Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Biol Interact ; 388: 110833, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38101600

RESUMO

Many chemotherapeutic drugs suffer from multidrug resistance (MDR). Efflux transporters, namely ATP-binding cassettes (ABCs), that pump the drugs out of the cancer cells comprise one major reason behind MDR. Therefore, ABC inhibitors have been under development for ages, but unfortunately, without clinical success. In the present study, an l-type amino acid transporter 1 (LAT1)-utilizing derivative of probenecid (PRB) was developed as a cancer cell-targeted efflux inhibitor for P-glycoprotein (P-gp), breast cancer resistant protein (BCRP) and/or several multidrug resistant proteins (MRPs), and its ability to increase vinblastine (VBL) cellular accumulation and apoptosis-inducing effects were explored. The novel amino acid derivative of PRB (2) increased the VBL exposure in triple-negative human breast cancer cells (MDA-MB-231) and human glioma cells (U-87MG) by 10-68 -times and 2-5-times, respectively, but not in estrogen receptor-positive human breast cancer cells (MCF-7). However, the combination therapy had greater cytotoxic effects in MCF-7 compared to MDA-MB-231 cells due to the increased oxidative stress recorded in MCF-7 cells. The metabolomic study also revealed that compound 2, together with VBL, decreased the transport of those amino acids essential for the biosynthesis of endogenous anti-oxidant glutathione (GSH). Moreover, the metabolic differences between the outcomes of the studied breast cancer cell lines were explained by the distinct expression profiles of solute carriers (SLCs) that can be concomitantly inhibited. Therefore, attacking several SLCs simultaneously to change the nutrient environment of cancer cells can serve as an adjuvant therapy to other chemotherapeutics, offering an alternative to ABC inhibitors.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Vimblastina/farmacologia , Vimblastina/metabolismo , Vimblastina/uso terapêutico , Probenecid/farmacologia , Probenecid/uso terapêutico , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Apoptose , Estresse Oxidativo , Aminoácidos/metabolismo , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral
2.
Neurotherapeutics ; 20(6): 1529-1537, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37596428

RESUMO

N-Acetylcysteine (NAC) has shown promise as a putative neurotherapeutic for traumatic brain injury (TBI). Yet, many such promising compounds have limited ability to cross the blood-brain barrier (BBB), achieve therapeutic concentrations in brain, demonstrate target engagement, among other things, that have hampered successful translation. A pharmacologic strategy for overcoming poor BBB permeability and/or efflux out of the brain of organic acid-based, small molecule therapeutics such as NAC is co-administration with a targeted or nonselective membrane transporter inhibitor. Probenecid is a classic ATP-binding cassette and solute carrier inhibitor that blocks transport of organic acids, including NAC. Accordingly, combination therapy using probenecid as an adjuvant with NAC represents a logical neurotherapeutic strategy for treatment of TBI (and other CNS diseases). We have completed a proof-of-concept pilot study using this drug combination in children with severe TBI-the Pro-NAC Trial (ClinicalTrials.gov NCT01322009). In this review, we will discuss the background and rationale for combination therapy with probenecid and NAC in TBI, providing justification for further clinical investigation.


Assuntos
Lesões Encefálicas Traumáticas , Probenecid , Criança , Humanos , Probenecid/uso terapêutico , Probenecid/farmacologia , Acetilcisteína/uso terapêutico , Acetilcisteína/farmacologia , Projetos Piloto , Lesões Encefálicas Traumáticas/tratamento farmacológico , Encéfalo , Barreira Hematoencefálica
3.
Drugs ; 82(5): 533-557, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35294769

RESUMO

Sulopenem (formerly known as CP-70,429, and CP-65,207 when a component of a racemic mixture with its R isomer) is an intravenous and oral penem that possesses in vitro activity against fluoroquinolone-resistant, extended spectrum ß-lactamases (ESBL)-producing, multidrug-resistant (MDR) Enterobacterales. Sulopenem is being developed to treat patients with uncomplicated and complicated urinary tract infections (UTIs) as well as intra-abdominal infections. This review will focus mainly on its use in UTIs. The chemical structure of sulopenem shares properties of penicillins, cephalosporins, and carbapenems. Sulopenem is available as an oral prodrug formulation, sulopenem etzadroxil, which is hydrolyzed by intestinal esterases, resulting in active sulopenem. In early studies, the S isomer of CP-65,207, later developed as sulopenem, demonstrated greater absorption, higher drug concentrations in the urine, and increased stability against the renal enzyme dehydropeptidase-1 compared with the R isomer, which set the stage for its further development as a UTI antimicrobial. Sulopenem is active against both Gram-negative and Gram-positive microorganisms. Sulopenem's ß-lactam ring alkylates the serine residues of penicillin-binding protein (PBP), which inhibits peptidoglycan cross-linking. Due to its ionization and low molecular weight, sulopenem passes through outer membrane proteins to reach PBPs of Gram-negative bacteria. While sulopenem activity is unaffected by many ß-lactamases, resistance arises from alterations in PBPs (e.g., methicillin-resistant Staphylococcus aureus [MRSA]), expression of carbapenemases (e.g., carbapenemase-producing Enterobacterales and in Stenotrophomonas maltophilia), reduction in the expression of outer membrane proteins (e.g., some Klebsiella spp.), and the presence of efflux pumps (e.g., MexAB-OprM in Pseudomonas aeruginosa), or a combination of these mechanisms. In vitro studies have reported that sulopenem demonstrates greater activity than meropenem and ertapenem against Enterococcus faecalis, Listeria monocytogenes, methicillin-susceptible S. aureus (MSSA), and Staphylococcus epidermidis, as well as similar activity to carbapenems against Streptococcus agalactiae, Streptococcus pneumoniae, and Streptococcus pyogenes. With some exceptions, sulopenem activity against Gram-negative aerobes was less than ertapenem and meropenem but greater than imipenem. Sulopenem activity against Escherichia coli carrying ESBL, CTX-M, or Amp-C enzymes, or demonstrating MDR phenotypes, as well as against ESBL-producing Klebsiella pneumoniae, was nearly identical to ertapenem and meropenem and greater than imipenem. Sulopenem exhibited identical or slightly greater activity than imipenem against many Gram-positive and Gram-negative anaerobes, including Bacteroides fragilis. The pharmacokinetics of intravenous sulopenem appear similar to carbapenems such as imipenem-cilastatin, meropenem, and doripenem. In healthy subjects, reported volumes of distribution (Vd) ranged from 15.8 to 27.6 L, total drug clearances (CLT) of 18.9-24.9 L/h, protein binding of approximately 10%, and elimination half-lives (t½) of 0.88-1.03 h. The estimated renal clearance (CLR) of sulopenem is 8.0-10.6 L/h, with 35.5% ± 6.7% of a 1000 mg dose recovered unchanged in the urine. An ester prodrug, sulopenem etzadroxil, has been developed for oral administration. Initial investigations reported a variable oral bioavailability of 20-34% under fasted conditions, however subsequent work showed that bioavailability is significantly improved by administering sulopenem with food to increase its oral absorption or with probenecid to reduce its renal tubular secretion. Food consumption increases the area under the curve (AUC) of oral sulopenem (500 mg twice daily) by 23.6% when administered alone and 62% when administered with 500 mg of probenecid. Like carbapenems, sulopenem demonstrates bactericidal activity that is associated with the percentage of time that free concentrations exceed the MIC (%f T > MIC). In animal models, bacteriostasis was associated with %f T > MICs ranging from 8.6 to 17%, whereas 2-log10 kill was seen at values ranging from 12 to 28%. No pharmacodynamic targets have been documented for suppression of resistance. Sulopenem concentrations in urine are variable, ranging from 21.8 to 420.0 mg/L (median 84.4 mg/L) in fasted subjects and 28.8 to 609.0 mg/L (median 87.3 mg/L) in those who were fed. Sulopenem has been compared with carbapenems and cephalosporins in guinea pig and murine systemic and lung infection animal models. Studied pathogens included Acinetobacter calcoaceticus, B. fragilis, Citrobacter freundii, Enterobacter cloacae, E. coli, K. pneumoniae, Proteus vulgaris, and Serratia marcescens. These studies reported that overall, sulopenem was non-inferior to carbapenems but appeared to be superior to cephalosporins. A phase III clinical trial (SURE-1) reported that sulopenem was not non-inferior to ciprofloxacin in women infected with fluoroquinolone-susceptible pathogens, due to a higher rate of asymptomatic bacteriuria in sulopenem-treated patients at the test-of-cure visit. However, the researchers reported superiority of sulopenem etzadroxil/probenecid over ciprofloxacin for the treatment of uncomplicated UTIs in women infected with fluoroquinolone/non-susceptible pathogens, and non-inferiority in all patients with a positive urine culture. A phase III clinical trial (SURE-2) compared intravenous sulopenem followed by oral sulopenem etzadroxil/probenecid with ertapenem in the treatment of complicated UTIs. No difference in overall success was noted at the end of therapy. However, intravenous sulopenem followed by oral sulopenem etzadroxil was not non-inferior to ertapenem followed by oral stepdown therapy in overall success at test-of-cure due to a higher rate of asymptomatic bacteriuria in the sulopenem arm. After a meeting with the US FDA, Iterum stated that they are currently evaluating the optimal design for an additional phase III uncomplicated UTI study to be conducted prior to the potential resubmission of the New Drug Application (NDA). It is unclear at this time whether Iterum intends to apply for EMA or Japanese regulatory approval. The safety and tolerability of sulopenem has been reported in various phase I pharmacokinetic studies and phase III clinical trials. Sulopenem (intravenous and oral) appears to be well tolerated in healthy subjects, with and without the coadministration of probenecid, with few serious drug-related treatment-emergent adverse events (TEAEs) reported to date. Reported TEAEs affecting ≥1% of patients were (from most to least common) diarrhea, nausea, headache, vomiting and dizziness. Discontinuation rates were low and were not different than comparator agents. Sulopenem administered orally and/or intravenously represents a potentially well tolerated and effective option for treating uncomplicated and complicated UTIs, especially in patients with documented or highly suspected antimicrobial pathogens to commonly used agents (e.g. fluoroquinolone-resistant E. coli), and in patients with documented microbiological or clinical failure or patients who demonstrate intolerance/adverse effects to first-line agents. This agent will likely be used orally in the outpatient setting, and intravenously followed by oral stepdown in the hospital setting. Sulopenem also allows for oral stepdown therapy in the hospital setting from intravenous non-sulopenem therapy. More clinical data are required to fully assess the clinical efficacy and safety of sulopenem, especially in patients with complicated UTIs caused by resistant pathogens such as ESBL-producing, Amp-C, MDR E. coli. Antimicrobial stewardship programs will need to create guidelines for when this oral and intravenous penem should be used.


Assuntos
Bacteriúria , Staphylococcus aureus Resistente à Meticilina , Pró-Fármacos , Infecções Urinárias , Animais , Feminino , Cobaias , Humanos , Masculino , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriúria/induzido quimicamente , Bacteriúria/tratamento farmacológico , beta-Lactamases/farmacologia , Carbapenêmicos/farmacologia , Cefalosporinas/farmacologia , Ciprofloxacina/farmacologia , Ertapenem , Escherichia coli , Fluoroquinolonas/farmacologia , Bactérias Gram-Negativas , Imipenem/farmacologia , Lactamas , Proteínas de Membrana/farmacologia , Meropeném/farmacologia , Probenecid/farmacologia , Pró-Fármacos/farmacologia , Staphylococcus aureus , Infecções Urinárias/tratamento farmacológico
4.
Oxid Med Cell Longev ; 2022: 1837278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589679

RESUMO

A naphthoquinone molecule known as plumbagin (PL), which has a wide range of pharmacological properties including antitumor, antioxidation, anti-inflammation, and neuroprotective effects, is extracted from the roots of the medicinal herb Plumbago zeylanica L. Plumbagin has been studied for its potential to treat Parkinson's disease (PD). However, its effectiveness and mechanism are still unknown. This study intends to evaluate plumbagin's effectiveness against PD in vitro and in vivo. Plumbagin partially repaired the loss of dopaminergic neurons in the nigral substantia nigra and the resulting behavioural impairment caused by MPTP or MPTP/probenecid in mice. Furthermore, plumbagin treatment significantly inhibited the TLR/NF-κB pathways. It reduced the TNF-α, IL-6, and IL-1ß mRNA expression in PD mice induced by MPTP or MPTP/probenecid, which was consistent with the findings in the inflammatory model of BV2 cells induced by MPP+ or LPS. In addition, plumbagin treatment enhanced the microtubule-associated protein 1 light chain 3 beta (LC3) LC3-II/LC3-I levels while decreasing the p-mTOR and p62 protein accumulation in PD mice induced by MPTP or MPTP/probenecid, which was similar to the results obtained from the experiments in SH-SY5Y and PC12 cells induced by MPP+. Consequently, our results support the hypothesis that plumbagin, by promoting autophagy and inhibiting the activation of the TLR/NF-κB signaling pathway, is a promising treatment agent for treating Parkinson's disease (PD). However, to confirm plumbagin's anti-PD action more thoroughly, other animal and cell PD models must be used in future studies.


Assuntos
Naftoquinonas , Neuroblastoma , Fármacos Neuroprotetores , Doença de Parkinson , Ratos , Humanos , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Probenecid/metabolismo , Probenecid/farmacologia , Neuroblastoma/metabolismo , Transdução de Sinais , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , Naftoquinonas/metabolismo , Neurônios Dopaminérgicos/metabolismo , Autofagia , Camundongos Endogâmicos C57BL , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/metabolismo , Modelos Animais de Doenças
5.
Inflammation ; 42(3): 1082-1092, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30725252

RESUMO

Acute brain dysfunction and the following neurological manifestation are common complications in septic patients, which are associated with increased morbidity and mortality. However, the therapeutic strategy of this disorder remains a major challenge. Given the emerging role of a clinically approved drug, probenecid (PRB) has been recently identified as an inhibitor of pannexin 1 (PANX1) channel, which restrains extracellular ATP release-induced purinergic pathway activation and inflammatory response contributing to diverse pathological processes. In this study, we explored whether PRB administration attenuated neuroinflammatory response and cognitive impairment during sepsis. In mice suffered from cecal ligation and puncture (CLP)-induced sepsis, treatment with PRB improved memory retention and lessened behavioral deficits. This neuroprotective effect was coupled with restricted overproduction of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and interleukin (IL)-1ß in the hippocampus. Since this damped neuroinflammation was replicated by inhibition of ATP release, it suggested that PANX1 channel modulates a purinergic-related pathway contributing to the neurohistological damage. Therefore, we identified PRB could be a promising therapeutic approach for the therapy of cerebral dysfunction of sepsis.


Assuntos
Trifosfato de Adenosina/metabolismo , Conexinas/antagonistas & inibidores , Proteínas do Tecido Nervoso/antagonistas & inibidores , Probenecid/farmacologia , Sepse/tratamento farmacológico , Adjuvantes Farmacêuticos , Animais , Córtex Cerebral/fisiopatologia , Transtornos Cognitivos/prevenção & controle , Conexinas/metabolismo , Inflamação/prevenção & controle , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Fármacos Neuroprotetores/farmacologia , Probenecid/uso terapêutico , Sepse/complicações
6.
J Asian Nat Prod Res ; 21(8): 754-771, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30606060

RESUMO

Andrographolide, a major bioactive compound isolated from Andrographis paniculata (Burm. F.) Nees, was evaluated for its effects on the hOAT1 membrane transporter. Substrate determination and inhibition of hOAT1-mediated uptake transport assay was carried out using recombinant CHO-hOAT1 cells. The results showed that the uptake ratio of andrographolide was less than 2.0 at all concentrations tested, indicating that andrographolide is not a hOAT1 substrate. Andrographolide has no significant effects on the p-aminohippuric acid uptake and on the mRNA and protein expression of hOAT1. In conclusion, andrographolide may not pose a drug-herb interaction risk related to hOAT1.


Assuntos
Diterpenos/farmacologia , Proteína 1 Transportadora de Ânions Orgânicos/antagonistas & inibidores , Animais , Células CHO , Proliferação de Células/efeitos dos fármacos , Cricetulus , Diterpenos/farmacocinética , Interações Ervas-Drogas , Humanos , Simulação de Acoplamento Molecular , Proteína 1 Transportadora de Ânions Orgânicos/análise , Proteína 1 Transportadora de Ânions Orgânicos/química , Proteína 1 Transportadora de Ânions Orgânicos/genética , Probenecid/química , Probenecid/farmacologia , Ácido p-Aminoipúrico/farmacocinética
7.
Biochem Biophys Res Commun ; 509(4): 931-936, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30648554

RESUMO

Organic anion transporters (OATs in humans, Oats in rodents) play an important role in the distribution and excretion of numerous endogenous metabolic products and exogenous organic anions, including a host of widely prescribed drugs. Their ligand recognition is also important for drug therapy and development. In this study, the n-butanol and dichloromethane soluble fractions of Juniperus oblonga were found to inhibit OAT3 in vitro and three biflavonoids were found to be responsible for this activity. One of these compounds, amentoflavone exhibited stronger inhibition than probenecid, a known strong inhibitor of OAT3. Biological characterization of amentoflavone in vivo also showed inhibition of Oat3. Preliminary observations of structure-activity relationships suggest that the biflavonoids are more potent inhibitors of this transporter than their corresponding monomer, and that methylation of even a single hydroxyl group results in a substantial decrease in activity. This greater potency of the biflavonoids may indicate the need for a more in-depth investigation of the distribution of biflavonoids in plants used as foodstuffs and herbal medicines, due to their potential for causing interactions with OAT3 substrate drugs.


Assuntos
Biflavonoides/farmacologia , Juniperus/química , Transportadores de Ânions Orgânicos Sódio-Independentes/antagonistas & inibidores , Animais , Biflavonoides/isolamento & purificação , Dimerização , Interações Medicamentosas , Humanos , Extratos Vegetais/farmacologia , Probenecid/farmacologia
8.
Am J Chin Med ; 45(8): 1745-1759, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29121796

RESUMO

The flower bud of Daphne genkwa (Genkwa Flos) is a commonly used herbal medicine in Asian countries. Luteolin and apigenin are two recognized active flavonoids in Genkwa Flos. The aim of this study was to investigate the intestinal absorption mechanisms of Genkwa Flos flavonoids using in situ single-pass intestinal perfusion rat model. Using HPLC, we determined its major effective flavonoids luteolin, apigenin, as well as, hydroxygenkwanin and genkwanin in biological samples. The intestinal absorption mechanisms of the total flavonoids in Genkwa Flos (TFG) were investigated using in situ single-pass intestinal perfusion rat model. Comparing the TFG absorption rate in different intestinal segments, data showed that the small intestine absorption was significantly higher than that of the colon ([Formula: see text]). Compared with duodenum and ileum, the jejunum was the best small intestinal site for TFG absorption. The high TFG concentration (61.48[Formula: see text][Formula: see text]g/ml) yielded the highest permeability ([Formula: see text]). Subsequently, three membrane protein inhibitors (verapamil, pantoprazole and probenecid) were used to explore the TFG absorption pathways. Data showed probenecid, a multidrug resistance protein (or MRP) inhibitor, effectively enhanced the TFG absorption ([Formula: see text]). Furthermore, by comparing commonly used natural absorption enhancers on TFG, it was observed that camphor was the most effective. In Situ single-pass intestinal perfusion experiment shows that TFG absorption is much higher in the small intestine than in the colon, and the TFG is absorbed mainly via an active transport pathway with MRP-mediated efflux mechanism. Camphor obviously enhanced the TFG absorption, and this could be an effective TFG formulation preparation method to increase clinical effectiveness after Genkwa Flos administration. Our study elucidated the TFG absorption mechanisms, and provided new information for its formulation preparation.


Assuntos
Apigenina/metabolismo , Daphne/química , Absorção Intestinal/fisiologia , Intestino Delgado/metabolismo , Luteolina/metabolismo , Perfusão , Animais , Apigenina/isolamento & purificação , Cânfora/farmacologia , Colo/metabolismo , Flores/química , Luteolina/isolamento & purificação , Masculino , Modelos Animais , Perfusão/métodos , Probenecid/farmacologia , Ratos Sprague-Dawley
9.
PLoS One ; 12(7): e0180280, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28686657

RESUMO

BACKGROUND: There are no therapies shown to improve outcome after severe traumatic brain injury (TBI) in humans, a leading cause of morbidity and mortality. We sought to verify brain exposure of the systemically administered antioxidant N-acetylcysteine (NAC) and the synergistic adjuvant probenecid, and identify adverse effects of this drug combination after severe TBI in children. METHODS: IRB-approved, randomized, double-blind, placebo controlled Phase I study in children 2 to 18 years-of-age admitted to a Pediatric Intensive Care Unit after severe TBI (Glasgow Coma Scale [GCS] score ≤8) requiring an externalized ventricular drain for measurement of intracranial pressure (ICP). Patients were recruited from November 2011-August 2013. Fourteen patients (n = 7/group) were randomly assigned after obtaining informed consent to receive probenecid (25 mg/kg load, then 10 mg/kg/dose q6h×11 doses) and NAC (140 mg/kg load, then 70 mg/kg/dose q4h×17 doses), or placebos via naso/orogastric tube. Serum and CSF samples were drawn pre-bolus and 1-96 h after randomization and drug concentrations were measured via UPLC-MS/MS. Glasgow Outcome Scale (GOS) score was assessed at 3 months. RESULTS: There were no adverse events attributable to drug treatment. One patient in the placebo group was withdrawn due to adverse effects. In the treatment group, NAC concentrations ranged from 16,977.3±2,212.3 to 16,786.1±3,285.3 in serum and from 269.3±113.0 to 467.9±262.7 ng/mL in CSF, at 24 to 72 h post-bolus, respectively; and probenecid concentrations ranged from 75.4.3±10.0 to 52.9±25.8 in serum and 5.4±1.0 to 4.6±2.1 µg/mL in CSF, at 24 to 72 h post-bolus, respectively (mean±SEM). Temperature, mean arterial pressure, ICP, use of ICP-directed therapies, surveillance serum brain injury biomarkers, and GOS at 3 months were not different between groups. CONCLUSIONS: Treatment resulted in detectable concentrations of NAC and probenecid in CSF and was not associated with undesirable effects after TBI in children. TRIAL REGISTRATION: ClinicalTrials.gov NCT01322009.


Assuntos
Acetilcisteína/farmacocinética , Adjuvantes Farmacêuticos/farmacocinética , Antioxidantes/farmacocinética , Lesões Encefálicas Traumáticas/tratamento farmacológico , Probenecid/farmacocinética , Acetilcisteína/sangue , Acetilcisteína/líquido cefalorraquidiano , Acetilcisteína/farmacologia , Adjuvantes Farmacêuticos/farmacologia , Adolescente , Antioxidantes/farmacologia , Biomarcadores/sangue , Temperatura Corporal , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/líquido cefalorraquidiano , Lesões Encefálicas Traumáticas/mortalidade , Criança , Pré-Escolar , Método Duplo-Cego , Esquema de Medicação , Feminino , Escala de Coma de Glasgow , Escala de Resultado de Glasgow , Humanos , Pressão Intracraniana/efeitos dos fármacos , Intubação Gastrointestinal , Masculino , Probenecid/sangue , Probenecid/líquido cefalorraquidiano , Probenecid/farmacologia , Análise de Sobrevida
10.
PLoS One ; 11(10): e0164305, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27711248

RESUMO

Tetrahydrobiopterin (BH4) is an essential cofactor of nitric oxide synthase (NOS) and aromatic amino acid hydroxylases. BH4 and 7,8-dihydrobiopterin (BH2) are metabolically interchangeable at the expense of NADPH. Exogenously administered BH4 can be metabolized by the body, similar to vitamins. At present, synthetic BH4 is used as an orphan drug for patients with inherited diseases requiring BH4 supplementation. BH4 supplementation has also drawn attention as a means of treating certain cardiovascular symptoms, however, its application in human patients remains limited. Here, we tracked biopterin (BP) distribution in blood, bile, urine, liver, kidney and brain after BH4 administration (5 mg/kg rat, i.v.) with or without prior treatment with probenecid, a potent inhibitor of uptake transporters particularly including organic anion transporter families such as OTA1 and OAT3. The rapid excretion of BP in urine was driven by elevated blood concentrations and its elimination reached about 90% within 120 min. In the very early period, BP was taken up by the liver and kidney and gradually released back to the blood. BH4 administration caused a considerable decrease in the BH4% in blood BP as an inevitable compensatory process. Probenecid treatment slowed down the decrease in blood BP and simultaneously inhibited its initial rapid excretion in the kidney. At the same time, the BH4% was further lowered, suggesting that the probenecid-sensitive BP uptake played a crucial role in BH2 scavenging in vivo. This suggested that the overproduced BH2 was taken up by organs by means of the probenecid-sensitive process, and was then scavenged by counter-conversion to BH4 via the BH4 salvage pathway. Taken together, BH4 administration was effective at raising BP levels in organs over the course of hours but with extremely low efficiency. Since a high BH2 relative to BH4 causes NOS dysfunction, the lowering of the BH4% must be avoided in practice, otherwise the desired effect of the supplementation in ameliorating NOS dysfunction would be spoiled.


Assuntos
Biopterinas/análogos & derivados , Biopterinas/análise , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Probenecid/farmacologia , Animais , Bile/química , Bile/efeitos dos fármacos , Bile/metabolismo , Biopterinas/sangue , Biopterinas/química , Biopterinas/metabolismo , Biopterinas/farmacologia , Biopterinas/urina , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ciclosporina/farmacologia , Eritrócitos/química , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Feminino , Rim/química , Rim/metabolismo , Fígado/química , Fígado/metabolismo , Masculino , Óxido Nítrico Sintase/metabolismo , Ratos
11.
J Mol Cell Cardiol ; 85: 249-61, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26093151

RESUMO

Cannabinoid receptor type 1 (CB1R) plays an important role in the development of myocardial hypertrophy and fibrosis-2 pathological features of uremic cardiomyopathy. However, it remains unknown whether CB1R is involved in the pathogenesis of uremic cardiomyopathy. Here, we aimed to elucidate the role of CB1R in the development of uremic cardiomyopathy via modulation of Akt signalling. The heart size and myocardial fibrosis were evaluated by echocardiography and immunohistochemical staining, respectively, in 5/6 nephrectomy chronic kidney disease (CKD) mice treated with a CB1R antagonist. CB1R and fibrosis marker expression levels were determined by immunoblotting in H9c2 cells exposed to the uremic toxin indoxyl sulfate (IS), with an organic anion transporter 1 inhibitor or a CB1R antagonist or agonist. Akt phosphorylation was also assessed to examine the signaling pathways downstream of CB1R activation induced by IS in H9c2 cells. CKD mice exhibited marked left ventricular hypertrophy and myocardial fibrosis, which were reversed by treatment with the CB1R antagonist. CB1R, collagen I, transforming growth factor (TGF)-ß, and α-smooth muscle actin (SMA) expression showed time- and dose-dependent upregulation in H9c2 cells treated with IS. The inhibition of CB1R by either CB1R antagonist or small interfering RNA-mediated knockdown attenuated the expression of collagen I, TGF-ß, and α-SMA in IS-treated H9c2 cells, while Akt phosphorylation was enhanced by CB1R agonist and abrogated by CB1R antagonist in these cells. In summary, we conclude that CB1R blockade attenuates LVH and Akt-mediated cardiac fibrosis in a CKD mouse model. Uremic toxin IS stimulates the expression of CB1R and fibrotic markers and CB1R inhibition exerts anti-fibrotic effects via modulation of Akt signaling in H9c2 myofibroblasts. Therefore, the development of drugs targeting CB1R may have therapeutic potential in the treatment of uremic cardiomyopathy.


Assuntos
Antagonistas de Receptores de Canabinoides/farmacologia , Hipertrofia Ventricular Esquerda/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor CB1 de Canabinoide/antagonistas & inibidores , Uremia/tratamento farmacológico , Animais , Antagonistas de Receptores de Canabinoides/uso terapêutico , Linhagem Celular , Colágeno/metabolismo , Avaliação Pré-Clínica de Medicamentos , Fibrose , Hipertrofia Ventricular Esquerda/etiologia , Masculino , Camundongos Endogâmicos C57BL , Probenecid/farmacologia , Ratos , Ratos Sprague-Dawley , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Uremia/complicações
12.
Glia ; 63(5): 906-20, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25643925

RESUMO

L-tri-iodothyronine (3, 3', 5-triiodothyronine; T3) is an active form of the thyroid hormone (TH) essential for the development and function of the CNS. Though nongenomic effect of TH, its plasma membrane-bound receptor, and its signaling has been identified, precise function in each cell type of the CNS remained to be investigated. Clearance of cell debris and apoptotic cells by microglia phagocytosis is a critical step for the restoration of damaged neuron-glia networks. Here we report nongenomic effects of T3 on microglial functions. Exposure to T3 increased migration, membrane ruffling and phagocytosis of primary cultured mouse microglia. Injection of T3 together with stab wound attracted more microglia to the lesion site in vivo. Blocking TH transporters and receptors (TRs) or TRα-knock-out (KO) suppressed T3-induced microglial migration and morphological change. The T3-induced microglial migration or membrane ruffling was attenuated by inhibiting Gi /o -protein as well as NO synthase, and subsequent signaling such as phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK). Inhibitors for Na(+) /K(+) -ATPase, reverse mode of Na(+) /Ca(2+) exchanger (NCX), and small-conductance Ca(2+) -dependent K(+) (SK) channel also attenuated microglial migration or phagocytosis. Interestingly, T3-induced microglial migration, but not phagocytosis, was dependent on GABAA and GABAB receptors, though GABA itself did not affect migratory aptitude. Our results demonstrate that T3 modulates multiple functional responses of microglia via multiple complex mechanisms, which may contribute to physiological and/or pathophysiological functions of the CNS.


Assuntos
Movimento Celular/efeitos dos fármacos , Microglia/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Tri-Iodotironina/farmacologia , Trifosfato de Adenosina/farmacologia , Adjuvantes Farmacêuticos/farmacologia , Animais , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Células Cultivadas , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/fisiologia , Probenecid/farmacologia , Receptores dos Hormônios Tireóideos/deficiência , Receptores dos Hormônios Tireóideos/genética , Receptores dos Hormônios Tireóideos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiroxina/farmacologia
13.
Drug Metab Dispos ; 43(5): 669-78, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25710938

RESUMO

Tanshinol has desirable antianginal and pharmacokinetic properties and is a key compound of Salvia miltiorrhiza roots (Danshen). It is extensively cleared by renal excretion. This study was designed to elucidate the mechanism underlying renal tubular secretion of tanshinol and to compare different ways to manipulate systemic exposure to the compound. Cellular uptake of tanshinol was mediated by human organic anion transporter 1 (OAT1) (Km, 121 µM), OAT2 (859 µM), OAT3 (1888 µM), and OAT4 (1880 µM) and rat Oat1 (117 µM), Oat2 (1207 µM), and Oat3 (1498 µM). Other renal transporters (human organic anion-transporting polypeptide 4C1 [OATP4C1], organic cation transporter 2 [OCT2], carnitine/organic cation transporter 1 [OCTN1], multidrug and toxin extrusion protein 1 [MATE1], MATE2-K, multidrug resistance-associated protein 2 [MRP2], MRP4, and breast cancer resistance protein [BCRP], and rat Oct1, Oct2, Octn1, Octn2, Mate1, Mrp2, Mrp4, and Bcrp) showed either ambiguous ability to transport tanshinol or no transport activity. Rats may be a useful model, to investigate the contribution of the renal transporters on the systemic and renal exposure to tanshinol. Probenecid-induced impairment of tubular secretion resulted in a 3- to 5-fold increase in the rat plasma area under the plasma concentration-time curve from 0 to infinity (AUC0-∞) of tanshinol. Tanshinol exhibited linear plasma pharmacokinetic properties over a large intravenous dose range (2-200 mg/kg) in rats. The dosage adjustment could result in increases in the plasma AUC0-∞ of tanshinol of about 100-fold. Tanshinol exhibited very little dose-related nephrotoxicity. In summary, renal tubular secretion of tanshinol consists of uptake from blood, primarily by OAT1/Oat1, and the subsequent luminal efflux into urine mainly by passive diffusion. Dosage adjustment appears to be an efficient and safe way to manipulate systemic exposure to tanshinol. Tanshinol shows low propensity to cause renal transporter-mediated herb-drug interactions.


Assuntos
Ácidos Cafeicos/metabolismo , Interações Ervas-Drogas/fisiologia , Túbulos Renais/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Linhagem Celular , Alimentos , Células HEK293 , Humanos , Túbulos Renais/efeitos dos fármacos , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Probenecid/farmacologia , Ratos , Ratos Sprague-Dawley
14.
Phytother Res ; 29(5): 662-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25589475

RESUMO

Ginkgolide B (GB) is a selective and strong antagonist of platelet-activating factor with great benefits in CNS diseases treatment. The renal excretion constitutes the predominant secretory pathway of GB. Here, we investigated the potential role of renal drug transporters in GB urinary excretion. The intravenous administration of GB was conducted at 10 min post-administration of probenecid (potential inhibitor of organic anion transporters/organic anion transporting polypeptides) or bromosulfophthalein (traditional inhibitor of multi-drug resistance proteins) in rats. Pretreated with probenecid, the systemic exposure of GB was significantly elevated from 8.319 ± 1.646 to 14.75 ± 1.328 µg · mL(-1) ∙h but with reduced total clearance from 1.17 ± 0.331 to 0.596 ± 0.0573 L · h(-1) ∙kg(-1) accompanying no changes in plasma elimination half-lives compared with control group. With no pronounced effect on metabolic elimination, the decreased total clearance was closely pertained to the reduced renal excretion, indicating the potential effect of organic anion transporters and/or organic anion transporting polypeptides in renal secretory of GB from blood to urine. However, the possible effect of bromosulfophthalein was restricted within a minor extent, suggesting the mild role of multi-drug resistance protein in GB renal excretion.


Assuntos
Ginkgolídeos/farmacocinética , Rim/efeitos dos fármacos , Lactonas/farmacocinética , Probenecid/farmacologia , Sulfobromoftaleína/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Animais , Interações Medicamentosas , Masculino , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley
15.
Am J Chin Med ; 42(2): 349-59, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24707867

RESUMO

To investigate the absorptive transport behavior of genkwanin and the beneficial effects of monoterpene enhancers with different functional groups, the single-pass intestinal perfusion (SPIP) of rats was used. The results showed that genkwanin was segmentally-dependent and the best absorptive site was the duodenum. The effective permeability coefficient (P eff ) was 1.97 × 10(-4) cm/s and the absorption rate constant (Ka) was 0.62 × 10(-2) s(-1). Transepithelial transportation descended with increasing concentrations of genkwanin. This was a 1.4-fold increase in P eff by probenecid, whereas a 1.4-fold or 1.6-fold decrease was observed by verapamil and pantoprazole, respectively. Furthermore, among the absorption enhancers, the enhancement with carbonyl (camphor and menthone) was higher than that with hydroxyl (borneol and menthol). The concentration-independent permeability and enhancement by coperfusion of probenecid indicated that genkwanin was transported by both passive diffusion and multidrug resistance protein (MDR)-mediated efflux mechanisms.


Assuntos
Duodeno/metabolismo , Flavonas/metabolismo , Absorção Intestinal , Perfusão/métodos , 2-Piridinilmetilsulfinilbenzimidazóis/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico , Relação Dose-Resposta a Droga , Mucosa Intestinal/metabolismo , Masculino , Modelos Animais , Pantoprazol , Probenecid/farmacologia , Ratos , Ratos Sprague-Dawley , Verapamil/farmacologia
16.
Zhongguo Zhong Yao Za Zhi ; 38(14): 2389-93, 2013 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-24199578

RESUMO

OBJECTIVE: To study the transport mechanism of baicalin of Scutellariae Radix extracts and the effect of Angelica dahurica extracts on the intestinal absorption of baicalin by using Caco-2 cell monolayer model, in order to analyze the effect mechanism of Angelica dahurica extracts on the intestinal absorption of baicalin. METHOD: The Caco-2 cell monolayer model was established with human colonic adenocarcinoma cells, and used to study the effect of pH, time, drug concentration and temperature on the transport of baicalin in Scutellariae Radix extracts, the effect of P-gp and MRP protein-dedicated inhibitors on the bidirectional transport of baicalin in Caco-2 cell model, and the effect of angelica root extracts on baicalin absorption and transport. RESULT: Baicalin was absorbed well at 37 degrees C and under pH 7.4 condition and concentration dependent. Its proteins became inactive at 4 degrees C, with a low transport. The bi-drectional transfer PDR was 0. 54. After P-gp inhibitor verapamil and MRP inhibitor probenecid were added, the value of PappBL-AP of baicalin decreased, but without any difference in PDR. The transport of baicalin was improved by 2.34, 3.31 and 3.13 times, after A. dahurica extract coumarin, volatile oil, and mixture of coumarin and volatile oil. CONCLUSION: The transport mechanism of baicalin is mainly passive transfer and supplemented with efflux proteins involved. A. dahurica extracts can enhance the absorption of baicalin, which may be related to the passive transfer merchanism of baicalin. A. dahurica extracts' effect in opening the close junction among cells may be related to its expression or function in inhibiting efflux proteins.


Assuntos
Angelica/química , Flavonoides/farmacocinética , Extratos Vegetais/farmacologia , Scutellaria baicalensis/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Linhagem Celular Tumoral , Cumarínicos/química , Cumarínicos/farmacologia , Interações Medicamentosas , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/fisiologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Extratos Vegetais/química , Raízes de Plantas/química , Probenecid/farmacologia , Verapamil/farmacologia
17.
Brain Res ; 1519: 9-18, 2013 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-23665392

RESUMO

The blood-brain barrier is morphologically composed of cerebral microcapillary endothelium through its tight junctions. It serves as a mechanical, metabolic and cellular barrier and can also protect the brain from pathogen invasion. Many brain diseases involve a disturbance of blood-brain barrier function either as a consequence of a noxa or as primary failure. In vitro models of the blood-brain barrier are suitable tools to study drug transport, pathogen transmigration and leukocyte diapedesis across the cerebral endothelium. Such models have previously been derived mainly from porcine or bovine brain tissues. We describe here a simple method by which rat cerebral microcapillaries and cells of glial origin can be quickly and simultaneously purified. By using a capillary fragment size restriction method based on glass bead columns different fractions can be separated: vital, long capillary fragments for ex vivo uptake studies and smaller capillary fragments for endothelial culture. Furthermore, fractions can be obtained for astroglial and oligodendroglial cell cultures. With this method both microcapillary enrichment and glial cell purification are quickly achieved, which reduces expenditure, number of required animals and laboratory working time.


Assuntos
Encéfalo/citologia , Técnicas de Cultura de Células , Células Endoteliais/fisiologia , Endotélio Vascular/fisiologia , Neuroglia/fisiologia , Adjuvantes Farmacêuticos/farmacologia , Animais , Animais Recém-Nascidos , Bloqueadores dos Canais de Cálcio/farmacologia , Separação Celular , Células Cultivadas , Técnicas de Cocultura/instrumentação , Técnicas de Cocultura/métodos , Ciclosporinas/farmacologia , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Indicadores e Reagentes/metabolismo , Neuroglia/efeitos dos fármacos , Probenecid/farmacologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Verapamil/farmacologia
18.
Assay Drug Dev Technol ; 10(6): 533-41, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22681402

RESUMO

The transient receptor potential channel subtype A member 1 (TRPA1) is a nonselective cation channel widely viewed as having therapeutic potential, particularly for pain-related indications. Realization of this potential will require potent, selective modulators; however, currently the pharmacology of TRPA1 is poorly defined. As TRPA1 is calcium permeable, calcium indicators offer a simple assay format for high-throughput screening. In this report, we show that probenecid, a uricosuric agent used experimentally in screening to increase loading of calcium-sensitive dyes, activates TRPA1. Prolonged probenecid incubation during the dye-loading process reduces agonist potency upon subsequent challenge. When Chinese Hamster Ovary (CHO)-hTRPA1 or STC-1 cells, which endogenously express TRPA1, were dye loaded in the presence of 2 mM probenecid TRPA1, agonists appeared less potent; EC(50) for allyl isothiocyante agonists in CHO-hTRPA1 was increased from 1.5±0.19 to 7.32±1.20 µM (P<0.01). No significant effect on antagonist potency was observed when using the agonist EC(80) concentration determined under the appropriate dye-loading conditions. We suggest an alternative protocol for calcium imaging using another blocker of anion transport, sulfinpyrazone. This blocker significantly augments indicator dye loading and the screening window, but is not a TRPA1 agonist and has no effect on agonist potency.


Assuntos
Canais Iônicos/efeitos dos fármacos , Proteínas do Tecido Nervoso/agonistas , Probenecid/farmacologia , Fármacos Renais/farmacologia , Canais de Potencial de Receptor Transitório/agonistas , Animais , Células CHO , Canais de Cálcio , Corantes , Cricetinae , Cricetulus , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Técnicas de Diluição do Indicador , Técnicas de Patch-Clamp , Sulfimpirazona/farmacologia , Canal de Cátion TRPA1
19.
Glia ; 60(1): 53-68, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21987367

RESUMO

The ventromedial hypothalamus is involved in regulating feeding and satiety behavior, and its neurons interact with specialized ependymal-glial cells, termed tanycytes. The latter express glucose-sensing proteins, including glucose transporter 2, glucokinase, and ATP-sensitive K(+) (K(ATP) ) channels, suggesting their involvement in hypothalamic glucosensing. Here, the transduction mechanism involved in the glucose-induced rise of intracellular free Ca(2+) concentration ([Ca(2+) ](i) ) in cultured ß-tanycytes was examined. Fura-2AM time-lapse fluorescence images revealed that glucose increases the intracellular Ca(2+) signal in a concentration-dependent manner. Glucose transportation, primarily via glucose transporters, and metabolism via anaerobic glycolysis increased connexin 43 (Cx43) hemichannel activity, evaluated by ethidium uptake and whole cell patch clamp recordings, through a K(ATP) channel-dependent pathway. Consequently, ATP export to the extracellular milieu was enhanced, resulting in activation of purinergic P2Y(1) receptors followed by inositol trisphosphate receptor activation and Ca(2+) release from intracellular stores. The present study identifies the mechanism by which glucose increases [Ca(2+) ](i) in tanycytes. It also establishes that Cx43 hemichannels can be rapidly activated under physiological conditions by the sequential activation of glucosensing proteins in normal tanycytes.


Assuntos
Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Conexina 43/metabolismo , Glucose/farmacologia , Líquido Intracelular/metabolismo , Neuroglia/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Cátions/metabolismo , Células Cultivadas , Conexina 43/antagonistas & inibidores , Citocalasina B/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Glucoquinase/metabolismo , Glucose/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Hipotálamo/citologia , Antígeno Ki-67/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Microscopia Confocal , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/citologia , Técnicas de Patch-Clamp , Probenecid/farmacologia , Ratos , Ratos Sprague-Dawley , Fator de von Willebrand/metabolismo
20.
Eur J Neurosci ; 33(7): 1264-74, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21375602

RESUMO

The protective impact of exercise on neurodegenerative processes has not been confirmed, and the mechanisms underlying the benefit of exercise have not been determined in human Parkinson's disease or in chronic animal disease models. This research examined the long-term neurological, behavioral, and mechanistic consequences of endurance exercise in experimental chronic parkinsonism. We used a chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease with moderate neurodegeneration and examined the effects of treadmill exercise on movement and balance coordination, changes in dopamine neuron biomarkers, mitochondrial functions, and neurotrophic factor activities in the nigrostriatal system. The exercise results were compared with those of the control and sedentary chronic parkinsonian animals. After 18 weeks of exercise training in the chronic parkinsonian mice, we observed a significant deterrence in the loss of neuronal dopamine-producing cells and other functional indicators. The impaired movement and balance incoordination in the chronic parkinsonian mice were also markedly reduced following exercise. Mechanistic investigations revealed that the neuronal and behavioral recovery produced by exercise in the chronic parkinsonian mice was associated with an improved mitochondrial function and an increase in the brain region-specific levels of brain-derived and glial cell line-derived neurotrophic factors. Our findings indicate that exercise not only produces neuronal and mitochondrial protection, it also boosts nigrostriatal neurotrophic factor levels in the chronic parkinsonian mice with moderate neurodegeneration. Therefore, modifying lifestyle with increased exercise activity would be a non-pharmacological neuroprotective approach for averting neurodegenerative processes, as demonstrated in experimental chronic parkinsonism.


Assuntos
Modelos Animais de Doenças , Degeneração Neural/patologia , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/fisiopatologia , Condicionamento Físico Animal , Adjuvantes Farmacêuticos/farmacologia , Animais , Biomarcadores/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Dopamina/metabolismo , Exercício Físico , Fatores Neurotróficos Derivados de Linhagem de Célula Glial/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Atividade Motora/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Probenecid/farmacologia , Substância Negra/citologia , Substância Negra/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA