Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Health Phys ; 121(4): 406-418, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34546221

RESUMO

ABSTRACT: High-dose radiation exposure results in hematopoietic (H) and gastrointestinal (GI) acute radiation syndromes (ARS) followed by delayed effects of acute radiation exposure (DEARE), which include damage to lung, heart, and GI. Whereas DEARE includes inflammation and fibrosis in multiple tissues, the molecular mechanisms contributing to inflammation and to the development of fibrosis remain incompletely understood. Reports that radiation dysregulates retinoids and proteins within the retinoid pathway indicate that radiation disrupts essential nutrient homeostasis. An active metabolite of vitamin A, retinoic acid (RA), is a master regulator of cell proliferation, differentiation, and apoptosis roles in inflammatory signaling and the development of fibrosis. As facets of inflammation and fibrosis are regulated by RA, we surveyed radiation-induced changes in retinoids as well as proteins related to and targets of the retinoid pathway in the non-human primate after high dose radiation with minimal bone marrow sparing (12 Gy PBI/BM2.5). Retinoic acid was decreased in plasma as well as in lung, heart, and jejunum over time, indicating a global disruption of RA homeostasis after IR. A number of proteins associated with fibrosis and with RA were significantly altered after radiation. Together these data indicate that a local deficiency of endogenous RA presents a permissive environment for fibrotic transformation.


Assuntos
Medula Óssea , Retinoides , Animais , Medula Óssea/efeitos da radiação , Homeostase , Nutrientes , Primatas/metabolismo , Retinoides/metabolismo , Tretinoína/farmacologia
2.
Med ; 2(3): 321-342, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33870243

RESUMO

BACKGROUND: The extensive alveolar capillary network of the lungs is an attractive route for administration of several agents. One key functional attribute is the rapid onset of systemic action due to the absence of first-pass metabolism. METHODS: Here we applied a combinatorial approach for ligand-directed pulmonary delivery as a unique route for systemic targeting in vaccination. FINDINGS: We screened a phage display random peptide library in vivo to select, identify, and validate a ligand (CAKSMGDIVC) that specifically targets and is internalized through its receptor, α3ß1 integrin, on the surface of cells lining the lung airways and alveoli and mediates CAKSMGDIVC-displaying phage binding and systemic delivery without compromising lung homeostasis. As a proof-of-concept, we show that the pulmonary delivery of targeted CAKSMGDIVC-displaying phage particles in mice and non-human primates elicit a systemic and specific humoral response. CONCLUSIONS: This broad methodology blueprint represents a robust and versatile platform tool enabling new ligand-receptor discovery with many potential translational applications. FUNDING: Cancer Center Support Grants to the University of Texas M.D. Anderson Cancer Center (CA016672), University of New Mexico Comprehensive Cancer Center (CA118100), Rutgers Cancer Institute of New Jersey (CA072720), research awards from the Gillson Longenbaugh Foundation, and National Institutes of Health (NIH) grant no. 1R01CA226537.


Assuntos
Bacteriófagos , Pulmão , Animais , Bacteriófagos/genética , Proteínas de Transporte/metabolismo , Ligantes , Pulmão/metabolismo , Camundongos , Primatas/metabolismo , Estados Unidos , Vacinação
4.
Mol Endocrinol ; 23(3): 349-59, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19131510

RESUMO

Previously, we have reported that 17beta-estradiol (E(2)) induces an increase in firing activity of primate LH-releasing hormone (LHRH) neurons. The present study investigates whether E(2) alters LHRH release as well as the pattern of intracellular calcium ([Ca(2+)](i)) oscillations and whether G protein-coupled receptor 30 (GPR30) plays a role in mediating the rapid E(2) action in primate LHRH neurons. Results are summarized: 1) E(2), the nuclear membrane-impermeable estrogen, estrogen-dendrimer conjugate, and the plasma membrane-impermeable estrogen, E(2)-BSA conjugate, all stimulated LHRH release within 10 min of exposure; 2) whereas the estrogen receptor antagonist, ICI 182,780, did not block the E(2)-induced LHRH release, E(2) application to cells treated with pertussis toxin failed to induce LHRH release; 3) GPR30 mRNA was expressed in olfactory placode cultures, and GPR30 protein was expressed in a subset of LHRH neurons; 4) pertussis toxin treatment blocked the E(2)-induced increase in [Ca(2+)](i) oscillations; 5) knockdown of GPR30 in primate LHRH neurons by transfection with small interfering RNA (siRNA) for GPR30 completely abrogated the E(2)-induced changes in [Ca(2+)](i) oscillations, whereas transfection with control siRNA did not; 6) the estrogen-dendrimer conjugate-induced increase in [Ca(2+)](i) oscillations also did not occur in LHRH neurons transfected with GPR30 siRNA; and 7) G1, a GPR30 agonist, resulted in changes in [Ca(2+)](i) oscillations, similar to those observed with E(2). Collectively, E(2) induces a rapid excitatory effect on primate LHRH neurons, and this rapid action of E(2) appears to be mediated, in part, through GPR30.


Assuntos
Estradiol/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/efeitos dos fármacos , Primatas , Receptores Acoplados a Proteínas G/fisiologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Dendrímeros/farmacologia , Embrião de Mamíferos , Estradiol/análogos & derivados , Estrogênios Conjugados (USP)/farmacologia , Feminino , Fulvestranto , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Macaca mulatta , Neurônios/metabolismo , Condutos Olfatórios/efeitos dos fármacos , Condutos Olfatórios/metabolismo , Toxina Pertussis/farmacologia , Gravidez , Primatas/metabolismo , Primatas/fisiologia , RNA Interferente Pequeno/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Soroalbumina Bovina/farmacologia , Transmissão Sináptica/efeitos dos fármacos
5.
ILAR J ; 45(2): 116-31, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15111731

RESUMO

Anovulatory infertility affects a large proportion of reproductive-aged women. Major improvements in successful clinical treatment of this prevalent disorder in women's health have been made possible because of biomedical research employing nonhuman primates. Experiments on female rhesus monkeys were the first to demonstrate that the key hypothalamic neurotransmitter, gonadotropin-releasing hormone, involved in stimulating pituitary gonadotropin synthesis, storage, and release was bioactive only when released in approximately hourly bursts. This breakthrough in understanding gonadotropin regulation enabled identification of hypogonadotropic, apparently normogonadotropic, and hypergonadotropic forms of anovulatory infertility, and development of appropriate stimulatory or inhibitory gonadotropin therapies. Treatments to overcome anovulatory infertility represent one of the major advances in clinical reproductive endocrinology during the last 25 yr. The future promise of nonhuman primate models for human ovulatory dysfunction, however, may be based on an increased understanding of molecular and physiological mechanisms responsible for fetal programming of adult metabolic and reproductive defects and for obesity-related, hyperinsulinemic impairment of oocyte development.


Assuntos
Anovulação/fisiopatologia , Modelos Animais de Doenças , Infertilidade Feminina/fisiopatologia , Doenças Ovarianas/fisiopatologia , Primatas/fisiologia , Animais , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Hiperprolactinemia/fisiopatologia , Hipotálamo/fisiopatologia , Leptina/metabolismo , Primatas/metabolismo , Estresse Fisiológico/fisiopatologia , Fatores de Tempo
6.
J Comp Neurol ; 309(4): 445-85, 1991 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-1918444

RESUMO

The cytoarchitecture and distributions of seven neuropeptides were examined in the the bed nucleus of the stria terminalis (BST), substantia innominata (SI), and central and medial nuclei of the amygdala of human and monkey to determine whether neurons of these regions form an anatomical continuum in primate brain. The BST and centromedial amygdala have common cyto- and chemo-architectonic characteristics, and these regions are components of a distinct neuronal complex. This neuronal continuum extends dorsally, with the stria terminalis, from the BST and merges with the amygdala; it extends ventrally from the BST through the SI to the centromedial amygdala. The cytoarchitectonics of the BST-amygdala complex are heterogeneous and compartmental. The BST is parcellated broadly into anterior, lateral, medial, ventral, supracapsular, and sublenticular divisions. The central and medial nuclei of the amygdala are also parcellated into several subdivisions. Neurons of central and medial nuclei of the amygdala are similar to neurons in the lateral and medial divisions of the BST, respectively. Neurons in the SI form cellular bridges between the BST and amygdala. The BST, SI, and amygdala share several neuropeptide transmitters, and patterns of peptide immunoreactivity parallel cytological findings. Specific chemoarchitectonic zones were delineated by perikaryal, peridendritic/perisomatic, axonal, and terminal immunoreactivities. The results of this investigation demonstrate that there is a neuronal continuity between the BST and amygdala and that the BST-amygdala complex is prominent and discretely compartmental in forebrains of human and monkey.


Assuntos
Tonsila do Cerebelo/anatomia & histologia , Hipotálamo/anatomia & histologia , Primatas/anatomia & histologia , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/metabolismo , Animais , Chlorocebus aethiops , Feminino , Histocitoquímica , Humanos , Hipotálamo/citologia , Hipotálamo/metabolismo , Imuno-Histoquímica , Macaca mulatta , Masculino , Vias Neurais/anatomia & histologia , Vias Neurais/citologia , Vias Neurais/metabolismo , Neuropeptídeos/metabolismo , Papio , Primatas/metabolismo
7.
Br J Nutr ; 40(1): 55-62, 1978 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-208595

RESUMO

1. Food intake studies were carried out on three groups of captive primates (anthropoid apes (Pongidae), lemurs (Lemuridae) and marmosets (Callitrichidae). 2. Determination and analysis of the nutrient intakes were carried out by calculations based on food tables. The results from all groups were compared. 3. Marmosets were found to have higher intakes of energy and many other nutrients than the apes and lemurs. 4. The results suggest that there is a tendency towards over use of dietary supplements and foods of higher nutrient density for captive primates.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Animais de Zoológico/metabolismo , Dieta , Primatas/metabolismo , Animais , Peso Corporal , Cálcio/metabolismo , Callitrichinae/metabolismo , Colecalciferol/metabolismo , Gorduras na Dieta/metabolismo , Proteínas Alimentares/metabolismo , Feminino , Haplorrinos , Hominidae/metabolismo , Lemur/metabolismo , Masculino , Fósforo/metabolismo , Vitamina A/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA