, co-cultivated the PBMT-treated T lymphocyte conditioned medium with NSCs derived from these two AD models was shown to promote NSCs differentiation, which was reflected in the upregulation of both neuronal class-III ß-tubulin (Tuj1) and postsynaptic density protein 95 (PSD95), but the effects of PBMT was blocked by reactive oxygen species (ROS) scavenger or JAK2 inhibitor. CONCLUSION: Our research suggests that PBMT exerts a beneficial neurogenesis modulatory effect through activating the JAK2/STAT4/STAT5 signaling pathway to promote the expression of IFN-γ/IL-10 in non-parenchymal CD4+ T cells, induction of improvement of brain microenvironmental conditions and alleviation of cognitive deficits in APP/PS1 and 3xTg-AD mouse models.


Assuntos
Doença de Alzheimer , Terapia com Luz de Baixa Intensidade , Doença de Alzheimer/complicações , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Cognição , Meios de Cultivo Condicionados/farmacologia , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Interferon gama/metabolismo , Interleucina-10/metabolismo , Janus Quinase 2/metabolismo , Camundongos , Camundongos Transgênicos , Neurogênese/fisiologia , Presenilina-1/genética , Presenilina-1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT4/metabolismo , Fator de Transcrição STAT5/metabolismo , Fator de Transcrição STAT5/farmacologia , Linfócitos T/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Tubulina (Proteína)/metabolismo
8.
Neurosci Lett ; 783: 136725, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35697158

RESUMO

Oxidative stress plays essential role in the pathogenesis of Alzheimer's disease, and vitamin D3 (VD3) is a nutrient with neuroprotective and antioxidant activities. The present study aimed to confirm the neuroprotective effect and the ameliorative effect of cortical oxidative stress of VD3 in APP/PS1 transgenic mice. APP/PS1 mice were treated with VD3 for 20 weeks. After treatment, Morris Water Maze test was used to evaluate cognitive level. Western blotting was used to determine APP, p-tau, tau and PI3K/AKT/Nrf2 pathway-related protein expression levels. Immunohistochemical staining was performed to determine the levels of ß amyloid peptide (Aß) deposition. Enzyme linked immunosorbent assay was used to determine the 25(OH)D3 levels and oxidative stress status. Our results showed that treatment with VD3 ameliorated behavioral deficits of APP/PS1 mice. In addition, the administration of VD3 significantly increased the cortical 25(OH)D3 levels, while reducing the levels of cortical Aß deposition and decreasing the expression levels of cortical APP, tau and p-tau in APP/PS1 mice. Moreover, VD3 protected the cortex against oxidative stress by enhancing the levels of superoxide dismutase, glutathione and total antioxidant capacity, and downregulating the malondialdehyde levels. Furthermore, VD3 clearly activated the PI3K/AKT/Nrf2 pathway, thereby elevating the expression levels of HO1 and NQO1. We concluded that VD3 improved cognitive function and cortical Alzheimer-like pathology of APP/PS1 mice, which may be related to the inhibition of oxidative stress via activation the PI3K/AKT/Nrf2 pathway.


Assuntos
Doença de Alzheimer , Fosfatidilinositol 3-Quinases , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Colecalciferol/farmacologia , Colecalciferol/uso terapêutico , Cognição , Suplementos Nutricionais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
9.
Cell Death Differ ; 29(11): 2123-2136, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35449212

RESUMO

Mutations in presenilin 1 and 2 (PS1 and PS2) cause autosomal dominant familial Alzheimer's disease (FAD). Ferroptosis has been implicated as a mechanism of neurodegeneration in AD since neocortical iron burden predicts Alzheimer's disease (AD) progression. We found that loss of the presenilins dramatically sensitizes multiple cell types to ferroptosis, but not apoptosis. FAD causal mutations of presenilins similarly sensitizes cells to ferroptosis. The presenilins promote the expression of GPX4, the selenoprotein checkpoint enzyme that blocks ferroptosis by quenching the membrane propagation of lethal hydroperoxyl radicals. Presenilin γ-secretase activity cleaves Notch-1 to signal LRP8 expression, which then controls GPX4 expression by regulating the supply of selenium into the cell since LRP8 is the uptake receptor for selenoprotein P. Selenium uptake is thus disrupted by presenilin FAD mutations, suppressing GPX4 expression. Therefore, presenilin mutations may promote neurodegeneration by derepressing ferroptosis, which has implications for disease-modifying therapeutics.


Assuntos
Doença de Alzheimer , Ferroptose , Selênio , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Ferroptose/genética , Mutação/genética , Presenilina-1/genética , Presenilina-1/metabolismo , Presenilinas/metabolismo
10.
Neurochem Int ; 153: 105260, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34953963

RESUMO

Vitamin D deficiency and iron accumulation are prevalent in the brains of Alzheimer's disease (AD) patients, however, whether Vitamin D has a role in the regulations of iron metabolism in the condition of AD remains unknown. Our previous studies revealed that vitamin D deficiency promotes ß-amyloid (Aß) deposition in the APP/PS1 mouse brains, while supplemented with a specific agonist of vitamin D receptor (VDR), paricalcitol (PAL), significantly reduced Aß production via promoting the lysosomal degradation of ß-site APP cleavage enzyme 1 (BACE1). In this study, our data suggested that activation of VDR by PAL significantly reduced the iron accumulation in the cortex and hippocampus of APP/PS1 mice through downregulation of Transferrin receptor (TFR) by reducing iron-regulatory protein 2 (IRP2) expression. Furthermore, activation of VDR effectively reduced the phosphorylations of Tau at Ser396 and Thr181 sites via inhibiting the GSK3ß phosphorylation (Tyr216). Taken together, our data suggest that activation of VDR could inhibit the phosphorylations of Tau possibly by repressing the iron accumulation-induced upregulation of GSK3ß activity in the brains of APP/PS1 mice. Thus, activation of VDR may be an effective strategy for treating AD.


Assuntos
Doença de Alzheimer , Receptores de Calcitriol , Proteínas tau , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases , Humanos , Ferro , Camundongos , Camundongos Transgênicos , Fosforilação , Presenilina-1/genética , Receptores de Calcitriol/metabolismo , Proteínas tau/metabolismo
11.
Anat Rec (Hoboken) ; 304(11): 2521-2530, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34469051

RESUMO

Alzheimer's disease (AD) is a fatal neurodegenerative disease for which currently no cure is available. Electroacupuncture (EA) has been widely used in China as an alternative therapeutic approach for neurological diseases. The cognitive decline in patients with AD has been reported to be closely related to the deposition of amyloid-ß (Aß) in the hippocampus of the brain, and the Morris water maze (MWM) test is a widely used method for assessing the behavior of animal models. In this study, the MWM test was performed to evaluate the effects of EA treatment on cognitive function and memory, and the micro-positron emission tomography scan was used to assess the hippocampal Aß deposition. The results showed that the cognitive function of APP/PS1 mice was significantly improved and the rate of [18F]AV-45 uptake was reduced in the EA group, compared with the AD group. Our study suggested that EA can exert a therapeutic effect in AD by improving spatial learning and memory and inhibiting the hippocampal Aß deposition.


Assuntos
Doença de Alzheimer , Eletroacupuntura , Doenças Neurodegenerativas , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Eletroacupuntura/métodos , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Presenilina-1/genética
12.
Neuropharmacology ; 196: 108676, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34216585

RESUMO

The mouse model of beta-amyloid (Aß) deposition, APP/PS1-21, exhibits high brain uptake of the tau-tracer (S)-[18F]THK5117, although no neurofibrillary tangles are present in this mouse model. For this reason we investigated (S)-[18F]THK5117 off-target binding to Aß plaques and MAO-B enzyme in APP/PS1-21 transgenic (TG) mouse model of Aß deposition. APP/PS1-21 TG and wild-type (WT) control mice in four different age groups (2-26 months) were imaged antemortem by positron emission tomography with (S)-[18F]THK5117, and then brain autoradiography. Additional animals were used for immunohistochemical staining and MAO-B enzyme blocking study with deprenyl pre-treatment. Regional standardized uptake value ratios for the cerebellum revealed a significant temporal increase in (S)-[18F]THK5117 uptake in aged TG, but not WT, brain. Immunohistochemical staining revealed a similar increase in Aß plaques but not endogenous hyper-phosphorylated tau or MAO-B enzyme, and ex vivo autography showed that uptake of (S)-[18F]THK5117 co-localized with the amyloid pathology. Deprenyl hydrochloride pre-treatment reduced the binding of (S)-[18F]THK5117 in the neocortex, hippocampus, and thalamus. This study's findings suggest that increased (S)-[18F]THK5117 binding in aging APP/PS1-21 TG mice is mainly due to increasing Aß deposition, and to a lesser extent binding to MAO-B enzyme, but not hyper-phosphorylated tau.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/metabolismo , Encéfalo/diagnóstico por imagem , Monoaminoxidase/metabolismo , Placa Amiloide/diagnóstico por imagem , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Compostos de Anilina , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Hipocampo/diagnóstico por imagem , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Camundongos Transgênicos , Inibidores da Monoaminoxidase/farmacologia , Neocórtex/diagnóstico por imagem , Neocórtex/efeitos dos fármacos , Neocórtex/metabolismo , Placa Amiloide/metabolismo , Tomografia por Emissão de Pósitrons , Presenilina-1/genética , Quinolinas , Compostos Radiofarmacêuticos , Selegilina/farmacologia , Tálamo/diagnóstico por imagem , Tálamo/efeitos dos fármacos , Tálamo/metabolismo
13.
Int Immunopharmacol ; 96: 107808, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34162168

RESUMO

Alzheimer's disease is a devastating neurodegenerative disorder, with no disease-modifying treatment available yet. There is increasing evidence that neuroinflammation plays a critical role in the pathogenesis of AD. Andrographolide (Andro), a labdane diterpene extracted from the herb Andrographis paniculata, has been reported to exhibit neuroprotective property in central nervous system diseases. However, its effects on Aß and Aß-induced neuroinflammation have not yet been studied. In the present study, we found that Andro administration significantly alleviated cognitive impairments, reduced amyloid-ß deposition, inhibited microglial activation, and decreased the secretion of proinflammatory factors in APP/PS1 mice. Furthermore, transcriptome sequencing analysis revealed that Andro could significantly decrease the expression of Itgax, TLR2, CD14, CCL3, CCL4, TLR1, and C3ar1 in APP/PS1 mice, which was further validated by qRT-PCR. Our results suggest that Andro might be a potential therapeutic drug for AD by regulating neuroinflammation.


Assuntos
Anti-Inflamatórios/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Diterpenos/uso terapêutico , Encefalite/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Anti-Inflamatórios/farmacologia , Comportamento Animal/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Diterpenos/farmacologia , Encefalite/genética , Encefalite/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos Transgênicos , Fármacos Neuroprotetores/farmacologia , Presenilina-1/genética , Transcriptoma/efeitos dos fármacos
14.
J Immunol Res ; 2021: 8121407, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046506

RESUMO

To mimic Alzheimer's disease, transgenic mice overexpressing the amyloid precursor protein (APP) were used in this study. We hypothesize that the neuroprotective effects of ETAS®50, a standardized extract of Asparagus officinalis stem produced by Amino Up Co., Ltd. (Sapporo, Japan), are linked to the inhibition of the apoptosis cascade through an enhancement of the stress-response proteins: heat shock proteins (HSPs). APP-overexpressing mice (double-transgenic APP and PS1 mouse strains with a 129s6 background), ages 6-8 weeks old, and weighing 20-24 grams were successfully bred in our laboratory. The animals were divided into 5 groups. APP-overexpressing mice and wild-type (WT) mice were pretreated with ETAS®50 powder (50% elemental ETAS and 50% destrin) at 200 mg/kg and 1000 mg/kg body weight. Saline, the vehicle for ETAS®50, was administered in APP-overexpressing mice and WT mice. ETAS®50 and saline were administered by gavage daily for 1 month. Cognitive assessments, using the Morris Water Maze, demonstrated that memory was recovered following ETAS®50 treatment as compared to nontreated APP mice. At euthanization, the brain was removed and HSPs, amyloid ß, tau proteins, and caspase-3 were evaluated through immunofluorescence staining with the appropriate antibodies. Our data indicate that APP mice have cognitive impairment along with elevated amyloid ß, tau proteins, and caspase-3. ETAS®50 restored cognitive function in these transgenic mice, increased both HSP70 and HSP27, and attenuated pathogenic level of amyloid ß, tau proteins, and caspsase-3 leading to neuroprotection. Our results were confirmed with a significant increase in HSP70 gene expression in the hippocampus.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Asparagus/química , Fármacos Neuroprotetores/administração & dosagem , Extratos Vegetais/administração & dosagem , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Proteínas de Choque Térmico HSP27/análise , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP70/análise , Proteínas de Choque Térmico HSP70/metabolismo , Hipocampo/patologia , Humanos , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Presenilina-1/genética
15.
Mol Neurodegener ; 16(1): 23, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849621

RESUMO

BACKGROUND: Recently, we and other researchers reported that brain metabolic disorders are implicated in Alzheimer's disease (AD), a progressive, devastating and incurable neurodegenerative disease. Hence, novel therapeutic approaches are urgently needed to explore potential and novel therapeutic targets/agents for the treatment of AD. The neuronal adiponectin receptor 1 (AdipoR1) is an emerging potential target for intervention in metabolic-associated AD. We aimed to validate this hypothesis and explore in-depth the therapeutic effects of an osmotin-derived adiponectin-mimetic novel nonapeptide (Os-pep) on metabolic-associated AD. METHODS: We used an Os-pep dosage regimen (5 µg/g, i.p., on alternating days for 45 days) for APP/PS1 in amyloid ß oligomer-injected, transgenic adiponectin knockout (Adipo-/-) and AdipoR1 knockdown mice. After behavioral studies, brain tissues were subjected to biochemical and immunohistochemical analyses. In separate cohorts of mice, electrophysiolocal and Golgi staining experiments were performed. To validate the in vivo studies, we used human APP Swedish (swe)/Indiana (ind)-overexpressing neuroblastoma SH-SY5Y cells, which were subjected to knockdown of AdipoR1 and APMK with siRNAs, treated with Os-pep and other conditions as per the mechanistic approach, and we proceeded to perform further biochemical analyses. RESULTS: Our in vitro and in vivo results show that Os-pep has good safety and neuroprotection profiles and crosses the blood-brain barrier. We found reduced levels of neuronal AdipoR1 in human AD brain tissue. Os-pep stimulates AdipoR1 and its downstream target, AMP-activated protein kinase (AMPK) signaling, in AD and Adipo-/- mice. Mechanistically, in all of the in vivo and in vitro studies, Os-pep rescued aberrant neuronal metabolism by reducing neuronal insulin resistance and activated downstream insulin signaling through regulation of AdipoR1/AMPK signaling to consequently improve the memory functions of the AD and Adipo-/- mice, which was associated with improved synaptic function and long-term potentiation via an AdipoR1-dependent mechanism. CONCLUSION: Our findings show that Os-pep activates AdipoR1/AMPK signaling and regulates neuronal insulin resistance and insulin signaling, which subsequently rescues memory deficits in AD and adiponectin-deficient models. Taken together, the results indicate that Os-pep, as an adiponectin-mimetic novel nonapeptide, is a valuable and promising potential therapeutic candidate to treat aberrant brain metabolism associated with AD and other neurodegenerative diseases.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Transtornos da Memória/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Receptores de Adiponectina/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/metabolismo , Adiponectina/deficiência , Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/genética , Animais , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Humanos , Resistência à Insulina , Masculino , Aprendizagem em Labirinto , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Presenilina-1/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores de Adiponectina/genética , Transdução de Sinais
16.
J Alzheimers Dis ; 81(1): 375-388, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33780366

RESUMO

BACKGROUND: Vitamin D deficiency and altered body composition are common in Alzheimer's disease (AD). Memantine with vitamin D supplementation can protect cortical axons against amyloid-ß exposure and glutamate toxicity. OBJECTIVE: To study the effects of vitamin D deprivation and subsequent treatment with memantine and vitamin D enrichment on whole-body composition using a mouse model of AD. METHODS: Male APPswe/PS1dE9 mice were divided into four groups at 2.5 months of age: the control group (n = 14) was fed a standard diet throughout; the remaining mice were started on a vitamin D-deficient diet at month 6. The vitamin D-deficient group (n = 14) remained on the vitamin D-deficient diet for the rest of the study. Of the remaining two groups, one had memantine (n = 14), while the other had both memantine and 10 IU/g vitamin D (n = 14), added to their diet at month 9. Serum 25(OH)D levels measured at months 6, 9, 12, and 15 confirmed vitamin D levels were lower in mice on vitamin D-deficient diets and higher in the vitamin D-supplemented mice. Micro-computed tomography was performed at month 15 to determine whole-body composition. RESULTS: In mice deprived of vitamin D, memantine increased bone mineral content (8.7% increase, p < 0.01) and absolute skeletal tissue mass (9.3% increase, p < 0.05) and volume (9.2% increase, p < 0.05) relative to controls. This was not observed when memantine treatment was combined with vitamin D enrichment. CONCLUSION: Combination treatment of vitamin D and memantine had no negative effects on body composition. Future studies should clarify whether vitamin D status impacts the effects of memantine treatment on bone physiology in people with AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Composição Corporal/efeitos dos fármacos , Dopaminérgicos/uso terapêutico , Memantina/uso terapêutico , Deficiência de Vitamina D/tratamento farmacológico , Vitamina D/uso terapêutico , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Suplementos Nutricionais , Modelos Animais de Doenças , Dopaminérgicos/farmacologia , Masculino , Memantina/farmacologia , Camundongos , Camundongos Transgênicos , Presenilina-1/genética , Vitamina D/farmacologia , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/genética
17.
Neural Plast ; 2021: 8814616, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33505459

RESUMO

Neuroinflammation is considered as one of the crucial pathogenesis in promoting neurodegenerative progress of Alzheimer's disease (AD). As complementary and alternative therapy, electroacupuncture (EA) stimulation has been widely used in clinical practice for anti-inflammation. However, whether EA promotes the cognitive deficits resulting from neuroinflammation in AD remains unclear. In this study, the presenilin 1 and 2 conditional double knockout (PS cDKO) mice, exhibited a series of AD-like pathology, robust neuroinflammatory responses, and memory deficits, were used to evaluate the potential neuroprotective effect of EA at Baihui (GV 20) and Shenting (GV 24) by behavioral testing, electrophysiology recording, and molecular biology analyzing. First, we observed that EA improved memory deficits and impaired synaptic plasticity. Moreover, EA possesses an ability to suppress the hyperphosphorylated tau and robust elevated NLRP3, ASC, Caspase-1, IL-1ß, and IL-18 in PS cDKO mice. Importantly, MCC950, a potent and selective inhibitor of NLPR3 inflammasome, has similar effects on inhibiting the hyperphosphorylated tau and the robust elevated NLRP3 components and neuroinflammatory responses of PS cDKO mice as well as EA treatment. Furthermore, EA treatment is not able to further improve the AD-like phenotypes of PS cDKO mice in combination with the MCC950 administration. Therefore, EA stimulation at GV 20 and GV 24 acupoints may be a potential alternative therapy for deterring cognitive deficits in AD through suppression of NLRP3 inflammasome activation.


Assuntos
Disfunção Cognitiva/terapia , Eletroacupuntura/métodos , Mediadores da Inflamação/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Presenilina-1/deficiência , Presenilina-2/deficiência , Animais , Disfunção Cognitiva/metabolismo , Furanos/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Indenos/farmacologia , Mediadores da Inflamação/metabolismo , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Presenilina-1/genética , Presenilina-2/genética , Sulfonamidas/farmacologia
18.
J Neurochem ; 157(3): 656-665, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32797675

RESUMO

Dopamine (DA) has important roles in learning, memory, and motivational processes and is highly susceptible to oxidation. In addition to dementia, Alzheimer's disease (AD) patients frequently exhibit decreased motivation, anhedonia, and sleep disorders, suggesting deficits in dopaminergic neurotransmission. Vitamin C (ascorbate, ASC) is a critical antioxidant in the brain and is often depleted in AD patients as a result of disease-related oxidative stress and dietary deficiencies. To probe the effects of ASC deficiency and AD pathology on the DAergic system, gulo-/- mice, which like humans depend on dietary ASC to maintain adequate tissue levels, were crossed with APP/PSEN1 mice and provided sufficient or depleted ASC supplementation from weaning until 12 months of age. Ex vivo fast-scan cyclic voltammetry showed that chronic ASC depletion and APP/PSEN1 genotype both independently decreased dopamine release in the nucleus accumbens, a hub for motivational behavior and reward, while DA clearance was similar across all groups. In striatal tissue containing nucleus accumbens, low ASC treatment led to decreased levels of DA and its metabolites 3,4-dihydroxyohenyl-acetic acid (DOPAC), 3-methoxytyramine (3-MT), and homovanillic acid (HVA). Decreased enzyme activity observed through lower pTH/TH ratio was driven by a cumulative effect of ASC depletion and APP/PSEN1 genotype. Together the data show that deficits in dopaminergic neurotransmission resulting from age and disease status are magnified in conditions of low ASC which decrease DA availability during synaptic transmission. Such deficits may contribute to the non-cognitive behavioral changes observed in AD including decreased motivation, anhedonia, and sleep disorders.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Presenilina-1/genética , Deficiência de Vitaminas do Complexo B/metabolismo , Envelhecimento/metabolismo , Animais , Ácido Ascórbico/farmacologia , Dopamina/metabolismo , Genótipo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Motivação/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
19.
Aging (Albany NY) ; 12(23): 23945-23959, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33221745

RESUMO

Alzheimer's disease (AD) is an age-related neurodegenerative disease with a high incidence worldwide, and with no medications currently able to prevent the progression of AD. Danggui-Shaoyao-San (DSS) is widely used in traditional Chinese medicine (TCM) and has been proven to be effective for memory and cognitive dysfunction, yet its precise mechanism remains to be delineated. The present study was designed to investigate the genome-wide expression profile of long non-coding RNAs (LncRNAs) and messenger RNAs (mRNAs) in the hippocampus of APP/PS1 mice after DSS treatment by RNA sequencing. A total of 285 differentially expressed LncRNAs and 137 differentially expressed mRNAs were identified (fold-change ≥2.0 and P < 0.05). Partial differentially expressed LncRNAs and mRNAs were selected to verify the RNA sequencing results by quantitative polymerase chain reaction (qPCR). A co-expression network was established to analyze co-expressed LncRNAs and genes. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to evaluate the biological functions related to the differentially co-expressed LncRNAs, and the results showed that the co-expressed LncRNAs were mainly involved in AD development from distinct origins, such as APP processing, neuron migration, and synaptic transmission. Our research describes the lncRNA and mRNA expression profiles and functional networks involved in the therapeutic effect of DSS in APP/PS1 mice model. The results suggest that the therapeutic effect of DSS on AD involves the expression of LncRNAs. Our findings provide a new perspective for research on the treatment of complex diseases using traditional Chinese medicine prescriptions.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Perfilação da Expressão Gênica , Hipocampo/efeitos dos fármacos , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Transcriptoma/efeitos dos fármacos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Precursor de Proteína beta-Amiloide/genética , Animais , Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Redes Reguladoras de Genes , Hipocampo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Presenilina-1/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética
20.
Neurobiol Aging ; 96: 79-86, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32950781

RESUMO

In recent years, aberrant neural oscillations in various cortical areas have emerged as a common physiological hallmark across mouse models of amyloid pathology and patients with Alzheimer's disease. However, much less is known about the underlying effect of amyloid pathology on single cell activity. Here, we used high-density silicon probe recordings from frontal cortex area of 9-month-old APP/PS1 mice to show that local field potential power in the theta and beta band is increased in transgenic animals, whereas single-cell firing rates, specifically of putative pyramidal cells, are significantly reduced. At the same time, these sparsely firing pyramidal cells phase-lock their spiking activity more strongly to the ongoing theta and beta rhythms. Furthermore, we demonstrated that the antiepileptic drug, levetiracetam, counteracts these effects by increasing pyramidal cell firing rates in APP/PS1 mice and uncoupling pyramidal cells and interneurons. Overall, our results highlight reduced firing rates of cortical pyramidal cells as a pathophysiological phenotype in APP/PS1 mice and indicate a potentially beneficial effect of acute levetiracetam treatment.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/fisiopatologia , Amiloidose/tratamento farmacológico , Amiloidose/fisiopatologia , Lobo Frontal/citologia , Levetiracetam/farmacologia , Células Piramidais/fisiologia , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Levetiracetam/uso terapêutico , Masculino , Camundongos Transgênicos , Presenilina-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA