Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Am Heart Assoc ; 12(16): e030353, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37581395

RESUMO

Background The mechanisms determining vascular tone are still not completely understood, even though it is a significant factor in blood pressure management. Many circulating proteins have a significant impact on controlling vascular tone. Progranulin displays anti-inflammatory effects and has been extensively studied in neurodegenerative illnesses. We investigated whether progranulin sustains the vascular tone that helps regulate blood pressure. Methods and Results We used male and female C57BL6/J wild type (progranulin+/+) and B6(Cg)-Grntm1.1Aidi/J (progranulin-/-) to understand the impact of progranulin on vascular contractility and blood pressure. We found that progranulin-/- mice display elevated blood pressure followed by hypercontractility to noradrenaline in mesenteric arteries, which is restored by supplementing the mice with recombinant progranulin. In ex vivo experiments, recombinant progranulin attenuated the vascular contractility to noradrenaline in male and female progranulin+/+ arteries, which was blunted by blocking EphrinA2 or Sortilin1. To understand the mechanisms whereby progranulin evokes anticontractile effects, we inhibited endothelial factors. N(gamma)-nitro-L-arginine methyl ester (nitric oxide synthase inhibitor) prevented the progranulin effects, whereas indomethacin (cyclooxygenase inhibitor) affected only the contractility in arteries incubated with vehicle, indicating that progranulin increases nitric oxide and decreases contractile prostanoids. Finally, recombinant progranulin induced endothelial nitric oxide synthase phosphorylation and nitric oxide production in isolated mesenteric endothelial cells. Conclusions Circulating progranulin regulates vascular tone and blood pressure via EphrinA2 and Sortilin1 receptors and endothelial nitric oxide synthase activation. Collectively, our data suggest that deficiency in progranulin is a cardiovascular risk factor and that progranulin might be a new therapeutic avenue to treat high blood pressure.


Assuntos
Óxido Nítrico Sintase Tipo III , Óxido Nítrico , Masculino , Feminino , Camundongos , Animais , Óxido Nítrico Sintase Tipo III/metabolismo , Pressão Sanguínea , Progranulinas/farmacologia , Óxido Nítrico/metabolismo , Células Endoteliais/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Artérias Mesentéricas/metabolismo , Endotélio Vascular/metabolismo , Norepinefrina
2.
Transl Psychiatry ; 12(1): 114, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35318322

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disease featuring social interaction deficits and repetitive/stereotyped behaviours; the prevalence of this disorder has continuously increased. Progranulin (PGRN) is a neurotrophic factor that promotes neuronal survival and differentiation. However, there have not been sufficient studies investigating its effect in animal models of autism. This study investigated the effects of PGRN on autistic phenotypes in rats treated with valproic acid (VPA) and assessed the underlying molecular mechanisms. PGRN was significantly downregulated in the cerebellum at postnatal day 14 (PND14) and PND35 in VPA-exposed rats, which simultaneously showed defective social preference, increased repetitive behaviours, and uncoordinated movements. When human recombinant PGRN (r-PGRN) was injected into the cerebellum of newborn ASD model rats (PND10 and PND17), some of the behavioural defects were alleviated. r-PGRN supplementation also reduced cerebellar neuronal apoptosis and rescued synapse formation in ASD rats. Mechanistically, we confirmed that PGRN protects neurodevelopment via the PI3K/Akt/GSK-3ß pathway in the cerebellum of a rat ASD model. Moreover, we found that prosaposin (PSAP) promoted the internalisation and neurotrophic activity of PGRN. These results experimentally demonstrate the therapeutic effects of PGRN on a rat model of ASD for the first time and provide a novel therapeutic strategy for autism.


Assuntos
Transtorno do Espectro Autista , Ácido Valproico , Animais , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/tratamento farmacológico , Cerebelo , Glicogênio Sintase Quinase 3 beta , Fosfatidilinositol 3-Quinases , Progranulinas/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Ratos , Ácido Valproico/efeitos adversos
3.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34140407

RESUMO

In 2006, GRN mutations were first linked to frontotemporal dementia (FTD), the leading cause of non-Alzheimer dementias. While much research has been dedicated to understanding the genetic causes of the disease, our understanding of the mechanistic impacts of GRN deficiency has only recently begun to take shape. With no known cure or treatment available for GRN-related FTD, there is a growing need to rapidly advance genetic and/or small-molecule therapeutics for this disease. This issue is complicated by the fact that, while lysosomal dysfunction seems to be a key driver of pathology, the mechanisms linking a loss of GRN to a pathogenic state remain unclear. In our attempt to address these key issues, we have turned to the nematode, Caenorhabditis elegans, to model, study, and find potential therapies for GRN-deficient FTD. First, we show that the loss of the nematode GRN ortholog, pgrn-1, results in several behavioral and molecular defects, including lysosomal dysfunction and defects in autophagic flux. Our investigations implicate the sphingolipid metabolic pathway in the regulation of many of the in vivo defects associated with pgrn-1 loss. Finally, we utilized these nematodes as an in vivo tool for high-throughput drug screening and identified two small molecules with potential therapeutic applications against GRN/pgrn-1 deficiency. These compounds reverse the biochemical, cellular, and functional phenotypes of GRN deficiency. Together, our results open avenues for mechanistic and therapeutic research into the outcomes of GRN-related neurodegeneration, both genetic and molecular.


Assuntos
Autofagia/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Lisossomos/genética , Progranulinas/metabolismo , Acetofenonas/farmacologia , Animais , Benzopiranos/farmacologia , Vias Biossintéticas , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/genética , Avaliação Pré-Clínica de Medicamentos , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Mutação/genética , Fenótipo , Progranulinas/genética , Rivastigmina/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Esfingolipídeos/metabolismo
4.
Nature ; 588(7838): 459-465, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32866962

RESUMO

Aberrant aggregation of the RNA-binding protein TDP-43 in neurons is a hallmark of frontotemporal lobar degeneration caused by haploinsufficiency in the gene encoding progranulin1,2. However, the mechanism leading to TDP-43 proteinopathy remains unclear. Here we use single-nucleus RNA sequencing to show that progranulin deficiency promotes microglial transition from a homeostatic to a disease-specific state that causes endolysosomal dysfunction and neurodegeneration in mice. These defects persist even when Grn-/- microglia are cultured ex vivo. In addition, single-nucleus RNA sequencing reveals selective loss of excitatory neurons at disease end-stage, which is characterized by prominent nuclear and cytoplasmic TDP-43 granules and nuclear pore defects. Remarkably, conditioned media from Grn-/- microglia are sufficient to promote TDP-43 granule formation, nuclear pore defects and cell death in excitatory neurons via the complement activation pathway. Consistent with these results, deletion of the genes encoding C1qa and C3 mitigates microglial toxicity and rescues TDP-43 proteinopathy and neurodegeneration. These results uncover previously unappreciated contributions of chronic microglial toxicity to TDP-43 proteinopathy during neurodegeneration.


Assuntos
Microglia/metabolismo , Microglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Progranulinas/deficiência , Proteinopatias TDP-43/metabolismo , Proteinopatias TDP-43/patologia , Envelhecimento/genética , Envelhecimento/patologia , Animais , Núcleo Celular/genética , Núcleo Celular/patologia , Ativação do Complemento/efeitos dos fármacos , Ativação do Complemento/imunologia , Complemento C1q/antagonistas & inibidores , Complemento C1q/imunologia , Complemento C3b/antagonistas & inibidores , Complemento C3b/imunologia , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/farmacologia , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Poro Nuclear/metabolismo , Poro Nuclear/patologia , Progranulinas/genética , RNA-Seq , Análise de Célula Única , Proteinopatias TDP-43/tratamento farmacológico , Proteinopatias TDP-43/genética , Tálamo/metabolismo , Tálamo/patologia , Transcriptoma
5.
J Neurol Neurosurg Psychiatry ; 91(12): 1325-1328, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32759310

RESUMO

OBJECTIVE: Frontotemporal dementia (FTD) is typically associated with changes in behaviour, language and movement. However, recent studies have shown that patients can also develop an abnormal response to pain, either heightened or diminished. We aimed to investigate this symptom in mutation carriers within the Genetic FTD Initiative (GENFI). METHODS: Abnormal responsiveness to pain was measured in 462 GENFI participants: 281 mutation carriers and 181 mutation-negative controls. Changes in responsiveness to pain were scored as absent (0), questionable or very mild (0.5), mild (1), moderate (2) or severe (3). Mutation carriers were classified into C9orf72 (104), GRN (128) and MAPT (49) groups, and into presymptomatic and symptomatic stages. An ordinal logistic regression model was used to compare groups, adjusting for age and sex. Voxel-based morphometry was performed to identify neuroanatomical correlates of abnormal pain perception. RESULTS: Altered responsiveness to pain was present to a significantly greater extent in symptomatic C9orf72 expansion carriers than in controls: mean score 0.40 (SD 0.71) vs 0.00 (0.04), reported in 29% vs 1%. No significant differences were seen between the other symptomatic groups and controls, or any of the presymptomatic mutation carriers and controls. Neural correlates of altered pain perception in C9orf72 expansion carriers were the bilateral thalamus and striatum as well as a predominantly right-sided network of regions involving the orbitofrontal cortex, inferomedial temporal lobe and cerebellum. CONCLUSION: Changes in pain perception are a feature of C9orf72 expansion carriers, likely representing a disruption in somatosensory, homeostatic and semantic processing, underpinned by atrophy in a thalamo-cortico-striatal network.


Assuntos
Proteína C9orf72/genética , Córtex Cerebral/diagnóstico por imagem , Corpo Estriado/diagnóstico por imagem , Demência Frontotemporal/fisiopatologia , Percepção da Dor , Transtornos da Percepção/fisiopatologia , Tálamo/diagnóstico por imagem , Adulto , Idoso , Doenças Assintomáticas , Atrofia/diagnóstico por imagem , Atrofia/genética , Atrofia/fisiopatologia , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Córtex Cerebral/patologia , Estudos de Coortes , Corpo Estriado/patologia , Expansão das Repetições de DNA , Feminino , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/genética , Humanos , Modelos Logísticos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação , Transtornos da Percepção/diagnóstico por imagem , Transtornos da Percepção/genética , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/patologia , Progranulinas/genética , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/patologia , Tálamo/patologia , Proteínas tau/genética
6.
J Mol Med (Berl) ; 98(8): 1139-1148, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32620998

RESUMO

Progranulin is a glycoprotein marking chronic inflammation in obesity and type 2 diabetes. Previous studies suggested PSRC1 (proline and serine rich coiled-coil 1) to be a target of genetic variants associated with serum progranulin levels. We aimed to identify potentially functional variants and characterize their role in regulation of PSRC1. Phylogenetic module complexity analysis (PMCA) prioritized four polymorphisms (rs12740374, rs629301, rs660240, rs7528419) altering transcription factor binding sites with an overall score for potential regulatory function of Sall > 7.0. The effects of these variants on transcriptional activity and binding of transcription factors were tested by luciferase reporter and electrophoretic mobility shift assays (EMSA). In parallel, blood DNA promoter methylation of two regions was tested in subjects with a very high (N = 100) or a very low (N = 100) serum progranulin. Luciferase assays revealed lower activities in vectors carrying the rs629301-A compared with the C allele. Moreover, EMSA indicated a different binding pattern for the two rs629301 alleles, with an additional prominent band for the A allele, which was finally confirmed with the supershift for the Yin Yang 1 transcription factor (YY1). Subjects with high progranulin levels manifested a significantly higher mean DNA methylation (P < 1 × 10-7) in one promoter region, which was in line with a significantly lower PSRC1 mRNA expression levels in blood (P = 1 × 10-3). Consistently, rs629301-A allele was associated with lower PSRC1 mRNA expression (P < 1 × 10-7). Our data suggest that the progranulin-associated variant rs629301 modifies the transcription of PSRC1 through alteration of YY1 binding capacity. DNA methylation studies further support the role of PSRC1 in regulation of progranulin serum levels. KEY MESSAGES: PSRC1 (proline and serine rich coiled-coil 1) SNPs are associated with serum progranulin levels. rs629301 regulates PSRC1 expression by affecting Yin Yang 1 transcription factor (YY1) binding. PSRC1 is also epigenetically regulated in subjects with high progranulin levels.


Assuntos
Regulação da Expressão Gênica , Variação Genética , Progranulinas/genética , Transcrição Gênica , Adulto , Idoso , Alelos , Linhagem Celular , Metilação de DNA , Epigênese Genética , Feminino , Genes Reporter , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Polimorfismo de Nucleotídeo Único , Progranulinas/sangue , Progranulinas/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição YY1/metabolismo
7.
Clin Breast Cancer ; 20(3): 220-227, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31928925

RESUMO

BACKGROUND: Progranulin (GP88) is a critical player in breast tumorigenesis. GP88 tumor expression is associated with increased recurrence and mortality, whereas GP88 circulating levels are elevated in patients with breast cancer compared with healthy individuals. We examined here the correlation between serum GP88 levels in patients with metastatic breast cancer (MBC) with overall survival and disease status determined as response to therapy or progression of disease. PATIENTS AND METHODS: An institutional review board (IRB)-approved study prospectively enrolled 101 patients with MBC at the University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center. GP88 serum levels were correlated with patients' disease status determined by Response Evaluation Criteria In Solid Tumors (RECIST) 1.1 criteria and survival outcomes by Kaplan-Meier analysis and log rank statistics. RESULTS: Patients' survival was stratified by serum GP88 level. Patients with serum GP88 < 55 ng/mL had a 4-fold increased survival compared with patients with GP88 > 55 ng/mL. Examination of GP88 serum levels in association with disease status showed a statistically significant association between serum GP88 levels and disease progression or response to therapy while CA15-3 level was only associated to progression. CONCLUSION: The association of serum GP88 level with survival and disease status suggests the potential of using the serum GP88 test for monitoring disease status in patients with MBC. Measurement of serum GP88 levels in patients with MBC may have clinical value as a cost-effective adjunct to the management of patients with MBC with imaging.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias da Mama/sangue , Recidiva Local de Neoplasia/epidemiologia , Progranulinas/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/mortalidade , Neoplasias da Mama/terapia , Progressão da Doença , Feminino , Humanos , Estimativa de Kaplan-Meier , Mastectomia , Pessoa de Meia-Idade , Mucina-1/sangue , Recidiva Local de Neoplasia/prevenção & controle , Valor Preditivo dos Testes , Estudos Prospectivos , Radioterapia Adjuvante , Critérios de Avaliação de Resposta em Tumores Sólidos
8.
Neuropharmacology ; 166: 107948, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31962288

RESUMO

Frontotemporal degeneration (FTD) is a complex disease presenting as a spectrum of clinical disorders with progressive degeneration of frontal and temporal brain cortices and extensive neuroinflammation that result in personality and behavior changes, and eventually, death. There are currently no effective therapies for FTD. While 60-70% of FTD patients are sporadic cases, the other 30-40% are heritable (familial) cases linked to mutations in several known genes. We focus here on FTD caused by mutations in the GRN gene, which encodes a secreted protein, progranulin (PGRN), that has diverse roles in regulating cell survival, immune responses, and autophagy and lysosome function in the brain. FTD-linked mutations in GRN reduce brain PGRN levels that lead to autophagy and lysosome dysfunction, TDP43 accumulation, excessive microglial activation, astrogliosis, and neuron death through still poorly understood mechanisms. PGRN insufficiency has also been linked to Alzheimer's disease (AD), and so the development of therapeutics for GRN-linked FTD that restore PGRN levels and function may have broader application for other neurodegenerative diseases. This review focuses on a strategy to increase PGRN to functional, healthy levels in the brain by identifying novel genetic and chemical modulators of neuronal PGRN levels. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.


Assuntos
Lobo Frontal/metabolismo , Demência Frontotemporal/metabolismo , Demência Frontotemporal/terapia , Progranulinas/metabolismo , Lobo Temporal/metabolismo , Animais , Lobo Frontal/efeitos dos fármacos , Demência Frontotemporal/genética , Terapia Genética/tendências , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Progranulinas/agonistas , Quinolonas/farmacologia , Quinolonas/uso terapêutico , Lobo Temporal/efeitos dos fármacos , Tirosina/análogos & derivados , Tirosina/farmacologia , Tirosina/uso terapêutico
9.
Neuroimage Clin ; 22: 101751, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30921613

RESUMO

Mutations in progranulin (GRN) cause heterogeneous clinical syndromes, including behavioral variant frontotemporal dementia (bvFTD), primary progressive aphasia (PPA), corticobasal syndrome (CBS) and Alzheimer-type dementia (AD-type dementia). Human studies have shown that presymptomatic GRN carriers feature reduced connectivity in the salience network, a system targeted in bvFTD. Mice with homozygous deletion of GRN, in contrast, show thalamo-cortical hypersynchrony due to aberrant pruning of inhibitory synapses onto thalamo-cortical projection neurons. No studies have systematically explored the intrinsic connectivity networks (ICNs) targeted by the four GRN-associated clinical syndromes, or have forged clear links between human and mouse model findings. We compared 17 preclinical GRN carriers (14 "presymptomatic" clinically normal and three "prodromal" with mild cognitive symptoms) to healthy controls to assess for differences in cognitive testing and gray matter volume. Using task-free fMRI, we assessed connectivity in the salience network, a non-fluent variant primary progressive aphasia network (nfvPPA), the perirolandic network (CBS), and the default mode network (AD-type dementia). GRN carriers and controls showed similar performance on cognitive testing. Although carriers showed little evidence of brain atrophy, markedly enhanced connectivity emerged in all four networks, and thalamo-cortical hyperconnectivity stood out as a unifying feature. Voxelwise assessment of whole brain degree centrality, an unbiased graph theoretical connectivity metric, confirmed thalamic hyperconnectivity. These results show that human GRN disease and the prevailing GRN mouse model share a thalamo-cortical network hypersynchrony phenotype. Longitudinal studies will determine whether this network physiology represents a compensatory response as carriers approach symptom onset, or an early and sustained preclinical manifestation of lifelong progranulin haploinsufficiency.


Assuntos
Córtex Cerebral/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Conectoma/métodos , Demência Frontotemporal/fisiopatologia , Rede Nervosa/fisiopatologia , Sintomas Prodrômicos , Progranulinas/genética , Tálamo/fisiopatologia , Adulto , Idoso , Córtex Cerebral/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Feminino , Demência Frontotemporal/diagnóstico por imagem , Heterozigoto , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Tálamo/diagnóstico por imagem
10.
Acta Neuropathol ; 137(6): 879-899, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30739198

RESUMO

Frontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 43 (FTLD-TDP) represents the most common pathological subtype of FTLD. We established the international FTLD-TDP whole-genome sequencing consortium to thoroughly characterize the known genetic causes of FTLD-TDP and identify novel genetic risk factors. Through the study of 1131 unrelated Caucasian patients, we estimated that C9orf72 repeat expansions and GRN loss-of-function mutations account for 25.5% and 13.9% of FTLD-TDP patients, respectively. Mutations in TBK1 (1.5%) and other known FTLD genes (1.4%) were rare, and the disease in 57.7% of FTLD-TDP patients was unexplained by the known FTLD genes. To unravel the contribution of common genetic factors to the FTLD-TDP etiology in these patients, we conducted a two-stage association study comprising the analysis of whole-genome sequencing data from 517 FTLD-TDP patients and 838 controls, followed by targeted genotyping of the most associated genomic loci in 119 additional FTLD-TDP patients and 1653 controls. We identified three genome-wide significant FTLD-TDP risk loci: one new locus at chromosome 7q36 within the DPP6 gene led by rs118113626 (p value = 4.82e - 08, OR = 2.12), and two known loci: UNC13A, led by rs1297319 (p value = 1.27e - 08, OR = 1.50) and HLA-DQA2 led by rs17219281 (p value = 3.22e - 08, OR = 1.98). While HLA represents a locus previously implicated in clinical FTLD and related neurodegenerative disorders, the association signal in our study is independent from previously reported associations. Through inspection of our whole-genome sequence data for genes with an excess of rare loss-of-function variants in FTLD-TDP patients (n ≥ 3) as compared to controls (n = 0), we further discovered a possible role for genes functioning within the TBK1-related immune pathway (e.g., DHX58, TRIM21, IRF7) in the genetic etiology of FTLD-TDP. Together, our study based on the largest cohort of unrelated FTLD-TDP patients assembled to date provides a comprehensive view of the genetic landscape of FTLD-TDP, nominates novel FTLD-TDP risk loci, and strongly implicates the immune pathway in FTLD-TDP pathogenesis.


Assuntos
Proteínas do Tecido Nervoso/genética , Proteinopatias TDP-43/genética , Idoso , Expansão das Repetições de DNA , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Feminino , Lobo Frontal/metabolismo , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/imunologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Antígenos HLA-DQ/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Mutação com Perda de Função , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/fisiologia , Canais de Potássio/genética , Progranulinas/genética , Progranulinas/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas/genética , Proteínas/fisiologia , RNA Mensageiro/biossíntese , Fatores de Risco , Análise de Sequência de RNA , Sociedades Científicas , Proteinopatias TDP-43/imunologia , População Branca/genética
11.
Biochim Biophys Acta Mol Basis Dis ; 1863(11): 2727-2745, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28720486

RESUMO

Affective and cognitive processing of nociception contributes to the development of chronic pain and vice versa, pain may precipitate psychopathologic symptoms. We hypothesized a higher risk for the latter with immanent neurologic diseases and studied this potential interrelationship in progranulin-deficient mice, which are a model for frontotemporal dementia, a disease dominated by behavioral abnormalities in humans. Young naïve progranulin deficient mice behaved normal in tests of short-term memory, anxiety, depression and nociception, but after peripheral nerve injury, they showed attention-deficit and depression-like behavior, over-activity, loss of shelter-seeking, reduced impulse control and compulsive feeding behavior, which did not occur in equally injured controls. Hence, only the interaction of 'pain x progranulin deficiency' resulted in the complex phenotype at young age, but neither pain nor progranulin deficiency alone. A deep proteome analysis of the prefrontal cortex and olfactory bulb revealed progranulin-dependent alterations of proteins involved in synaptic transport, including neurotransmitter transporters of the solute carrier superfamily. In particular, progranulin deficiency was associated with a deficiency of nuclear and synaptic zinc transporters (ZnT9/Slc30a9; ZnT3/Slc30a3) with low plasma zinc. Dietary zinc supplementation partly normalized the attention deficit of progranulin-deficient mice, which was in part reminiscent of autism-like and compulsive behavior of synaptic zinc transporter Znt3-knockout mice. Hence, the molecular studies point to defective zinc transport possibly contributing to progranulin-deficiency-associated psychopathology. Translated to humans, our data suggest that neuropathic pain may precipitate cognitive and psychopathological symptoms of an inherent, still silent neurodegenerative disease.


Assuntos
Proteínas de Transporte , Dor Crônica , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Neuralgia , Traumatismos dos Nervos Periféricos , Zinco/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Dor Crônica/genética , Dor Crônica/metabolismo , Dor Crônica/fisiopatologia , Dor Crônica/psicologia , Granulinas , Transporte de Íons , Camundongos , Camundongos Knockout , Neuralgia/genética , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Neuralgia/psicologia , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/fisiopatologia , Traumatismos dos Nervos Periféricos/psicologia , Progranulinas
12.
Ann N Y Acad Sci ; 1383(1): 5-20, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27505256

RESUMO

Progranulin (PGRN) is a growth factor with a unique beads-on-a-string structure that is involved in multiple pathophysiological processes, including anti-inflammation, tissue repair, wound healing, neurodegenerative diseases, and tumorigenesis. This review presents up-to-date information concerning recent studies on the role of PGRN in inflammatory arthritis and osteoarthritis, with a special focus on the involvement of the interactions and interplay between PGRN and tumor necrosis factor receptor (TNFR) family members in regulating such musculoskeletal diseases. In addition, this paper highlights the applications of atsttrin, an engineered protein comprising three TNFR-binding fragments of PGRN, as a promising intervention in treating arthritis.


Assuntos
Artrite/tratamento farmacológico , Artrite/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Receptores do Fator de Necrose Tumoral/metabolismo , Animais , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Progranulinas , Ligação Proteica/fisiologia , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/uso terapêutico , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
13.
Mol Neurodegener ; 11(1): 46, 2016 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-27341800

RESUMO

BACKGROUND: Progranulin (PGRN) is a secreted growth factor important for neuronal survival and may do so, in part, by regulating lysosome homeostasis. Mutations in the PGRN gene (GRN) are a common cause of frontotemporal lobar degeneration (FTLD) and lead to disease through PGRN haploinsufficiency. Additionally, complete loss of PGRN in humans leads to neuronal ceroid lipofuscinosis (NCL), a lysosomal storage disease. Importantly, Grn-/- mouse models recapitulate pathogenic lysosomal features of NCL. Further, GRN variants that decrease PGRN expression increase the risk of developing Alzheimer's disease (AD) and Parkinson's disease (PD). Together these findings demonstrate that insufficient PGRN predisposes neurons to degeneration. Therefore, compounds that increase PGRN levels are potential therapeutics for multiple neurodegenerative diseases. RESULTS: Here, we performed a cell-based screen of a library of known autophagy-lysosome modulators and identified multiple novel activators of a human GRN promoter reporter including several common mTOR inhibitors and an mTOR-independent activator of autophagy, trehalose. Secondary cellular screens identified trehalose, a natural disaccharide, as the most promising lead compound because it increased endogenous PGRN in all cell lines tested and has multiple reported neuroprotective properties. Trehalose dose-dependently increased GRN mRNA as well as intracellular and secreted PGRN in both mouse and human cell lines and this effect was independent of the transcription factor EB (TFEB). Moreover, trehalose rescued PGRN deficiency in human fibroblasts and neurons derived from induced pluripotent stem cells (iPSCs) generated from GRN mutation carriers. Finally, oral administration of trehalose to Grn haploinsufficient mice significantly increased PGRN expression in the brain. CONCLUSIONS: This work reports several novel autophagy-lysosome modulators that enhance PGRN expression and identifies trehalose as a promising therapeutic for raising PGRN levels to treat multiple neurodegenerative diseases.


Assuntos
Demência Frontotemporal , Expressão Gênica/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Fármacos Neuroprotetores/farmacologia , Trealose/farmacologia , Animais , Autofagia/efeitos dos fármacos , Western Blotting , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Ensaio de Imunoadsorção Enzimática , Granulinas , Haploinsuficiência , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Progranulinas , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima
14.
Cell ; 165(4): 921-35, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27114033

RESUMO

Microglia maintain homeostasis in the brain, but whether aberrant microglial activation can cause neurodegeneration remains controversial. Here, we use transcriptome profiling to demonstrate that deficiency in frontotemporal dementia (FTD) gene progranulin (Grn) leads to an age-dependent, progressive upregulation of lysosomal and innate immunity genes, increased complement production, and enhanced synaptic pruning in microglia. During aging, Grn(-/-) mice show profound microglia infiltration and preferential elimination of inhibitory synapses in the ventral thalamus, which lead to hyperexcitability in the thalamocortical circuits and obsessive-compulsive disorder (OCD)-like grooming behaviors. Remarkably, deleting C1qa gene significantly reduces synaptic pruning by Grn(-/-) microglia and mitigates neurodegeneration, behavioral phenotypes, and premature mortality in Grn(-/-) mice. Together, our results uncover a previously unrecognized role of progranulin in suppressing aberrant microglia activation during aging. These results represent an important conceptual advance that complement activation and microglia-mediated synaptic pruning are major drivers, rather than consequences, of neurodegeneration caused by progranulin deficiency.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Ativação do Complemento , Complemento C1q/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Microglia/metabolismo , Envelhecimento/imunologia , Animais , Líquido Cefalorraquidiano , Complemento C1q/genética , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Granulinas , Humanos , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Lisossomos/metabolismo , Redes e Vias Metabólicas , Camundongos , Transtorno Obsessivo-Compulsivo/genética , Transtorno Obsessivo-Compulsivo/metabolismo , Progranulinas , Sinapses/metabolismo , Tálamo/metabolismo
15.
PLoS One ; 7(3): e32422, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22396764

RESUMO

RD21-like proteases are ubiquitous, plant-specific papain-like proteases typified by carrying a C-terminal granulin domain. RD21-like proteases are involved in immunity and associated with senescence and various types of biotic and abiotic stresses. Here, we interrogated Arabidopsis RD21 regulation and trafficking by site-directed mutagenesis, agroinfiltration, western blotting, protease activity profiling and protein degradation. Using an introduced N-glycan sensor, deglycosylation experiments and glyco-engineered N. benthamiana plants, we show that RD21 passes through the Golgi where it becomes fucosylated. Our studies demonstrate that RD21 is regulated at three post-translational levels. Prodomain removal is not blocked in the catalytic Cys mutant, indicating that RD21 is activated by a proteolytic cascade. However, RD21 activation in Arabidopsis does not require vacuolar processing enzymes (VPEs) or aleurain-like protease AALP. In contrast, granulin domain removal requires the catalytic Cys and His residues and is therefore autocatalytic. Furthermore, SDS can (re-)activate latent RD21 in Arabidopsis leaf extracts, indicating the existence of a third layer of post-translational regulation, possibly mediated by endogenous inhibitors. RD21 causes a dominant protease activity in Arabidopsis leaf extracts, responsible for SDS-induced proteome degradation.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cisteína Proteases/genética , Cisteína Proteases/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/química , Processamento de Proteína Pós-Traducional , Biotinilação , Catálise , Cisteína/química , Cisteína Endopeptidases/química , Deleção de Genes , Regulação da Expressão Gênica de Plantas , Glicosilação , Complexo de Golgi/metabolismo , Espectrometria de Massas/métodos , Mutação , Extratos Vegetais/metabolismo , Folhas de Planta/metabolismo , Polissacarídeos/química , Progranulinas , Estrutura Terciária de Proteína
16.
Endocrinology ; 152(12): 4672-82, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21933869

RESUMO

Progranulin (PGRN) is a secreted glycoprotein with multiple biological functions, including modulation of wound healing and inflammation. Hypothalamic PGRN has been implicated in the development of sexual dimorphism. In the present study, a potential role for PGRN in the hypothalamic regulation of appetite and body weight was investigated. In adult rodents, PGRN was highly expressed in periventricular tanycytes and in hypothalamic neurons, which are known to contain glucose-sensing machinery. Hypothalamic PGRN expression levels were decreased under low-energy conditions (starvation and 2-deoxy-D-glucose administration) but increased under high-energy condition (postprandially). Intracerebrovetricular administration of PGRN significantly suppressed nocturnal feeding as well as hyperphagia induced by 2-deoxyglucose, neuropeptide Y, and Agouti-related peptide. Moreover, the inhibition of hypothalamic PGRN expression or action increased food intake and promoted weight gain, suggesting that endogenous PGRN functions as an appetite suppressor in the hypothalamus. Investigation of the mechanism of action revealed that PGRN diminished orexigenic neuropeptide Y and Agouti-related peptide production but stimulated anorexigenic proopiomelanocortin production, at least in part through the regulation of hypothalamic AMP-activated protein kinase. Notably, PGRN was also expressed in hypothalamic microglia. In diet-induced obese mice, microglial PGRN expression was increased, and the anorectic response to PGRN was blunted. These findings highlight a physiological role for PGRN in hypothalamic glucose-sensing and appetite regulation. Alterations in hypothalamic PGRN production or action may be linked to appetite dysregulation in obesity.


Assuntos
Regulação do Apetite , Glucose/metabolismo , Hipotálamo/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Proteína Relacionada com Agouti/fisiologia , Animais , Peso Corporal , Ingestão de Alimentos , Granulinas , Camundongos , Microglia/metabolismo , Neuropeptídeo Y/metabolismo , Neuropeptídeo Y/fisiologia , Obesidade , Progranulinas
17.
Neuropsychologia ; 49(9): 2755-65, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21689671

RESUMO

The cognition of nonverbal sounds in dementia has been relatively little explored. Here we undertook a systematic study of nonverbal sound processing in patient groups with canonical dementia syndromes comprising clinically diagnosed typical amnestic Alzheimer's disease (AD; n=21), progressive nonfluent aphasia (PNFA; n=5), logopenic progressive aphasia (LPA; n=7) and aphasia in association with a progranulin gene mutation (GAA; n=1), and in healthy age-matched controls (n=20). Based on a cognitive framework treating complex sounds as 'auditory objects', we designed a novel neuropsychological battery to probe auditory object cognition at early perceptual (sub-object), object representational (apperceptive) and semantic levels. All patients had assessments of peripheral hearing and general neuropsychological functions in addition to the experimental auditory battery. While a number of aspects of auditory object analysis were impaired across patient groups and were influenced by general executive (working memory) capacity, certain auditory deficits had some specificity for particular dementia syndromes. Patients with AD had a disproportionate deficit of auditory apperception but preserved timbre processing. Patients with PNFA had salient deficits of timbre and auditory semantic processing, but intact auditory size and apperceptive processing. Patients with LPA had a generalised auditory deficit that was influenced by working memory function. In contrast, the patient with GAA showed substantial preservation of auditory function, but a mild deficit of pitch direction processing and a more severe deficit of auditory apperception. The findings provide evidence for separable stages of auditory object analysis and separable profiles of impaired auditory object cognition in different dementia syndromes.


Assuntos
Percepção Auditiva/fisiologia , Formação de Conceito/fisiologia , Demência/complicações , Transtornos da Memória/complicações , Testes Neuropsicológicos , Reconhecimento Psicológico/fisiologia , Estimulação Acústica , Idoso , Doença de Alzheimer/complicações , Doença de Alzheimer/fisiopatologia , Afasia/complicações , Afasia/fisiopatologia , Estudos de Casos e Controles , Demência/genética , Demência/fisiopatologia , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Transtornos da Memória/diagnóstico , Pessoa de Meia-Idade , Mutação , Percepção da Altura Sonora/fisiologia , Afasia Primária Progressiva não Fluente/complicações , Afasia Primária Progressiva não Fluente/fisiopatologia , Progranulinas , Valores de Referência
18.
J Biol Chem ; 281(15): 9963-70, 2006 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-16473876

RESUMO

Granulins are a group of highly conserved growth factors that have been described from a variety of organisms spanning the metazoa. In this study, goldfish granulin was one of the most commonly identified transcripts in the differential cross-screening of macrophage cDNA libraries and was preferentially expressed in proliferating macrophages. Unlike mammalian granulins, which possess 7.5 repeats of a characteristic signature of 12 cysteine residues, the goldfish granulin encoded a putative peptide possessing only 1.5 cysteine repeats. Northern blot and real-time PCR analyses indicated that goldfish granulin was expressed only in the hematopoietic tissues of the goldfish, specifically the kidney and spleen, and in activated peripheral blood mononuclear cells. We expressed granulin using a prokaryotic expression system and produced an affinity-purified rabbit anti-goldfish granulin IgG. Recombinant goldfish granulin induced a dose-dependent proliferative response of goldfish macrophages that was inversely related to the myeloid differentiation stage of the cells studied. The highest proliferative response was observed in macrophage progenitor cells and monocytes. This proliferative response of macrophages was abrogated by the addition of anti-granulin IgG. These results indicate that goldfish granulin is a growth factor that positively modulates cell proliferation at distinct junctures of macrophage differentiation.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/química , Macrófagos/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Northern Blotting , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Células Cultivadas/metabolismo , Cisteína/química , DNA/química , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Escherichia coli/metabolismo , Biblioteca Gênica , Carpa Dourada , Humanos , Imunoglobulina G/química , Inflamação , Rim/metabolismo , Leucócitos Mononucleares/metabolismo , Camundongos , Dados de Sequência Molecular , Monócitos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Progranulinas , RNA/química , Proteínas Recombinantes/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Fatores de Tempo
19.
J Reprod Dev ; 52(3): 343-52, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16493179

RESUMO

Our previous research has identified the granulin (grn) and p130 genes as sex steroid-regulated genes in the neonatal rat hypothalamus that might be involved in sexual differentiation of the brain. Since phthalate/adipate esters such as di-n-butyl phthalate (DBP), diisononyl phthalate (DINP), and di-2-ethylhexyl adipate (DEHA) are suspected to interfere with the endocrine system as environmental endocrine disruptors having estrogenic or antiandrogenic properties, these chemicals may affect sexual differentiation of the brain. The present study assessed the effects of perinatal exposure to DBP, DINP, and DEHA on grn and p130 mRNA expressions in the hypothalamus on postnatal day (PND) 7 and sexual behaviors after maturation in rats. Maternal rats were given a phytoestrogen-free diet containing different doses of DBP (20, 200, 2,000, and 10,000 ppm), DINP (40, 400, 4,000, and 20,000 ppm) and DEHA (480, 2,400, and 12,000 ppm) from gestational day 15 to the day of weaning (PND 21). DBP and DINP exposure during the perinatal period resulted in an increase in hypothalamic grn and p130 mRNA levels in females and males, respectively, but DEHA exposure decreased expression levels of grn in males and p130 in females, although the effects were not dose-dependent. After maturation, male rats that were exposed to several doses of DBP, DINP, and DEHA displayed decreased copulatory behavior. The lordosis quotient was decreased in females perinatally exposed to DBP, DINP, and DEHA at all the doses used. On the other hand, serum levels of LH and FSH in both sexes and the estrous cycles in females were not affected by the treatments. These results suggest that inappropriate expression of grn and/or p130 genes in the brains of male and female neonatal rats by perinatal exposure to these chemicals may exert permanent effects on the hypothalamus, thereby decreasing sexual behavior after maturation.


Assuntos
Adipatos/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Ácidos Ftálicos/efeitos adversos , Comportamento Sexual Animal/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Disruptores Endócrinos/efeitos adversos , Exposição Ambiental/efeitos adversos , Feminino , Hipotálamo/metabolismo , Masculino , Progranulinas , RNA Mensageiro/análise , RNA Mensageiro/efeitos dos fármacos , Ratos
20.
Oncogene ; 24(47): 7084-93, 2005 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-16044162

RESUMO

Granulin-epithelin precursor (GEP/progranulin) is an autocrine growth factor for ovarian cancer. We examined the production and function of GEP and report that: (1) GEP production is regulated by endothelin (ET-1), lysophosphatidic acid (LPA), and cAMP; (2) cAMP signals GEP production through exchange protein activated by cAMP (EPAC); (3) ET-1 and cAMP/EPAC induce GEP through ERK1/2; and (4) neutralization of GEP results in apoptosis. Exposure of HEY-A8 and OVCAR3 ovarian cancer cells to LPA and ET-1 yielded GEP production and secretion in a dose- and time-dependent fashion; neither stimulated significant concentrations of cAMP directly. Stimulation of cAMP production with pertussis and cholera toxin, or forskolin induced GEP in a PKA-independent fashion. EPAC, an intracellular cAMP receptor, is activated specifically by the cAMP analog, 8-CPT-2'-O-Me-cAMP (8-CPT); 8-CPT treatment stimulated GEP production and secretion. The MEK inhibitor, U0126, abrogated GEP production in response to ET-1 and 8-CPT, confirming involvement of MAPK. A partial inhibition of basal and stimulated GEP production was observed when cells were treated with a internal calcium chelator, BAPTA. Neutralizing anti-GEP antibody reversed basal as well as LPA, ET-1 and 8-CPT-induced ovarian cancer cell growth and induced apoptosis as demonstrated by caspase-3 and PARP cleavage, DNA fragmentation, and nuclear condensation. These results indicate that GEP is a growth and survival factor for ovarian cancer, induced by LPA and ET-1 and cAMP/EPAC through ERK1/2.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Endotelinas/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lisofosfolipídeos/farmacologia , Neoplasias Ovarianas/metabolismo , Adjuvantes Imunológicos/farmacologia , Northern Blotting , Western Blotting , Caspase 3 , Caspases/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Quelantes/farmacologia , Toxina da Cólera/farmacologia , Colforsina/farmacologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Feminino , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , MAP Quinase Quinase 1/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neoplasias Ovarianas/patologia , Toxina Pertussis/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Progranulinas , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA