Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200973

RESUMO

Nucleocapsid proteins (NCp) are zinc finger (ZF) proteins, and they play a central role in HIV virus replication, mainly by interacting with nucleic acids. Therefore, they are potential targets for anti-HIV therapy. Natural products have been shown to be able to inhibit HIV, such as turmeric and licorice, which is widely used in traditional Chinese medicine. Liquiritin (LQ), isoliquiritin (ILQ), glycyrrhizic acid (GL), glycyrrhetinic acid (GA) and curcumin (CUR), which were the major active components, were herein chosen to study their interactions with HIV-NCp7 C-terminal zinc finger, aiming to find the potential active compounds and reveal the mechanism involved. The stacking interaction between NCp7 tryptophan and natural compounds was evaluated by fluorescence. To elucidate the binding mode, mass spectrometry was used to characterize the reaction mixture between zinc finger proteins and active compounds. Subsequently, circular dichroism (CD) spectroscopy and molecular docking were used to validate and reveal the binding mode from a structural perspective. The results showed that ILQ has the strongest binding ability among the tested compounds, followed by curcumin, and the interaction between ILQ and the NCp7 zinc finger peptide was mediated by a noncovalent interaction. This study provided a scientific basis for the antiviral activity of turmeric and licorice.


Assuntos
Fármacos Anti-HIV/farmacologia , Produtos Biológicos/farmacologia , Curcuma/química , Glycyrrhiza/química , HIV-1/efeitos dos fármacos , Dedos de Zinco/efeitos dos fármacos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Produtos Biológicos/química , Proteínas do Capsídeo/metabolismo , HIV-1/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Replicação Viral/efeitos dos fármacos
2.
Biochem Biophys Res Commun ; 526(3): 721-727, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32253032

RESUMO

The nucleocapsid protein (NC) of human immunodeficiency virus type 1 (HIV-1) is a small, highly basic nucleic acid (NA)-binding protein with two CCHC zinc-finger motifs. In this study, we report for the first time, to our knowledge, that thermal stressed HIV-1 NCp7 maintained NA-binding activity. About 41.3% of NCp7 remained soluble after incubated at 100 °C for 60 min, and heat-treated NCp7 maintained its abilities to bind to HIV-1 packaging signal (Psi) and the stem-loop 3 of the Psi. At high or very high degrees of sequence occupancy, NCp7 inhibited first-strand cDNA synthesis catalyzed by purified HIV-1 reverse transcriptase, and heat-treated NCp7 maintained the inhibition. Moreover, both EDTA-treated and H23K + H44K double mutant of NCp7 inhibited first-strand cDNA synthesis, demonstrating that the NA-binding activity of NCp7 at high NC:NA ratios is independent on its zinc-fingers. These results may benefit further investigations of the structural stability and function of NCp7 in viral replication.


Assuntos
HIV-1/química , RNA Viral/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Sequência de Aminoácidos , Sítios de Ligação , DNA Complementar/biossíntese , Escherichia coli , Transcriptase Reversa do HIV/metabolismo , Resposta ao Choque Térmico , Humanos , Mutação , Ligação Proteica , Replicação Viral , Dedos de Zinco
3.
PLoS One ; 14(8): e0221256, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31437199

RESUMO

HIV-1 Gag is a large multidomain poly-protein with flexible unstructured linkers connecting its globular subdomains. It is compact when in solution but assumes an extended conformation when assembled within the immature HIV-1 virion. Here, we use molecular dynamics (MD) simulations to quantitatively characterize the intra-domain interactions of HIV-1 Gag. We find that the matrix (MA) domain and the C-terminal subdomain CActd of the CA capsid domain can form a bound state. The bound state, which is held together primarily by interactions between complementary charged and polar residues, stabilizes the compact state of HIV-1 Gag. We calculate the depth of the attractive free energy potential between the MA/ CActd sites and find it to be about three times larger than the dimerization interaction between the CActd domains. Sequence analysis shows high conservation within the newly-found intra-Gag MA/CActd binding site, as well as its spatial proximity to other well known elements of Gag -such as CActd's SP1 helix region, its inositol hexaphosphate (IP6) binding site and major homology region (MHR), as well as the MA trimerization site. Our results point to a high, but yet undetermined, functional significance of the intra-Gag binding site. Recent biophysical experiments that address the binding specificity of Gag are interpreted in the context of the MA/CActd bound state, suggesting an important role in selective packaging of genomic RNA by Gag.


Assuntos
Capsídeo/ultraestrutura , HIV-1/ultraestrutura , RNA Viral/química , Vírion/ultraestrutura , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Motivos de Aminoácidos , Sítios de Ligação , Capsídeo/metabolismo , HIV-1/metabolismo , Humanos , Cinética , Simulação de Dinâmica Molecular , Ácido Fítico/química , Ácido Fítico/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , RNA Viral/metabolismo , Eletricidade Estática , Termodinâmica , Vírion/metabolismo , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
4.
Biochem Biophys Res Commun ; 503(4): 2970-2976, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30126636

RESUMO

The interaction between viral protein Gag and cellular protein tumor susceptibility gene 101 (TSG101) is a crucial step in the HIV-1 replication cycle. This interaction initiates the viral assembly/budding via the cellular endosomal sorting complexes required for transport (ESCRT) pathway, making it a potential target for antiviral therapy. Here we developed a simple, robust, and reliable high-throughput screening (HTS) system based on enzyme-linked immunosorbent assay (ELISA) to identify compounds that inhibit HIV-1 replication by targeting Gag-TSG101 interaction. Through screening of the 9600-compound library using the established HTS system, several hit compounds, which inhibited Gag-TSG101 interaction, were identified. Subsequent assays revealed two hit compounds, HSM-9 and HSM-10, which have antiviral activity against CD4+ T cell-tropic NL4-3 and macrophage-tropic JR-CSF HIV-1 strains. These results suggest that our established HTS system is an indispensable tool for the identification of HIV-1 Gag-TSG101 interaction inhibitors.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , HIV-1 , Fatores de Transcrição/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Ligação Proteica/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
5.
Biochemistry ; 57(30): 4562-4573, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30019894

RESUMO

Due to its essential roles in the viral replication cycle and to its highly conserved sequence, the nucleocapsid protein (NCp7) of the human immunodeficiency virus type 1 is a target of choice for inhibiting replication of the virus. Most NCp7 inhibitors identified so far are small molecules. A small number of short peptides also act as NCp7 inhibitors by competing with its nucleic acid (NA) binding and chaperone activities but exhibit antiviral activity only at relatively high concentrations. In this work, in order to obtain more potent NCp7 competitors, we designed a library of longer peptides (10-17 amino acids) whose sequences include most of the NCp7 structural determinants responsible for its specific NA binding and destabilizing activities. Using an in vitro assay, the most active peptide (pE) was found to inhibit the NCp7 destabilizing activity, with a 50% inhibitory concentration in the nanomolar range, by competing with NCp7 for binding to its NA substrates. Formulated with a cell-penetrating peptide (CPP), pE was found to accumulate into HeLa cells, with low cytotoxicity. However, either formulated with a CPP or overexpressed in cells, pE did not show any antiviral activity. In vitro competition experiments revealed that its poor antiviral activity may be partly due to its sequestration by cellular RNAs. The selected peptide pE therefore appears to be a useful tool for investigating NCp7 properties and functions in vitro, but further work will be needed to design pE-derived peptides with antiviral activity.


Assuntos
Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Desenho de Fármacos , HIV-1/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Sequência de Aminoácidos , Avaliação Pré-Clínica de Medicamentos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/química , HIV-1/metabolismo , Células HeLa , Humanos , Modelos Moleculares , Ácidos Nucleicos/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
6.
Sci Rep ; 6: 38153, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27901085

RESUMO

The gag gene is highly polymorphic across HIV-1 subtypes and contributes to susceptibility to protease inhibitors (PI), a critical class of antiretrovirals that will be used in up to 2 million individuals as second-line therapy in sub Saharan Africa by 2020. Given subtype C represents around half of all HIV-1 infections globally, we examined PI susceptibility in subtype C viruses from treatment-naïve individuals. PI susceptibility was measured in a single round infection assay of full-length, replication competent MJ4/gag chimeric viruses, encoding the gag gene and 142 nucleotides of pro derived from viruses in 20 patients in the Zambia-Emory HIV Research Project acute infection cohort. Ten-fold variation in susceptibility to PIs atazanavir and lopinavir was observed across 20 viruses, with EC50s ranging 0.71-6.95 nM for atazanvir and 0.64-8.54 nM for lopinavir. Ten amino acid residues in Gag correlated with lopinavir EC50 (p < 0.01), of which 380 K and 389I showed modest impacts on in vitro drug susceptibility. Finally a significant relationship between drug susceptibility and replication capacity was observed for atazanavir and lopinavir but not darunavir. Our findings demonstrate large variation in susceptibility of PI-naïve subtype C viruses that appears to correlate with replication efficiency and could impact clinical outcomes.


Assuntos
Replicação do DNA/efeitos dos fármacos , Farmacorresistência Viral/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , Inibidores da Protease de HIV/uso terapêutico , HIV-1/efeitos dos fármacos , Sulfato de Atazanavir/uso terapêutico , Replicação do DNA/genética , Darunavir/uso terapêutico , Farmacorresistência Viral/genética , Genótipo , Infecções por HIV/virologia , HIV-1/genética , HIV-1/fisiologia , Humanos , Lopinavir/uso terapêutico , Testes de Sensibilidade Microbiana , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , Zâmbia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
7.
Antiviral Res ; 134: 216-225, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27568924

RESUMO

Although the effective use of highly active antiretroviral therapy results in the suppression of virus production in infected individuals, it does not eliminate the infection and low level virus production in cells harboring virus in sanctuary sites. Thus, the continued search for new antiretroviral agents with unique and different mechanisms of HIV inhibition remains critical, and compounds that can reduce the level of virus production from cells already infected with HIV, as opposed to preventing de novo infection, would be of great benefit. A mercaptobenzamide (MDH-1-38) and its prodrug (NS1040) are being developed as potential therapeutic compounds targeting the zinc finger of HIV nucleocapsid. In the presence of esterase enzymes, NS1040 is designed to be converted to MDH-1-38 which has antiviral activity. While we presume that NS1040 is rapidly converted to MDH-1-38 in all experiments, the two compounds were tested side-by-side to determine whether the presence of a prodrug affects the antiviral activity or mechanism of action. The two compounds were evaluated against a panel of HIV-1 clinical isolates in human PBMCs and monocyte-macrophages and yielded EC50 values ranging from 0.7 to 13 µM with no toxicity up to 100 µM. MDH-1-38 and NS1040 remained equally active in human PBMCs in the presence of added serum proteins as well as against HIV-1 isolates resistant to reverse transcriptase, integrase or protease inhibitors. Cell-based and biochemical mechanism of antiviral action assays demonstrated MDH-1-38 and NS1040 were virucidal at concentrations of 15 and 50 µM, respectively. Cell to cell transmission of HIV in multiple passages was significantly reduced in CEM-SS and human PBMCs by reducing progeny virus infectivity at compound concentrations greater than 2 µM. The combination of either MDH-1-38 or NS1040 with other FDA-approved HIV drugs yielded additive to synergistic antiviral interactions with no evidence of antiviral antagonism or synergistic toxicity. Serial dose escalation was used in attempts to select for HIV strains resistant to MDH-1-38 and NS1040. Virus at several passages failed to replicate in cells treated at increased compound concentrations, which is consistent with the proposed mechanism of action of the virus inactivating compounds. Through 14 passages, resistance to the compounds has not been achieved. Most HIV inhibitors with mechanism of antiviral action targeting a viral protein would have selected for a drug resistant virus within 14 passages. These studies indicate that these NCp7-targeted compounds represent new potent anti-HIV drug candidates which could be effectively used in combination with all approved anti-HIV drugs.


Assuntos
Fármacos Anti-HIV/farmacologia , Benzimidazóis/farmacologia , HIV-1/efeitos dos fármacos , Pró-Fármacos/farmacologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/efeitos dos fármacos , Fármacos Anti-HIV/química , Benzimidazóis/química , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Viral , Infecções por HIV/virologia , Humanos , Macrófagos/virologia , Monócitos/virologia , Replicação Viral/efeitos dos fármacos
8.
Vaccine ; 34(51): 6597-6609, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27395563

RESUMO

The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viral and other microbial pathogens in their genome (so-called "chimeric virus vaccines"). Many such viral vector vaccines are now at various stages of clinical evaluation. Here, we introduce an attenuated form of recombinant vesicular stomatitis virus (rVSV) as a potential chimeric virus vaccine for HIV-1, with implications for use as a vaccine vector for other pathogens. The rVSV/HIV-1 vaccine vector was attenuated by combining two major genome modifications. These modifications acted synergistically to greatly enhance vector attenuation and the resulting rVSV vector demonstrated safety in sensitive mouse and non-human primate neurovirulence models. This vector expressing HIV-1 gag protein has completed evaluation in two Phase I clinical trials. In one trial the rVSV/HIV-1 vector was administered in a homologous two-dose regimen, and in a second trial with pDNA in a heterologous prime boost regimen. No serious adverse events were reported nor was vector detected in blood, urine or saliva post vaccination in either trial. Gag specific immune responses were induced in both trials with highest frequency T cell responses detected in the prime boost regimen. The rVSV/HIV-1 vector also demonstrated safety in an ongoing Phase I trial in HIV-1 positive participants. Additionally, clinical trial material has been produced with the rVSV vector expressing HIV-1 env, and Phase I clinical evaluation will initiate in the beginning of 2016. In this paper, we use a standardized template describing key characteristics of the novel rVSV vaccine vectors, in comparison to wild type VSV. The template facilitates scientific discourse among key stakeholders by increasing transparency and comparability of information. The Brighton Collaboration V3SWG template may also be useful as a guide to the evaluation of other recombinant viral vector vaccines.


Assuntos
Vacinas contra a AIDS/efeitos adversos , Vacinas contra a AIDS/imunologia , Portadores de Fármacos , Vesiculovirus/genética , Vacinas contra a AIDS/genética , Animais , Ensaios Clínicos Fase I como Assunto , Avaliação Pré-Clínica de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Vetores Genéticos , Humanos , Primatas , Medição de Risco , Linfócitos T/imunologia , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/genética , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia
9.
Nucleic Acids Res ; 44(8): e74, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-26762982

RESUMO

During HIV-1 reverse transcription, the single-stranded RNA genome is converted into proviral double stranded DNA by Reverse Transcriptase (RT) within a reverse transcription complex composed of the genomic RNA and a number of HIV-1 encoded proteins, including the nucleocapsid protein NCp7. Here, we developed a one-step and one-pot RT polymerization assay. In this in vitro assay, RT polymerization is monitored in real-time by Förster resonance energy transfer (FRET) using a commercially available doubly-labeled primer/template DNA. The assay can monitor and quantify RT polymerization activity as well as its promotion by NCp7. Z-factor values as high as 0.89 were obtained, indicating that the assay is suitable for high-throughput drug screening. Using Nevirapine and AZT as prototypical RT inhibitors, reliable IC50 values were obtained from the changes in the RT polymerization kinetics. Interestingly, the assay can also detect NCp7 inhibitors, making it suitable for high-throughput screening of drugs targeting RT, NCp7 or simultaneously, both proteins.


Assuntos
Fármacos Anti-HIV/farmacologia , Transferência Ressonante de Energia de Fluorescência/métodos , Transcriptase Reversa do HIV/antagonistas & inibidores , Ensaios de Triagem em Larga Escala/métodos , Nevirapina/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Zidovudina/farmacologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/antagonistas & inibidores , DNA Viral/genética , Avaliação Pré-Clínica de Medicamentos , HIV-1/efeitos dos fármacos , Humanos , RNA Viral/genética
10.
J Biol Chem ; 291(7): 3468-82, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26668324

RESUMO

An essential step of human immunodeficiency virus type 1 (HIV-1) reverse transcription is the first strand transfer that requires base pairing of the R region at the 3'-end of the genomic RNA with the complementary r region at the 3'-end of minus-strand strong-stop DNA (ssDNA). HIV-1 nucleocapsid protein (NC) facilitates this annealing process. Determination of the ssDNA structure is needed to understand the molecular basis of NC-mediated genomic RNA-ssDNA annealing. For this purpose, we investigated ssDNA using structural probes (nucleases and potassium permanganate). This study is the first to determine the secondary structure of the full-length HIV-1 ssDNA in the absence or presence of NC. The probing data and phylogenetic analysis support the folding of ssDNA into three stem-loop structures and the presence of four high-affinity binding sites for NC. Our results support a model for the NC-mediated annealing process in which the preferential binding of NC to four sites triggers unfolding of the three-dimensional structure of ssDNA, thus facilitating interaction of the r sequence of ssDNA with the R sequence of the genomic RNA. In addition, using gel retardation assays and ssDNA mutants, we show that the NC-mediated annealing process does not rely on a single pathway (zipper intermediate or kissing complex).


Assuntos
Códon de Terminação , DNA de Cadeia Simples/química , DNA Viral/química , HIV-1/metabolismo , Modelos Moleculares , Proteínas do Nucleocapsídeo/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Sítios de Ligação , DNA Recombinante/química , DNA Recombinante/isolamento & purificação , DNA Recombinante/metabolismo , DNA de Cadeia Simples/isolamento & purificação , DNA de Cadeia Simples/metabolismo , DNA Viral/isolamento & purificação , DNA Viral/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Cinética , Peso Molecular , Mutação , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Proteínas do Nucleocapsídeo/metabolismo , Filogenia , Conformação Proteica , RNA Viral/química , RNA Viral/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
11.
Bioconjug Chem ; 27(1): 247-56, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26666402

RESUMO

The Nucleocapsid protein NCp7 (NC) is a nucleic acid chaperone responsible for essential steps of the HIV-1 life cycle and an attractive candidate for drug development. NC destabilizes nucleic acid structures and promotes the formation of annealed substrates for HIV-1 reverse transcription elongation. Short helical nucleic acid segments bordered by bulges and loops, such as the Trans-Activation Response element (TAR) of HIV-1 and its complementary sequence (cTAR), are nucleation elements for helix destabilization by NC and also preferred recognition sites for threading intercalators. Inspired by these observations, we have recently demonstrated that 2,6-disubstituted peptidyl-anthraquinone-conjugates inhibit the chaperone activities of recombinant NC in vitro, and that inhibition correlates with the stabilization of TAR and cTAR stem-loop structures. We describe here enhanced NC inhibitory activity by novel conjugates that exhibit longer peptidyl chains ending with a conserved N-terminal lysine. Their efficient inhibition of TAR/cTAR annealing mediated by NC originates from the combination of at least three different mechanisms, namely, their stabilizing effects on nucleic acids dynamics by threading intercalation, their ability to target TAR RNA substrate leading to a direct competition with the protein for the same binding sites on TAR, and, finally, their effective binding to the NC protein. Our results suggest that these molecules may represent the stepping-stone for the future development of NC-inhibitors capable of targeting the protein itself and its recognition site in RNA.


Assuntos
Antraquinonas/farmacologia , Repetição Terminal Longa de HIV , Produtos do Gene gag do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Antraquinonas/química , Antraquinonas/metabolismo , Sítios de Ligação , Lisina/química , Ácidos Nucleicos/química , RNA Viral/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química
12.
Virol J ; 12: 138, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26362536

RESUMO

BACKGROUND: The human immunodeficiency virus type 1 (HIV-1) Gag polyprotein is necessary and sufficient to assemble non-infectious particles. Given that HIV-1 subverts many host proteins at all stages of its life cycle, it is essential to identify these interactions as potential targets for antiretroviral therapy. FINDINGS: This work demonstrates the use of proximity-dependent biotin identification (BioID) of host proteins and complexes that are proximal to the N-terminal domains of the HIV-1 Gag polyprotein. Two of the hits identified in the BioID screen were validated by immunoprecipation and confirmed the interaction of DDX17 and RPS6 with HIV-1 Gag. CONCLUSIONS: Our results show that BioID is both a successful and complementary method to screen for nearby interacting proteins of HIV-1 Gag during the replicative cycle in different cell lines.


Assuntos
HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Proteínas/análise , Proteômica/métodos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Biotinilação , Humanos , Imunoprecipitação , Ligação Proteica
13.
Virol J ; 12: 53, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25879840

RESUMO

BACKGROUND: In South Korea, about 20 types of antiretroviral drugs are used in the treatment of patients with human immunodeficiency virus/acquired immune deficiency syndrome. Since 2010, raltegravir, etravirine, and darunavir have been spotlighted as new drugs for highly active antiretroviral therapy (HAART)-experienced adults with resistant HIV-1 in South Korea. In this study, we investigated potential susceptibility of pseudoviruses derived from treatment-experienced Korean patients to etravirine vs efavirenz and to darunavir vs amprenavir and indinavir using a modified single-round assay. METHODS: Pseudoviruses derived from nine treatment-experienced patients infected with HIV-1 were investigated by comparison with the wild-type strain pNL4-3. The 50% inhibitory concentration (IC50) values were calculated and drug susceptibility was compared. The intensity of genotypic drug resistance was classified based on the 'SIR' interpretation of the Stanford data base. RESULTS: Drug susceptibility was generally higher for etravirine and darunavir compared with efavirenz, amprenavir, and indinavir in pseudoviruses derived from treatment-experienced patients. Pseudoviruses derived from patients KRB4025 and KRB8014, who exhibited long-term use of protease inhibitors, showed an outside of tested drug concentration, especially for amprenavir and indinavir. However, they exhibited a lower fold-change in resistance to darunavir. CONCLUSIONS: Etravirine and darunavir have been used in HAART since 2010 in South Korea. Therefore, these antiretroviral drugs together with other newly introduced antiretroviral drugs are interesting for the optimal treatment of patients with treatment failure. This study may help to find a more effective HAART in the case of HIV-1 infected patients that have difficulty being treated.


Assuntos
Síndrome da Imunodeficiência Adquirida/virologia , Fármacos Anti-HIV/farmacologia , Darunavir/farmacologia , Infecções por HIV/virologia , HIV-1/genética , Testes de Sensibilidade Microbiana , Piridazinas/farmacologia , Recombinação Genética , Síndrome da Imunodeficiência Adquirida/tratamento farmacológico , Fármacos Anti-HIV/uso terapêutico , Terapia Antirretroviral de Alta Atividade , Darunavir/uso terapêutico , Farmacorresistência Viral , Genótipo , Infecções por HIV/tratamento farmacológico , Humanos , Concentração Inibidora 50 , Mutação , Nitrilas , Fenótipo , Precursores de Proteínas/genética , Piridazinas/uso terapêutico , Pirimidinas , República da Coreia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene pol do Vírus da Imunodeficiência Humana/genética
14.
J Antimicrob Chemother ; 70(1): 243-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25228587

RESUMO

OBJECTIVE: PI susceptibility results from a complex interplay between protease and Gag proteins, with Gag showing wide variation across HIV-1 subtypes. We explored the impact of pre-treatment susceptibility on the outcome of lopinavir/ritonavir monotherapy. METHODS: Treatment-naive individuals who experienced lopinavir/ritonavir monotherapy failure from the MONARK study were matched (by subtype, viral load and baseline CD4 count) with those who achieved virological response ('successes'). Successes were defined by viral load <400 copies/mL after week 24 and <50 copies/mL from week 48 to week 96. Full-length Gag-protease was amplified from patient samples for in vitro phenotypic susceptibility testing, with susceptibility expressed as fold change (FC) relative to a subtype B reference strain. RESULTS: Baseline lopinavir susceptibility was lower in viral failures compared with viral successes, but the differences were not statistically significant (median lopinavir susceptibility: 4.4 versus 8.5, respectively, P = 0.17). Among CRF02_AG/G patients, there was a significant difference in lopinavir susceptibility between the two groups (7.1 versus 10.4, P = 0.047), while in subtype B the difference was not significant (2.7 versus 3.4, P = 0.13). Subtype CRF02_AG/G viruses had a median lopinavir FC of 8.7 compared with 3.1 for subtype B (P = 0.001). CONCLUSIONS: We report an association between reduced PI susceptibility (using full-length Gag-protease sequences) at baseline and subsequent virological failure on lopinavir/ritonavir monotherapy in antiretroviral-naive patients harbouring subtype CRF02_AG/G viruses. We speculate that this may be important in the context of suboptimal adherence in determining viral failure.


Assuntos
Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Inibidores da Protease de HIV/uso terapêutico , HIV-1/efeitos dos fármacos , HIV-1/genética , Lopinavir/uso terapêutico , Ritonavir/uso terapêutico , Feminino , Genótipo , Protease de HIV/genética , HIV-1/isolamento & purificação , Humanos , Masculino , Testes de Sensibilidade Microbiana , Análise de Sequência de DNA , Falha de Tratamento , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
15.
J Antimicrob Chemother ; 69(12): 3340-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25096075

RESUMO

OBJECTIVES: Major protease mutations are rarely observed following first-line failure with PIs and interpretation of genotyping results in this context may be difficult. We performed extensive phenotyping of viruses from five patients failing lopinavir/ritonavir monotherapy in the MONARK study without major PI mutations by standard genotyping. METHODS: Phenotypic susceptibility testing and viral infectivity assessments were performed using a single-cycle assay and fold changes (FC) relative to a lopinavir-susceptible reference strain were calculated. RESULTS: >10-fold reduced baseline susceptibility to lopinavir occurred in two of five patients and >5-fold in another two. Four of five patients exhibited phylogenetic evidence of a limited viral evolution between baseline and failure, with amino acid changes at drug resistance-associated positions in one: T81A emerged in Gag with M36I in the protease gene, correlating with a reduction in lopinavir susceptibility from FC 7 (95% CI 6-8.35) to FC 13 (95% CI 8.11-17.8). Reductions in darunavir susceptibility (>5 FC) occurred in three individuals. DISCUSSION: This study suggests both baseline reduced susceptibility and evolution of resistance could be contributing factors to PI failure, despite the absence of classical PI resistance mutations by standard testing methods. Use of phenotyping also reveals lower darunavir susceptibility, warranting further study as this agent is commonly used following lopinavir failure.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Farmacorresistência Viral , Infecções por HIV/tratamento farmacológico , Protease de HIV/metabolismo , Lopinavir/uso terapêutico , Ritonavir/uso terapêutico , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Genótipo , Protease de HIV/genética , Humanos , Testes de Sensibilidade Microbiana , Fenótipo , Falha de Tratamento , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
16.
Retrovirology ; 11: 54, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24992971

RESUMO

BACKGROUND: The nucleocapsid domain of Gag and mature nucleocapsid protein (NC) act as nucleic acid chaperones and facilitate folding of nucleic acids at critical steps of retroviral replication cycle. The basic N-terminus of HIV-1 NC protein was shown most important for the chaperone activity. The HIV-2 NC (NCp8) and HIV-1 NC (NCp7) proteins possess two highly conserved zinc fingers, flanked by basic residues. However, the NCp8 N-terminal domain is significantly shorter and contains less positively charged residues. This study characterizes previously unknown, nucleic acid chaperone activity of the HIV-2 NC protein. RESULTS: We have comparatively investigated the in vitro nucleic acid chaperone properties of the HIV-2 and HIV-1 NC proteins. Using substrates derived from the HIV-1 and HIV-2 genomes, we determined the ability of both proteins to chaperone nucleic acid aggregation, annealing and strand exchange in duplex structures. Both NC proteins displayed comparable, high annealing activity of HIV-1 TAR DNA and its complementary nucleic acid. Interesting differences between the two NC proteins were discovered when longer HIV substrates, particularly those derived from the HIV-2 genome, were used in chaperone assays. In contrast to NCp7, NCp8 weakly facilitates annealing of HIV-2 TAR RNA to its complementary TAR (-) DNA. NCp8 is also unable to efficiently stimulate tRNALys3 annealing to its respective HIV-2 PBS motif. Using truncated NCp8 peptide, we demonstrated that despite the fact that the N-terminus of NCp8 differs from that of NCp7, this domain is essential for NCp8 activity. CONCLUSION: Our data demonstrate that the HIV-2 NC protein displays reduced nucleic acid chaperone activity compared to that of HIV-1 NC. We found that NCp8 activity is limited by substrate length and stability to a greater degree than that of NCp7. This is especially interesting in light of the fact that the HIV-2 5'UTR is more structured than that of HIV-1. The reduced chaperone activity observed with NCp8 may influence the efficiency of reverse transcription and other key steps of the HIV-2 replication cycle.


Assuntos
HIV-1/genética , HIV-2/genética , Chaperonas Moleculares/farmacologia , Ácidos Nucleicos/química , Proteínas do Nucleocapsídeo/farmacologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/farmacologia
17.
Vaccine ; 32(27): 3386-92, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24780251

RESUMO

Vaccination is an important tool for enhancing immune responses against mucosal pathogens. Intramuscularly administered adenovirus (Ad) vectors have been demonstrated to be strong inducers of both systemic and mucosal immune responses. Further enhancement of immune responses following Ad vaccination is highly desirable. All-trans retinoic acid (ATRA), a biologically active vitamin A metabolite, has been explored as an adjuvant for primary immune responses following vaccination. In this study, we investigated the effect of ATRA on a heterologous Ad prime boost regimen. ATRA co-administration during priming increased mucosal and systemic antibody responses as well as mucosal but not systemic CD8(+) T cell responses. However, this effect was no longer apparent after boosting regardless of whether ATRA was administered at the time of priming, at the time of boosting, or at both immunizations. Our findings confirm ATRA as an adjuvant for primary immune responses and suggest that the adjuvant effect does not extend to secondary immune responses.


Assuntos
Vacinas contra a AIDS/imunologia , Linfócitos T CD8-Positivos/imunologia , Vetores Genéticos/imunologia , Imunidade nas Mucosas , Tretinoína/imunologia , Adenoviridae/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Feminino , Imunização Secundária , Camundongos Endogâmicos BALB C , Receptores CCR/metabolismo , Baço/imunologia , Vacinas Sintéticas/imunologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia
18.
Biochemistry ; 52(51): 9269-74, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24358934

RESUMO

RNA-protein interactions are vital throughout the HIV-1 life cycle for the successful production of infectious virus particles. One such essential RNA-protein interaction occurs between the full-length genomic viral RNA and the major structural protein of the virus. The initial interaction is between the Gag polyprotein and the viral RNA packaging signal (psi or Ψ), a highly conserved RNA structural element within the 5'-UTR of the HIV-1 genome, which has gained attention as a potential therapeutic target. Here, we report the application of a target-based assay to identify small molecules, which modulate the interaction between Gag and Ψ. We then demonstrate that one such molecule exhibits potent inhibitory activity in a viral replication assay. The mode of binding of the lead molecules to the RNA target was characterized by ¹H NMR spectroscopy.


Assuntos
Fármacos Anti-HIV/farmacologia , HIV-1/efeitos dos fármacos , RNA Líder para Processamento/efeitos dos fármacos , RNA Viral/antagonistas & inibidores , Ribonucleoproteínas/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Fármacos Anti-HIV/efeitos adversos , Fármacos Anti-HIV/química , Sítios de Ligação , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Infecções por HIV/tratamento farmacológico , HIV-1/fisiologia , Células HeLa , Humanos , Modelos Moleculares , Terapia de Alvo Molecular , Conformação de Ácido Nucleico/efeitos dos fármacos , Desnaturação de Ácido Nucleico/efeitos dos fármacos , Concentração Osmolar , Compostos de Quinolínio/efeitos adversos , Compostos de Quinolínio/química , Compostos de Quinolínio/farmacologia , RNA Viral/química , RNA Viral/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Bases de Schiff/efeitos adversos , Bases de Schiff/química , Bases de Schiff/farmacologia , Bibliotecas de Moléculas Pequenas , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
19.
JAMA Neurol ; 70(10): 1305-10, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23939463

RESUMO

IMPORTANCE: Idiopathic narcolepsy with cataplexy is thought to be an autoimmune disorder targeting hypothalamic hypocretin neurons. Symptomatic narcolepsy with low hypocretin level has been described in Ma antibody­associated encephalitis; however, the mechanisms underlying such an association remain unknown. OBSERVATIONS: We described a 63-year-old man with clinical criteria for diencephalic encephalitis with sleepiness, cataplexy, hypocretin deficiency, and central hypothyroidism, together with brainstem encephalitis reflected by supranuclear ophtalmoparesis and rapid eye movement sleep behavior disorder with underlying abnormalities on brain magnetic resonance imaging. An autoimmune process was demonstrated by the detection of antibodies against Ma protein. Death occurred 4 months after disease onset without any tumor detected. Neuropathology, immunohistochemistry, and immunoreactivity results were compared with those obtained in idiopathic narcolepsy-cataplexy and with normal control brains. The principal findings revealed almost exclusive inflammation and tissue injury in the hypothalamus. The type of inflammatory reaction suggests cytotoxic CD8+ T lymphocytes being responsible for the induction of tissue injury. Inflammation was associated with complete loss of hypocretinergic neurons. Autoantibodies of the patient predominantly stained neurons in the hypothalamus and could be absorbed with Ma2. CONCLUSIONS AND RELEVANCE: The encephalitic process, responsible for narcolepsy-cataplexy and hypocretin deficiency, reflects a CD8+ inflammatory-mediated response against hypocretin neurons.


Assuntos
Encefalite Viral , Antígenos HIV/imunologia , Hipotálamo/metabolismo , Narcolepsia/complicações , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Antígenos CD/metabolismo , Aquaporina 4/metabolismo , Autoanticorpos/sangue , Autoanticorpos/líquido cefalorraquidiano , Encefalite Viral/complicações , Encefalite Viral/imunologia , Encefalite Viral/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuropeptídeos/metabolismo , Orexinas , Terceiro Ventrículo/patologia
20.
Virus Res ; 169(2): 377-87, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22634301

RESUMO

The HIV-1 nucleocapsid protein (NC) is considered as an emerging drug target for the therapy of AIDS. Several studies have highlighted the crucial role of NC within the viral replication cycle. However, although NC inhibition has provided in vitro and in vivo antiretroviral activity, drug-candidates which interfere with NC functions are still missing in the therapeutic arsenal against HIV. Based on previous studies, where the dynamic behavior of NC and its ligand binding properties have been investigated by means of computational methods, here we used a virtual screening protocol for discovering novel antiretroviral compounds which interact with NC. The antiretroviral activity of virtual hits was tested in vitro, whereas biophysical studies elucidated the direct interaction of most active compounds with NC(11-55), a peptide corresponding to the zinc finger domain of NC. Two novel antiretroviral small molecules capable of interacting with NC are presented here.


Assuntos
Fármacos Anti-HIV/isolamento & purificação , Avaliação Pré-Clínica de Medicamentos/métodos , HIV-1/efeitos dos fármacos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Fármacos Anti-HIV/farmacologia , Testes de Sensibilidade Microbiana , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA