Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Photochem Photobiol B ; 218: 112185, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33819769

RESUMO

AIM: This ex vivo study aimed to evaluate the of Er,Cr:YSGG laser effectiveness in the decontamination of an endodontic biofilm. MATERIALS AND METHODS: Seventy-three single rooted human teeth, freshly were chosen. Each tooth was exposed to four associated species in an endodontic biofilm (Enterococcus faecalis, Streptococcus salivarius, Porphyromonas gingivalis, and Prevotella intermedia) and randomly allocated to one of the seven experimental groups. The group 1 (7 teeth) was used to finalize the reliable biofilm-forming technique. The groups 2 and 3 (15 teeth each group) were irradiated with two different Er;Cr:YSGG laser settings (0,75 W - 40 Hz and 4 W - 40 Hz, respectively). The groups 4 and 5 (15 teeth each group) were irrigated with two different solutions and laser irradiated with the same settings (1,5 W - 15 Hz). The group 6 (6 teeth) was the control group treated only with 4 ml 2,5% NaOCl irrigation during 60 s. RESULTS: The observations of group 2 and 3 specimens showed the ripeness of the biofilm with the presence of Enterococcus faecalis and Streptococcus salivarius in chains but in group 3 thermal edge effects produced by the optic fiber in the canal walls were present. The group 4 specimens observation showed an average cleaning of the root canal walls while on the canal walls of group 5 samples the apical third presented several debris and smear layer and in the centre cracks and melting dentin of the radicular wall were observed. CONCLUSION: In those experimental conditions, this study, demonstrated that Er,Cr:YSGG laser has a canals decontamination ability when associated to NaOCl irrigation.


Assuntos
Antibacterianos/química , Cromo/química , Érbio/química , Terapia com Luz de Baixa Intensidade/métodos , Raiz Dentária/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Cromo/farmacologia , Enterococcus faecalis/efeitos da radiação , Érbio/farmacologia , Humanos , Lasers de Estado Sólido , Porphyromonas gingivalis/efeitos da radiação , Prevotella intermedia/efeitos da radiação , Streptococcus salivarius/efeitos da radiação
2.
Lasers Surg Med ; 48(8): 763-773, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27726169

RESUMO

BACKGROUND AND OBJECTIVE: Selective killing of pathogens by laser is possible due to the difference in absorption of photon energy by pathogens and host tissues. The optical properties of pathogenic microorganisms are used along with the known optical properties of soft tissues in calculations of the laser-induced thermal response of pathogen colonies embedded in a tissue model. The objective is to define the laser parameters that optimize pathogen destruction and depth of the bactericidal effect. MATERIALS AND METHODS: The virtual periodontium is a computational model of the optical and time-dependent thermal properties of infected periodontal tissues. The model simulates the periodontal procedure: Laser Sulcular Debridement.1 Virtual pathogen colonies are placed at different depths in the virtual periodontium to determine the depth for effective bactericidal effects given various laser parameters (wavelength, peak power, pulse duration, scan rate, fluence rate) and differences in pathogen sensitivities. RESULTS: Accumulated background heat from multiple passes increases the depth of the bactericidal effect. In visible and near-IR wavelengths the large difference in absorption between normal soft tissue and Porphyromonas gingivalis (Pg) and Prevotella intermedia (Pi) results in selective destruction. Diode laser (810 nm) efficacy and depth of the bactericidal effect are variable and dependent on hemin availability. Both pulsed-Nd:YAG and the 810 nm diode lasers achieve a 2-3 mm deep damage zone for pigmented Pg and Pi in soft tissue without surface damage (selective photoantisepsis). The model predicts no selectivity for the Er:YAG laser (2,940 nm). Depth of the bactericidal effect is highly dependent on pathogen absorption coefficient. Highly sensitive pathogens may be destroyed as deep as 5-6 mm in soft tissue. Short pulse durations enable confinement of the thermal event to the target. Temporal selectivity is achieved by adjusting pulse duration based on target size. CONCLUSION: The scatter-limited phototherapy model of the infected periodontium is applied to develop a proper dosimetry for selective photoantisepsis. Dosimetry planning is essential to the development of a new treatment modality. Lasers Surg. Med. 48:763-773, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Antissepsia/métodos , Lasers Semicondutores , Lasers de Estado Sólido , Periodonto/microbiologia , Fototerapia/métodos , Porphyromonas gingivalis/efeitos da radiação , Prevotella intermedia/efeitos da radiação , Antissepsia/instrumentação , Simulação por Computador , Humanos , Modelos Anatômicos , Desbridamento Periodontal/métodos , Periodontite/microbiologia , Periodontite/terapia , Periodonto/efeitos da radiação , Fototerapia/instrumentação
3.
Lasers Med Sci ; 30(3): 943-52, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24346334

RESUMO

The effects of blue light at 455 nm were investigated on the bacterial composition of human dental plaque in vivo. Eleven subjects who refrained from brushing for 3 days before and during phototherapy participated in the study. Light with a power density of 70 mW/cm(2) was applied to the buccal surfaces of premolar and molar teeth on one side of the mouth twice daily for 2 min over a period of 4 days. Dental plaque was harvested at baseline and again at the end of 4 days from eight posterior teeth on both the exposed side and unexposed sides of the mouth. Microbiological changes were monitored by checkerboard DNA probe analysis of 40 periodontal bacteria. The proportions of black-pigmented species Porphyromonas gingivalis and Prevotella intermedia were significantly reduced on the exposed side from their original proportions by 25 and 56 %, respectively, while no change was observed to the unexposed side. Five other species showed the greatest proportional reduction of the light-exposed side relative to the unexposed side. These species were Streptococcus intermedius, Fusobacterium nucleatum ss. vincentii, Fusobacterium nucleatum ss. polymorphum, Fusobacterium periodonticum, and Capnocytophaga sputigena. At the same time, the percentage of gingival areas scored as being red decreased on the side exposed to light from 48 to 42 %, whereas the percentage scored as red increased on the unexposed side from 53 to 56 %. No adverse effects were found or reported in this study. The present study proposes a new method to modify the ecosystem in dental plaque by phototherapy and introduces a new avenue of prophylactic treatment for periodontal diseases.


Assuntos
Placa Dentária/terapia , Doenças Periodontais/terapia , Adulto , Idoso , Placa Dentária/microbiologia , Feminino , Gengiva/microbiologia , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Periodontais/microbiologia , Fototerapia , Porphyromonas gingivalis/efeitos da radiação , Prevotella intermedia/efeitos da radiação , Adulto Jovem
4.
J Periodontol ; 81(5): 682-91, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20429647

RESUMO

BACKGROUND: This study compared erbium-doped: yttrium, aluminum, and garnet (Er:YAG) laser irradiation (100 mJ/pulse; 10 Hz; 12.9 J/cm(2)) with or without conventional scaling and root planing (SRP) to SRP only for treatment of periodontal pockets. METHODS: Nineteen patients with pockets from 5 to 9 mm were included. In a split-mouth design, each site was allocated to a treatment group: 1) SRPL, SRP and laser; 2) L, laser; 3) SRP, SRP only; and 4) C, no treatment. Clinical parameters of probing depth (PD), gingival recession, and clinical attachment level (CAL) were evaluated at baseline and 1, 3, 6, and 12 months after treatment. Visible plaque index, gingival bleeding index (GI), bleeding on probing (BOP), and subgingival plaque samples were also measured 12 days postoperatively, in addition to the above mentioned months. Intergroup and intragroup statistical analyses were performed (P <0.05). RESULTS: GI decreased for SRPL and increased for L, SRP, and C (P <0.05) 12 days postoperatively and decreased for SRPL and SRP (P <0.05) 3, 6, and 12 months after baseline; BOP and PD decreased for all treated groups (P <0.01) 3, 6, and 12 months after treatment. CAL gain was significant for SRPL, L, and SRP (P <0.05) 3, 6, and 12 months postoperatively. SRPL and L presented a significant reduction in the percentage of sites with bacteria 6 and 12 months after treatment (P <0.05). CONCLUSION: Non-surgical periodontal treatment with Er:YAG laser may be an alternative treatment for reduction and control of the proliferation of microorganisms in persistent periodontitis.


Assuntos
Raspagem Dentária/métodos , Lasers de Estado Sólido/uso terapêutico , Terapia com Luz de Baixa Intensidade/métodos , Bolsa Periodontal/terapia , Aplainamento Radicular/métodos , Adulto , Aggregatibacter actinomycetemcomitans/efeitos da radiação , Bacteroides/efeitos da radiação , Contagem de Colônia Microbiana , Placa Dentária/microbiologia , Placa Dentária/terapia , Índice de Placa Dentária , Feminino , Seguimentos , Hemorragia Gengival/terapia , Retração Gengival/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Perda da Inserção Periodontal/terapia , Índice Periodontal , Bolsa Periodontal/microbiologia , Porphyromonas gingivalis/efeitos da radiação , Prevotella intermedia/efeitos da radiação , Prevotella nigrescens/efeitos da radiação
5.
Gen Dent ; 58(2): e68-73, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20236906

RESUMO

In recent years, the combination of laser light and photosensitizer known as photodynamic therapy (PDT) has been used in periodontal therapy. However, there are not enough clinical studies to fully evaluate the effects of PDT on the periodontal tissues. This microbiological study examined the effects of PDT on the periodontal bacteria in combination with scaling and root planing (SRP) in the same group of patients by randomly selecting PDT or SRP for use in different quadrants of the mouth. For the present study, PDT was compared with a diode laser (980 nm) and an Nd:YA G laser (1,064 nm). Microbiological samples were examined and evaluated over a period of three months. Significant bacterial reduction has been observed in all cases. The diode laser with SRP presented long-term positive results, while PDT showed a significant bacteria reduction during the entire observation period.


Assuntos
Bactérias Gram-Negativas/efeitos dos fármacos , Doenças Periodontais/tratamento farmacológico , Fotoquimioterapia/métodos , Aggregatibacter actinomycetemcomitans/efeitos dos fármacos , Aggregatibacter actinomycetemcomitans/efeitos da radiação , Carga Bacteriana , Bacteroides/efeitos dos fármacos , Bacteroides/efeitos da radiação , Raspagem Dentária/métodos , Fusobacterium nucleatum/efeitos dos fármacos , Fusobacterium nucleatum/efeitos da radiação , Bactérias Gram-Negativas/efeitos da radiação , Humanos , Lasers Semicondutores/uso terapêutico , Lasers de Estado Sólido/uso terapêutico , Terapia com Luz de Baixa Intensidade/métodos , Peptostreptococcus/efeitos dos fármacos , Peptostreptococcus/efeitos da radiação , Doenças Periodontais/microbiologia , Fármacos Fotossensibilizantes/uso terapêutico , Porphyromonas gingivalis/efeitos dos fármacos , Porphyromonas gingivalis/efeitos da radiação , Prevotella intermedia/efeitos dos fármacos , Prevotella intermedia/efeitos da radiação , Aplainamento Radicular/métodos , Treponema denticola/efeitos dos fármacos , Treponema denticola/efeitos da radiação
6.
Antimicrob Agents Chemother ; 49(4): 1391-6, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15793117

RESUMO

We have found that broadband light (380 to 520 nm) rapidly and selectively kills oral black-pigmented bacteria (BPB) in pure cultures and in dental plaque samples obtained from human subjects with chronic periodontitis. We hypothesize that this killing effect is a result of light excitation of their endogenous porphyrins. Cultures of Prevotella intermedia and P. nigrescens were killed by 4.2 J/cm2, whereas P. melaninogenica required 21 J/cm2. Exposure to light with a fluence of 42 J/cm2 produced 99% killing of P. gingivalis. High-performance liquid chromatography demonstrated the presence of various amounts of different porphyrin molecules in BPB. The amounts of endogenous porphyrin in BPB were 267 (P. intermedia), 47 (P. nigrescens), 41 (P. melaninogenica), and 2.2 (P. gingivalis) ng/mg. Analysis of bacteria in dental plaque samples by DNA-DNA hybridization for 40 taxa before and after phototherapy showed that the growth of the four BPB was decreased by 2 and 3 times after irradiation at energy fluences of 4.2 and 21 J/cm2, respectively, whereas the growth of the remaining 36 microorganisms was decreased by 1.5 times at both energy fluences. The present study suggests that intraoral light exposure may be used to control BPB growth and possibly benefit patients with periodontal disease.


Assuntos
Placa Dentária/microbiologia , Luz , Porphyromonas gingivalis/efeitos da radiação , Prevotella/efeitos da radiação , Streptococcus constellatus/efeitos da radiação , Doença Crônica , Contagem de Colônia Microbiana , Humanos , Hibridização de Ácido Nucleico , Periodontite/microbiologia , Periodontite/terapia , Fototerapia , Pigmentos Biológicos/metabolismo , Porfirinas/metabolismo , Porphyromonas gingivalis/classificação , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/crescimento & desenvolvimento , Prevotella/classificação , Prevotella/genética , Prevotella/crescimento & desenvolvimento , Prevotella intermedia/classificação , Prevotella intermedia/genética , Prevotella intermedia/crescimento & desenvolvimento , Prevotella intermedia/efeitos da radiação , Prevotella melaninogenica/classificação , Prevotella melaninogenica/genética , Prevotella melaninogenica/crescimento & desenvolvimento , Prevotella melaninogenica/efeitos da radiação , Streptococcus constellatus/classificação , Streptococcus constellatus/genética , Streptococcus constellatus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA