Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.551
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Mater Chem B ; 12(16): 4039-4052, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38591157

RESUMO

Clear cell renal cell carcinoma (ccRCC) is a disease with high incidence and poor prognosis. The conventional treatment involves radiotherapy and chemotherapy, but chemotherapeutic agents are often associated with side effects, i.e., cytotoxicity to nontumor cells. Therefore, there is an urgent need for the development of novel therapeutic strategies for ccRCC. We synthesized spherical P/TiO2 nanoparticles (P/TiO2 NPs) by vaporization phosphorization (VP). X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS) analyses confirmed that the anatase TiO2 surface was successfully doped with phosphorus and produced a large number of oxygen vacancies (OV). Serving as a photosensitizer, P/TiO2 NPs not only extended the photoresponse range to the near-infrared II region (NIR II) but also introduced a donor energy level lower than the TiO2 conduction band, narrowing the band gap, which could facilitate the migration of photogenerated charges and trigger the synergistic treatment of photodynamic therapy (PDT) and photothermal therapy (PTT). During NIR irradiation in vitro, the P/TiO2 NPs generated local heat and various oxygen radicals, including 1O2, ˙O2-, H2O2, and ˙OH, which damaged the ccRCC cells. In vivo, administration of the P/TiO2 NPs + NIR reduced the tumor volume by 80%, and had the potential to inhibit tumor metastasis by suppressing intratumor neoangiogenesis. The P/TiO2 NPs showed superior safety and efficacy relative to the conventional chemotherapeutic agent used in ccRCC treatment. This study introduced an innovative paradigm for renal cancer treatment, highlighting the potential of P/TiO2 NPs as safe and effective nanomaterials and presenting a compelling new option for clinical applications in anticancer therapy.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Nanocompostos , Fósforo , Fotoquimioterapia , Terapia Fototérmica , Titânio , Titânio/química , Titânio/farmacologia , Fósforo/química , Humanos , Animais , Nanocompostos/química , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Neoplasias Renais/terapia , Camundongos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/terapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos Nus , Camundongos Endogâmicos BALB C , Ensaios de Seleção de Medicamentos Antitumorais , Tamanho da Partícula , Linhagem Celular Tumoral
2.
Endocr Res ; 49(2): 106-116, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38597376

RESUMO

BACKGROUND: Phytoestrogens have been praised for their beneficial health effects, whereas synthetic xenoestrogens have been connected to ailments. AIMS: To ascertain whether the toxicities of natural and synthetic estrogens differ, we examined the potent phytoestrogen 8-prenylnaringenin (8-PN), the common synthetic xenoestrogen tartrazine, and the physiological estrogen 17ß-estradiol (E2). METHODS: These three compounds were tested for cytotoxicity, cell proliferation and genotoxicity in human HepG2 and rat H4IIE hepatoma cells. RESULTS: All three estrogens elicited cytotoxicity at high concentrations in both cell lines. They also inhibited cell proliferation, with E2 being the most effective. They all tended to increase micronuclei formation. CONCLUSION: Natural estrogens were no less toxic than a synthetic one.


Assuntos
Proliferação de Células , Estradiol , Flavanonas , Tartrazina , Humanos , Animais , Ratos , Estradiol/farmacologia , Flavanonas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Tartrazina/farmacologia , Carcinoma Hepatocelular , Neoplasias Hepáticas/induzido quimicamente , Células Hep G2 , Estrogênios/farmacologia , Congêneres do Estradiol/farmacologia , Fitoestrógenos/farmacologia
3.
Chin J Nat Med ; 22(4): 341-355, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658097

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disorder marked by persistent synovial inflammation and joint degradation, posing challenges in the development of effective treatments. Nuciferine, an alkaloid found in lotus leaf, has shown promising anti-inflammatory and anti-tumor effects, yet its efficacy in RA treatment remains unexplored. This study investigated the antiproliferative effects of nuciferine on the MH7A cell line, a human RA-derived fibroblast-like synoviocyte, revealing its ability to inhibit cell proliferation, promote apoptosis, induce apoptosis, and cause G1/S phase arrest. Additionally, nuciferine significantly reduced the migration and invasion capabilities of MH7A cells. The therapeutic potential of nuciferine was further evaluated in a collagen-induced arthritis (CIA) rat model, where it markedly alleviated joint swelling, synovial hyperplasia, cartilage injury, and inflammatory infiltration. Nuciferine also improved collagen-induced bone erosion, decreased pro-inflammatory cytokines and serum immunoglobulins (IgG, IgG1, IgG2a), and restored the balance between T helper (Th) 17 and regulatory T cells in the spleen of CIA rats. These results indicate that nuciferine may offer therapeutic advantages for RA by decreasing the proliferation and invasiveness of FLS cells and correcting the Th17/Treg cell imbalance in CIA rats.


Assuntos
Aporfinas , Proliferação de Células , Sinoviócitos , Linfócitos T Reguladores , Células Th17 , Animais , Proliferação de Células/efeitos dos fármacos , Sinoviócitos/efeitos dos fármacos , Ratos , Humanos , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Aporfinas/farmacologia , Artrite Experimental/tratamento farmacológico , Artrite Experimental/imunologia , Masculino , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Fibroblastos/efeitos dos fármacos , Colágeno , Apoptose/efeitos dos fármacos , Linhagem Celular
4.
Chin J Nat Med ; 22(4): 318-328, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658095

RESUMO

Double cortin-like kinase 1 (DCLK1) exhibits high expression levels across various cancers, notably in human colorectal cancer (CRC). Diacerein, a clinically approved interleukin (IL)-1ß inhibitor for osteoarthritis treatment, was evaluated for its impact on CRC proliferation and migration, alongside its underlying mechanisms, through both in vitro and in vivo analyses. The study employed MTT assay, colony formation, wound healing, transwell assays, flow cytometry, and Hoechst 33342 staining to assess cell proliferation, migration, and apoptosis. Additionally, proteome microarray assay and western blotting analyses were conducted to elucidate diacerein's specific mechanism of action. Our findings indicate that diacerein significantly inhibits DCLK1-dependent CRC growth in vitro and in vivo. Through high-throughput proteomics microarray and molecular docking studies, we identified that diacerein directly interacts with DCLK1. Mechanistically, the suppression of p-STAT3 expression following DCLK1 inhibition by diacerein or specific DCLK1 siRNA was observed. Furthermore, diacerein effectively disrupted the DCLK1/STAT3 signaling pathway and its downstream targets, including MCL-1, VEGF, and survivin, thereby inhibiting CRC progression in a mouse model, thereby inhibiting CRC progression in a mouse model.


Assuntos
Antraquinonas , Proliferação de Células , Neoplasias Colorretais , Quinases Semelhantes a Duplacortina , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Serina-Treonina Quinases , Fator de Transcrição STAT3 , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Antraquinonas/farmacologia , Linhagem Celular Tumoral , Reposicionamento de Medicamentos , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus
5.
PLoS One ; 19(4): e0300115, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662724

RESUMO

The biogenic approach for the synthesis of metal nanoparticles provides an efficient eco-friendly alternative to chemical synthesis. This study presents a novel route for the biosynthesis of silver nanoparticles using aqueous sandalwood (SW) leaf extract as a source of reducing and capping agents under mild, room temperature synthesis conditions. The bioreduction of Ag+ to Ago nanoparticles (SW-AgNPs) was accompanied by the appearance of brown color, with surface plasmon resonance peak at 340-360 nm. SEM, TEM and AFM imaging confirm SW-AgNP's spherical shape with size range of 10-32 nm. DLS indicates a hydrodynamic size of 49.53 nm with predominant negative Zeta potential, which can contribute to the stability of the nanoparticles. FTIR analysis indicates involvement of sandalwood leaf derived polyphenols, proteins and lipids in the reduction and capping of SW-AgNPs. XRD determines the face-centered-cubic crystalline structure of SW-AgNPs, which is a key factor affecting biological functions of nanoparticles. This study is novel in using cell culture methodologies to evaluate effects of SW-AgNPs on proliferating cells originating from plants and human cancer. Exposure of groundnut calli cells to SW-AgNPs, resulted in enhanced proliferation leading to over 70% higher calli biomass over control, enhanced defense enzyme activities, and secretion of metabolites implicated in biotic stress resistance (Crotonyl isothiocyanate, Butyrolactone, 2-Hydroxy-gamma-butyrolactone, Maltol) and plant cell proliferation (dl-Threitol). MTT and NRU were performed to determine the cytotoxicity of nanoparticles on human cervical cancer cells. SW-AgNPs specifically inhibited cervical cell lines SiHa (IC50-2.65 ppm) and CaSki (IC50-9.49 ppm), indicating potential use in cancer treatment. The opposing effect of SW-AgNPs on cell proliferation of plant calli (enhanced cell proliferation) and human cancer cell lines (inhibition) are both beneficial and point to potential safe application of SW-AgNPs in plant cell culture, agriculture and in cancer treatment.


Assuntos
Proliferação de Células , Nanopartículas Metálicas , Extratos Vegetais , Folhas de Planta , Santalum , Prata , Nanopartículas Metálicas/química , Humanos , Prata/química , Prata/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Santalum/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral
6.
Mol Nutr Food Res ; 68(8): e2300820, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600874

RESUMO

Garlic is rich in bioactive compounds that are effective against colon cancer cells. This study tests the antioxidant and antiproliferative effects of cold-extracted white and black garlic extracts. Black garlic extracted in water (SSU) exhibits the highest antioxidant activity, phenolic content, and flavonoid content, while black garlic extracted in ethanol (SET) shows the lowest values. Caspase-3 activity is notably higher in the white garlic extracted in methanol (BME), white garlic extracted in methanol combines with 5-FU, black garlic extracted in ethanol (SET), black garlic extracted in ethanol combines with 5-fluorouracil (5-FU), and 5-FU treatments compare to the control group (p > 0.05). BME+5-FU displays the highest caspase-8 activity (p < 0.05). A decrease in NF-κB levels is observed in the SET+5-FU group (p>0.05), while COX-2 activities decrease in the BME, SET+5-FU, SET, and 5-FU groups (p>0.05). Wound healing increases in the BME, BME+5-FU, SET+5-FU, and 5-FU groups (p < 0.05). In conclusion, aqueous black garlic extract may exhibit pro-oxidant activity despite its high antioxidant capacity. It is worth noting that exposure to heat-treated food and increased sugar content may lead to heightened inflammation and adverse health effects. This study is the first to combine garlic with chemo-preventive drugs like 5-FU in Caco-2 cells.


Assuntos
Antioxidantes , Proliferação de Células , Fluoruracila , Alho , Extratos Vegetais , Humanos , Alho/química , Extratos Vegetais/farmacologia , Fluoruracila/farmacologia , Proliferação de Células/efeitos dos fármacos , Células CACO-2 , Antioxidantes/farmacologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , NF-kappa B/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Fenóis/farmacologia , Fenóis/análise , Ciclo-Oxigenase 2/metabolismo , Caspase 3/metabolismo , Flavonoides/farmacologia , Flavonoides/análise
7.
Int Immunopharmacol ; 132: 111981, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38565039

RESUMO

Cordycepin (CRD) is an active component derived from Cordyceps militaris, which possesses multiple biological activities and uses in liver disease. However, whether CRD improves liver fibrosis by regulating hepatic stellate cell (HSC) activation has remained unknown. The study aims further to clarify the activities of CRD on liver fibrosis and elucidate the possible mechanism. Our results demonstrated that CRD significantly relieved hepatocyte injury and inhibited HSC activation, alleviating hepatic fibrogenesis in the Diethyl 1,4-dihydro-2,4,6-trimethyl-3,5-pyridinedicarboxylate (DDC)-induced mice model. In vitro, CRD exhibited dose-dependent repress effects on HSC proliferation, migration, and pro-fibrotic function in TGF-ß1-activated LX-2 and JS-1 cells. The functional enrichment analysis of RNA-seq data indicated that the pathway through which CRD alleviates HSC activation involves cellular senescence and cell cycle-related pathways. Furthermore, it was observed that CRD accumulated the number of senescence-associated a-galactosidase positive cells and the levels of senescencemarker p21, and provoked S phasearrestof activated HSC. Remarkably, CRD treatment abolished TGF-ß-induced yes-associated protein (YAP) nuclear translocation that acts upstream of glutaminolysis in activated HSC. On the whole, CRD significantly inhibited glutaminolysis of activated-HSC and induced cell senescence through the YAP signaling pathway, consequently alleviating liver fibrosis, which may be a valuable supplement for treating liver fibrosis.


Assuntos
Senescência Celular , Desoxiadenosinas , Células Estreladas do Fígado , Cirrose Hepática , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Animais , Senescência Celular/efeitos dos fármacos , Desoxiadenosinas/farmacologia , Desoxiadenosinas/uso terapêutico , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Camundongos , Masculino , Humanos , Camundongos Endogâmicos C57BL , Proliferação de Células/efeitos dos fármacos , Linhagem Celular , Proteínas de Sinalização YAP/metabolismo , Modelos Animais de Doenças , Fator de Crescimento Transformador beta1/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo
8.
Phytochemistry ; 222: 114103, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636686

RESUMO

Eight new cytochalasans rosellichalasins A-H (1-8), as well as two new shunt metabolites rosellinins A (9) and B (10) before intramolecular Diels-Alder cycloaddition reaction in cytochalasan biosynthesis, along with nine known cytochalsans (11-19) were isolated from the endophytic fungus Rosellinia sp. Glinf021, which was derived from the medicinal plant Glycyrrhiza inflata. Their structures were characterized by extensive analysis of 1D and 2D NMR as well as HRESIMS spectra and quantum chemical ECD calculations. The cytotoxic activities of these compounds were evaluated against four human cancer cell lines including HCT116, MDA-MB-231, BGC823, and PANC-1 with IC50 values ranging from 0.5 to 58.2 µM.


Assuntos
Antineoplásicos , Citocalasinas , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Citocalasinas/química , Citocalasinas/farmacologia , Citocalasinas/isolamento & purificação , Estrutura Molecular , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Ascomicetos/química , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Endófitos/química
9.
Redox Biol ; 72: 103160, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631120

RESUMO

Iron overload can lead to oxidative stress and intestinal damage and happens frequently during blood transfusions and iron supplementation. However, how iron overload influences intestinal mucosa remains unknown. Here, the aim of current study was to investigate the effects of iron overload on the proliferation and differentiation of intestinal stem cells (ISCs). An iron overload mouse model was established by intraperitoneal injection of 120 mg/kg body weight iron dextran once a fortnight for a duration of 12 weeks, and an iron overload enteroid model was produced by treatment with 3 mM or 10 mM of ferric ammonium citrate for 24 h. We found that iron overload caused damage to intestinal morphology with a 64 % reduction in villus height/crypt depth ratio, and microvilli injury in the duodenum. Iron overload mediated epithelial function by inhibiting the expression of nutrient transporters and enhancing the expression of secretory factors in the duodenum. Meanwhile, iron overload inhibited the proliferation of ISCs and regulated their differentiation into secretory mature cells, such as goblet cells, through inhibiting Notch signaling pathway both in mice and enteroid. Furthermore, iron overload caused oxidative stress and ferroptosis in intestinal epithelial cells. In addition, ferroptosis could also inhibit Notch signaling pathway, and affected the proliferation and differentiation of ISCs. These findings reveal the regulatory role of iron overload on the proliferation and differentiation of ISCs, providing a new insight into the internal mechanism of iron overload affecting intestinal health, and offering important theoretical basis for the scientific application of iron nutrition regulation.


Assuntos
Diferenciação Celular , Ferroptose , Células Caliciformes , Sobrecarga de Ferro , Estresse Oxidativo , Receptores Notch , Transdução de Sinais , Células-Tronco , Animais , Ferroptose/efeitos dos fármacos , Camundongos , Células Caliciformes/metabolismo , Sobrecarga de Ferro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/citologia , Diferenciação Celular/efeitos dos fármacos , Receptores Notch/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Masculino
10.
J Agric Food Chem ; 72(17): 9717-9734, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38624258

RESUMO

Plants have a history of being employed in managing breast cancer. However, no scientific evidence supports the idea that these plants can effectively reduce the level of HER2 expression. In this study, extracts from 10 medicinal plants were evaluated for their anticancer properties against HER2-positive breast cancer cells through various methods, including the SRB assay, comet assay, annexin V-FITC dual staining, and immunoblotting. All extracts exerted antiproliferative activity against HER2-positive breast cancer cells. Furthermore, Terminalia chebula (T. chebula), Berberis aristata (B. aristata), and Mucuna pruriens (M. pruriens) reduced HER2 expression in tested cell lines. In addition, an increased Bax/Bcl-2 ratio was observed after the treatment. A comparative proteomics study showed modulation in the proteome profile of breast cancer cells after treatment with T. chebula, B. aristata, Punica granatum, M. pruriens, and Acorus calamus. Metabolic profiling of lead plants revealed the existence of multiple anticancer compounds. Our study demonstrates the considerable potential of the mentioned plants as innovative therapies for HER2-positive breast cancer.


Assuntos
Neoplasias da Mama , Proliferação de Células , Regulação para Baixo , Extratos Vegetais , Plantas Medicinais , Receptor ErbB-2 , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Plantas Medicinais/química , Feminino , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Terminalia/química , Mucuna/química
11.
ACS Nano ; 18(17): 11025-11041, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38626916

RESUMO

ALK-positive NSCLC patients demonstrate initial responses to ALK tyrosine kinase inhibitor (TKI) treatments, but eventually develop resistance, causing rapid tumor relapse and poor survival rates. Growing evidence suggests that the combination of drug and immune therapies greatly improves patient survival; however, due to the low immunogenicity of the tumors, ALK-positive patients do not respond to currently available immunotherapies. Tumor-associated macrophages (TAMs) play a crucial role in facilitating lung cancer growth by suppressing tumoricidal immune activation and absorbing chemotherapeutics. However, they can also be programmed toward a pro-inflammatory tumor suppressive phenotype, which represents a highly active area of therapy development. Iron loading of TAMs can achieve such reprogramming correlating with an improved prognosis in lung cancer patients. We previously showed that superparamagnetic iron oxide nanoparticles containing core-cross-linked polymer micelles (SPION-CCPMs) target macrophages and stimulate pro-inflammatory activation. Here, we show that SPION-CCPMs stimulate TAMs to secrete reactive nitrogen species and cytokines that exert tumoricidal activity. We further show that SPION-CCPMs reshape the immunosuppressive Eml4-Alk lung tumor microenvironment (TME) toward a cytotoxic profile hallmarked by the recruitment of CD8+ T cells, suggesting a multifactorial benefit of SPION-CCPM application. When intratracheally instilled into lung cancer-bearing mice, SPION-CCPMs delay tumor growth and, after first line therapy with a TKI, halt the regrowth of relapsing tumors. These findings identify SPIONs-CCPMs as an adjuvant therapy, which remodels the TME, resulting in a delay in the appearance of resistant tumors.


Assuntos
Crizotinibe , Neoplasias Pulmonares , Nanopartículas Magnéticas de Óxido de Ferro , Microambiente Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Nanopartículas Magnéticas de Óxido de Ferro/química , Humanos , Camundongos , Crizotinibe/farmacologia , Crizotinibe/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Linhagem Celular Tumoral , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino
12.
J Mater Chem B ; 12(19): 4629-4641, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38666407

RESUMO

Enlightened by the great success of the drug repurposing strategy in the pharmaceutical industry, in the current study, material repurposing is proposed where the performance of carbonyl iron powder (CIP), a nutritional intervention agent of iron supplement approved by the US FDA for iron deficiency anemia in clinic, was explored in anti-cancer treatment. Besides the abnormal iron metabolic characteristics of tumors, serving as potential targets for CIP-based cancer therapy under the repurposing paradigm, the efficacy of CIP as a catalyst in the Fenton reaction, activator for dihydroartemisinin (DHA), thus increasing the chemo-sensitivity of tumors, as well as a potent agent for NIR-II photothermal therapy (PTT) was fully evaluated in an injectable alginate hydrogel form. The CIP-ALG gel caused a rapid temperature rise in the tumor site under NIR-II laser irradiation, leading to complete ablation in the primary tumor. Further, this photothermal-ablation led to the significant release of ATP, and in the bilateral tumor model, both primary tumor ablation and inhibition of secondary tumor were observed simultaneously under the synergistic tumor treatment of nutritional-photothermal therapy (NT/PTT). Thus, material repurposing was confirmed by our pioneering trial and CIP-ALG-meditated NT/PTT/immunotherapy provides a new choice for safe and efficient tumor therapy.


Assuntos
Trifosfato de Adenosina , Antineoplásicos , Raios Infravermelhos , Animais , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Imunoterapia , Reposicionamento de Medicamentos , Humanos , Lasers , Terapia Fototérmica , Camundongos Endogâmicos BALB C , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Alginatos/química , Feminino , Hidrogéis/química , Hidrogéis/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Tamanho da Partícula , Artemisininas/química , Artemisininas/farmacologia
13.
Phytomedicine ; 128: 155551, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569293

RESUMO

BACKGROUND: Because obesity is associated with a hyperplasia-mediated increase in adipose tissue, inhibiting cell proliferation during mitotic clonal expansion (MCE) is a leading strategy for preventing obesity. Although (-)-hydroxycitric acid (HCA) is used to control obesity, the molecular mechanisms underlying its effects on MCE are poorly understood. PURPOSE: This study aimed to investigate the potential effects of HCA on MCE and underlying molecular mechanisms affecting adipogenesis and obesity improvements. METHODS: Preadipocyte cell line, 3T3-L1, were treated with HCA; oil red O, cell proliferation, cell cycle, and related alterations in signaling pathways were examined. High-fat diet (HFD)-fed mice were administered HCA for 12 weeks; body and adipose tissues weights were evaluated, and the regulation of signaling pathways in epidydimal white adipose tissue were examined in vivo. RESULTS: Here, we report that during MCE, HCA attenuates the proliferation of the preadipocyte cell line, 3T3-L1, by arresting the cell cycle at the G0/G1 phase. In addition, HCA markedly inhibits Forkhead Box O1 (FoxO1) phosphorylation, thereby inducing the expression of cyclin-dependent kinase inhibitor 1B and suppressing the levels of cyclin-dependent kinase 2, cyclin E1, proliferating cell nuclear antigen, and phosphorylated retinoblastoma. Importantly, we found that ribosomal protein S6 kinase A1 (RPS6KA1) influences HCA-mediated inactivation of FoxO1 and its nuclear exclusion. An animal model of obesity revealed that HCA reduced high-fat diet-induced obesity by suppressing adipocyte numbers as well as epididymal and mesenteric white adipose tissue mass, which is attributed to the regulation of RPS6KA1, FoxO1, CDKN1B and PCNA that had been consistently identified in vitro. CONCLUSIONS: These findings provide novel insights into the mechanism by which HCA regulates adipogenesis and highlight the RPS6KA1/FoxO1 signaling axis as a therapeutic target for obesity.


Assuntos
Proliferação de Células , Citratos , Proteína Forkhead Box O1 , Obesidade , Proteínas Quinases S6 Ribossômicas 90-kDa , Animais , Camundongos , Células 3T3-L1/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Proliferação de Células/efeitos dos fármacos , Citratos/farmacologia , Citratos/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Proteína Forkhead Box O1/antagonistas & inibidores , Proteína Forkhead Box O1/metabolismo , Camundongos Endogâmicos C57BL , Mitose/efeitos dos fármacos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
J Ethnopharmacol ; 330: 118187, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38615699

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bryonia dioica Jacq., Evernia prunastri (L.) Ach., Telephium imperati L., and Aristolochia longa L. are species widely used in traditional medicine to treat several diseases including cancer. Conjugation of two or more extracts is an approach to improve the effectiveness of their pharmacological activities. AIM OF THE STUDY: To evaluate the synergistic anticancer and anti-angiogenic effects of medicinal plants and edible species combinations. MATERIALS AND METHODS: In this work, B. dioica, E. prunastri, Telephium imperati, and Aristolochia longa extracts were conjugated to form four mixtures. The antiproliferative effect of mixtures on several carcinoma cells was examined by MTT assay, and the antiangiogenic activity was estimated through Hen's egg test in vivo. Moreover, in an Ovo model, 35 fertilized Ross eggs were used to test the embryotoxicity of mixtures. RESULTS: At the highest concentration of 200 µg/mL, both mixtures exerted an important cytotoxic effect against human carcinoma cells. The mixture BETE (Bryonia Evernia Telephium Extract) significantly reduced HT-29, PC-3, and A-549 cell viability. Likewise, this mixture strongly suppressed vascularization in vivo at 200 µg/mL. Interestingly, no signs of toxicity on Perdix embryos were recorded within 21 days of treatment. More importantly, the mixture did not have any cytotoxic effect on non cancerous cells. CONCLUSION: Taken together, our results suggest that the synergy between B. dioica, E. prunastri and T. imperati may be promising for developing new anti-cancer treatments.


Assuntos
Inibidores da Angiogênese , Antineoplásicos Fitogênicos , Sinergismo Farmacológico , Extratos Vegetais , Plantas Medicinais , Especiarias , Inibidores da Angiogênese/farmacologia , Animais , Humanos , Plantas Medicinais/química , Extratos Vegetais/farmacologia , Linhagem Celular Tumoral , Embrião de Galinha , Antineoplásicos Fitogênicos/farmacologia , Argélia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Galinhas
15.
J Ethnopharmacol ; 330: 118195, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38641080

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Licorice is a frequently used herbal medicine worldwide, and is used to treat cough, hepatitis, cancer and influenza in clinical practice of traditional Chinese medicine. Modern pharmacological studies indicate that prenylated flavonoids play an important role in the anti-tumor activity of licorice, especially the tumors in stomach, lung, colon and liver. Wighteone is one of the main prenylated flavonoids in licorice, and its possible effect and target against colorectal cancer have not been investigated. AIM OF THE STUDY: This study aimed to investigate the anti-colorectal cancer effect and underlying mechanism of wighteone. MATERIALS AND METHODS: SW480 human colorectal cancer cells were used to evaluate the in vitro anti-colorectal cancer activity and Akt regulation effect of wighteone by flow cytometry, phosphoproteomic and Western blot analysis. Surface plasmon resonance (SPR) assay, molecular docking and dynamics simulation, and kinase activity assay were used to investigate the direct interaction between wighteone and Akt. A nude mouse xenograft model with SW480 cells was used to verify the in vivo anti-colorectal cancer activity of wighteone. RESULTS: Wighteone inhibited phosphorylation of Akt and its downstream kinases in SW480 cells, which led to a reduction in cell viability. Wighteone had direct interaction with both PH and kinase domains of Akt, which locked Akt in a "closed" conformation with allosteric inhibition, and Gln79, Tyr272, Arg273 and Lys297 played the most critical role due to their hydrogen bond and hydrophobic interactions with wighteone. Based on Akt overexpression or activation in SW480 cells, further mechanistic studies suggested that wighteone-induced Akt inhibition led to cycle arrest, apoptosis and autophagic death of SW480 cells. Moreover, wighteone exerted in vivo anti-colorectal cancer effect and Akt inhibition activity in the nude mouse xenograft model. CONCLUSION: Wighteone could inhibit growth of SW480 cells through allosteric inhibition of Akt, which led to cell cycle arrest, apoptosis and autophagic death. The results contributed to understanding of the anti-tumor mechanism of licorice, and also provided a rationale to design novel Akt allosteric inhibitors for the treatment of colorectal cancer.


Assuntos
Antineoplásicos Fitogênicos , Neoplasias Colorretais , Flavonoides , Glycyrrhiza , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Glycyrrhiza/química , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Linhagem Celular Tumoral , Flavonoides/farmacologia , Flavonoides/isolamento & purificação , Flavonoides/uso terapêutico , Flavonoides/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/uso terapêutico , Antineoplásicos Fitogênicos/isolamento & purificação , Simulação de Acoplamento Molecular , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Alostérica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Apoptose/efeitos dos fármacos , Masculino
16.
J Ethnopharmacol ; 330: 118228, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38643863

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Prostate cancer (PCa) is the most common malignancy of the male genitourinary system and currently lacks effective treatment. Semen Impatientis, the dried ripe seed of Impatiens balsamina L., is described by the Chinese Pharmacopoeia as a traditional Chinese medicine (TCM) and is used in clinical practice to treat tumors, abdominal masses, etc. In our previous study, the ethyl acetate extracts of Semen Impatientis (EAESI) was demonstrated to be the most effective extract against PCa among various extracts. However, the biological effects of EAESI against PCa in vivo and the specific antitumor mechanisms involved remain unknown. AIM OF THE STUDY: In this study, we aimed to investigate the antitumor effect of EAESI on PCa in vitro and in vivo by performing network pharmacology analysis, transcriptomic analysis, and experiments to explore and verify the underlying mechanisms involved. MATERIALS AND METHODS: The antitumor effect of EAESI on PCa in vitro and in vivo was investigated via CCK-8, EdU, flow cytometry, and wound healing assays and xenograft tumor models. Network pharmacology analysis and transcriptomic analysis were employed to explore the underlying mechanism of EAESI against PCa. Activating transcription factor 3 (ATF3) and androgen receptor (AR) were confirmed to be the targets of EAESI against PCa by RT‒qPCR, western blotting, and rescue assays. In addition, the interaction between ATF3 and AR was assessed by coimmunoprecipitation, immunofluorescence, and nuclear-cytoplasmic separation assays. RESULTS: EAESI decreased cell viability, inhibited cell proliferation and migration, and induced apoptosis in AR+ and AR- PCa cells. Moreover, EAESI suppressed the growth of xenograft tumors in vivo. Network pharmacology analysis revealed that the hub targets of EAESI against PCa included AR, AKT1, TP53, and CCND1. Transcriptomic analysis indicated that activating transcription factor 3 (ATF3) was the most likely critical target of EAESI. EAESI downregulated AR expression and decreased the transcriptional activity of AR through ATF3 in AR+ PCa cells; and EAESI promoted the expression of ATF3 and exerted its antitumor effect via ATF3 in AR+ and AR- PCa cells. CONCLUSIONS: EAESI exerts good antitumor effects on PCa both in vitro and in vivo, and ATF3 and AR are the critical targets through which EAESI exerts antitumor effects on AR+ and AR- PCa cells.


Assuntos
Acetatos , Fator 3 Ativador da Transcrição , Camundongos Nus , Farmacologia em Rede , Neoplasias da Próstata , Receptores Androgênicos , Ensaios Antitumorais Modelo de Xenoenxerto , Masculino , Animais , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Fator 3 Ativador da Transcrição/metabolismo , Fator 3 Ativador da Transcrição/genética , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Acetatos/química , Linhagem Celular Tumoral , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Camundongos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Transcriptoma/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
17.
Integr Cancer Ther ; 23: 15347354241247223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646808

RESUMO

BACKGROUND: Luteolin, a common dietary flavonoid found in plants, has been shown to have anti-cancer properties. However, its exact mechanisms of action in non-small cell lung cancer (NSCLC) are still not fully understood, particularly its role in regulating broader genomic networks and specific gene targets. In this study, we aimed to elucidate the role of microRNAs (miRNAs) in NSCLC treated with luteolin, using A549 cells as a model system. MATERIALS AND METHODS: miRNA profiling was conducted on luteolin-treated A549 cells using Exiqon microarrays, with validation of selected miRNAs by qRT-PCR. Bioinformatic analysis identified the regulatory roles of miRNAs in biological processes and pathways following luteolin treatment. Computational algorithms were employed to identify potential target genes. A549 cells were transfected with miR-106a-5p mimic and inhibitor or their corresponding controls. The expression levels of 2 genes, twist basic helix-loop-helix transcription factor 1 (TWIST1) and matrix metallopeptidase 2 (MMP2), and cell migration were assessed. RESULTS: miRNA profiling identified 341 miRNAs, with 18 exhibiting significantly altered expression (P < 0.05). Subsequent qRT-PCR analysis confirmed altered expression of 6 selected miRNAs. KEGG and GO analyses revealed significant alterations in pathways and biological processes crucial for tumor biology. TWIST1 and MMP2, which both contain conserved miR-106a-5p binding sites, exhibited an inverse correlation with the expression levels of miR-106a-5p. Dual-luciferase reporter assays confirmed TWIST1 and MMP2 as direct targets of miR-106a-5p. Luteolin treatment led to a reduction in A549 cell migration, and this reduction was further amplified by the overexpression of miR-106a-5p. CONCLUSION: Luteolin inhibits A549 cell migration by modulating the miRNA landscape, shedding light on its mechanisms and laying the foundation for miRNA-based therapeutic approaches for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Luteolina , Metaloproteinase 2 da Matriz , MicroRNAs , Proteínas Nucleares , Proteína 1 Relacionada a Twist , Regulação para Cima , Humanos , Luteolina/farmacologia , MicroRNAs/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo , Células A549 , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regulação para Cima/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética
18.
Planta Med ; 90(6): 440-453, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588695

RESUMO

Cancer is one of the biggest health concerns with a complex pathophysiology. Currently, available chemotherapeutic drugs are showing deleterious side effects, and tumors often show resistance to treatment. Hence, extensive research is required to develop new treatment strategies to fight against cancer. Natural resources from plants are at the forefront of hunting novel drugs to treat various types of cancers. Withaferin A (WA) is a naturally occurring withanolide, a biologically active component obtained from the plant Ashwagandha. Various in vitro and in vivo oncological studies have reported that Withaferin A (WA) has shown protection from cancer. WA shows its activity by inhibiting the growth and proliferation of malignant cells, apoptosis, and inhibiting angiogenesis, metastasis, and cancer stem cells (CSCs). In addition, WA also showed chemo- and radio-sensitizing properties. Besides the beneficiary pharmacological activities of WA, a few aspects like pharmacokinetic properties, safety, and toxicity studies are still lacking, hindering this potent natural product from entering clinical development. In this review, we have summarized the various pharmacological mechanisms shown by WA in in vitro and in vivo cancer studies and the challenges that must be overcome for this potential natural product's clinical translation to be effective.


Assuntos
Neoplasias , Vitanolídeos , Vitanolídeos/farmacologia , Vitanolídeos/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Animais , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
19.
ACS Chem Biol ; 19(5): 1169-1179, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38624108

RESUMO

Bufadienolides are a class of steroids with a distinctive α-pyrone ring at C17, mostly produced by toads and consisting of over 100 orthologues. They exhibit potent cardiotonic and antitumor activities and are active ingredients of the traditional Chinese medicine Chansu and Cinobufacini. Direct extraction from toads is costly, and chemical synthesis is difficult, limiting the accessibility of active bufadienolides with diverse modifications and trace content. In this work, based on the transcriptome and genome analyses, using a yeast-based screening platform, we obtained eight cytochrome P450 (CYP) enzymes from toads, which catalyze the hydroxylation of bufalin and resibufogenin at different sites. Moreover, a reported fungal CYP enzyme Sth10 was found functioning in the modification of bufalin and resibufogenin at multiple sites. A total of 15 bufadienolides were produced and structurally identified, of which six were first discovered. All of the compounds were effective in inhibiting the proliferation of tumor cells, especially 19-hydroxy-bufalin (2) and 1ß-hydroxy-bufalin (3), which were generated from bufalin hydroxylation catalyzed by CYP46A35. The catalytic efficiency of CYP46A35 was improved about six times and its substrate diversity was expanded to progesterone and testosterone, the common precursors for steroid drugs, achieving their efficient and site-specific hydroxylation. These findings elucidate the key modification process in the synthesis of bufadienolides by toads and provide an effective way for the synthesis of unavailable bufadienolides with site-specific modification and active potentials.


Assuntos
Bufanolídeos , Sistema Enzimático do Citocromo P-450 , Bufanolídeos/química , Bufanolídeos/metabolismo , Bufanolídeos/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Animais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Hidroxilação , Linhagem Celular Tumoral , Bufonidae/metabolismo , Proliferação de Células/efeitos dos fármacos
20.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 639-642, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38660879

RESUMO

Berberine, a traditional Chinese medicine, is an isoquinoline alkaloid extracted from the rhizome of Coptis chinensis. It has anti-inflammatory and antidiarrheal effects and is commonly used in the treatment of infections and gastrointestinal diseases. In recent years, studies have found that berberine can play a wide range of anti-cancer effects in the treatment of leukemia, lymphoma, multiple myeloma, etc. In hematologic malignancies, berberine can induce autophagy, promote apoptosis, regulate cell cycle, inhibit inflammatory response, cause oxidative damage to cancer cells and interact with miRNA to inhibit the proliferation, migration and colony formation of cancer cells. This paper will review the role and related mechanisms of berberine in hematological malignancies.


Assuntos
Apoptose , Berberina , Neoplasias Hematológicas , Berberina/farmacologia , Humanos , Neoplasias Hematológicas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , MicroRNAs
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA