Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 431
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6962, 2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521884

RESUMO

Salinity is one of the most important abiotic stress factors that negatively affect plant growth and development. In contrast, fusaric acid (FA), a mycotoxin produced by Fusarium and Giberella fungal genera, has biological and metabolic effects in various plants. In this study, it was aimed to investigate the protective effect of externally applied FA (0.1 nM) against the damage caused by salt (0.15 M NaCl) stress in onion (Allium cepa L.) plant. Salt stress resulted in an increase in the chromosomal aberrations (CAs) and micronucleus (MN) frequency, a decrease in the mitotic index (MI), fresh weight, root number, germination percentage, and root length. It promoted CAs such as irregular mitosis, bilobulated nuclei, chromosome loss, bridge, unequal seperation of chromosome, vagrant chromosome and polar slip in root meristem cells. In addition, salt stress caused a enhancement in free proline (PR), catalase (CAT), superoxide dismutase (SOD) and malondialdehyde (MDA) contents in the roots of onion plant. Moreover, it revealed damage and changes that include the accumulation of some chemical substances such as proline and sugars in epidermis and cortex layer cells, epidermal cell injury, flattening of the cell nucleus, wall thickening in cortex cells, necrotic areas and indistinct transmission tissue in the anatomical structure of onion roots. On the other hand, FA application promoted bulb germination and mitotic activity, strengthened the antioxidant defense system, and reduced chromosome and anatomical structure damages. In conclusion; it has been revealed that exogenous FA application may have a positive effect on increasing the resistance of onion plants to salt stress.


Assuntos
Micotoxinas , Cebolas , Ácido Fusárico/farmacologia , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Micotoxinas/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Raízes de Plantas/metabolismo , Prolina/metabolismo , Análise Citogenética
2.
Microb Cell Fact ; 23(1): 58, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383407

RESUMO

Acetoin, a versatile platform chemical and popular food additive, poses a challenge to the biosafety strain Bacillus subtilis when produced in high concentrations due to its intrinsic toxicity. Incorporating the PHB synthesis pathway into Bacillus subtilis 168 has been shown to significantly enhance the strain's acetoin tolerance. This study aims to elucidate the molecular mechanisms underlying the response of B. subtilis 168-phaCBA to acetoin stress, employing transcriptomic and metabolomic analyses. Acetoin stress induces fatty acid degradation and disrupts amino acid synthesis. In response, B. subtilis 168-phaCBA down-regulates genes associated with flagellum assembly and bacterial chemotaxis, while up-regulating genes related to the ABC transport system encoding amino acid transport proteins. Notably, genes coding for cysteine and D-methionine transport proteins (tcyB, tcyC and metQ) and the biotin transporter protein bioY, are up-regulated, enhancing cellular tolerance. Our findings highlight that the expression of phaCBA significantly increases the ratio of long-chain unsaturated fatty acids and modulates intracellular concentrations of amino acids, including L-tryptophan, L-tyrosine, L-leucine, L-threonine, L-methionine, L-glutamic acid, L-proline, D-phenylalanine, L-arginine, and membrane fatty acids, thereby imparting acetoin tolerance. Furthermore, the supplementation with specific exogenous amino acids (L-alanine, L-proline, L-cysteine, L-arginine, L-glutamic acid, and L-isoleucine) alleviates acetoin's detrimental effects on the bacterium. Simultaneously, the introduction of phaCBA into the acetoin-producing strain BS03 addressed the issue of insufficient intracellular cofactors in the fermentation strain, resulting in the successful production of 70.14 g/L of acetoin through fed-batch fermentation. This study enhances our understanding of Bacillus's cellular response to acetoin-induced stress and provides valuable insights for the development of acetoin-resistant Bacillus strains.


Assuntos
Acetoína , Bacillus subtilis , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Acetoína/metabolismo , Ácido Glutâmico/metabolismo , Fermentação , Perfilação da Expressão Gênica , Arginina , Proteínas de Transporte/genética , Prolina/metabolismo
3.
Environ Sci Pollut Res Int ; 31(11): 16485-16496, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38319425

RESUMO

The underlying mechanisms through which silicon oxide nanoparticles (SiNPs) can confer salinity resistance to plants are poorly understood. This study explored the efficacy of supplementing nutrient solution with SiNPs (20-30 nm; 10 mg kg-1 soil) to stimulate metabolism and alleviate the risks associated with salinity (0.73 g kg-1 soil) in basil seedlings. For this purpose, variations in photosynthetic indices, proline osmoprotectant, antioxidant markers, phenylpropanoid metabolism, and transcriptional behaviors of genes were investigated. SiNPs increased shoot fresh weight (38%) and mitigated the risk associated with the salinity stress by 14%. SiNPs alleviated the inhibitory effects of salinity on the total chlorophyll concentration by 15%. The highest increase (twofold) in proline content was recorded in the SiNP-treated seedlings grown under salinity. The nano-supplement enhanced the activity of enzymatic antioxidants, including peroxidase (2.5-fold) and catalase (4.7-fold). SiNPs induced the expression of gamma-cadinene synthase (CDS) and caffeic acid O-methyltransferase (COMT) genes by 6.5- and 18.3-fold, respectively. SiNPs upregulated the eugenol synthase (EGS1) and fenchol synthase (FES) genes by six- and nine-fold, respectively. Salinity transcriptionally downregulated the geraniol synthase (GES) gene, while this gene displayed an upward trend in response to SiNPs by eight-fold. The nano-supplement transcriptionally stimulated the R-linalool synthase (LIS) gene by 3.3-fold. The terpinolene synthase (TES) gene displayed a similar trend to that of the GES gene. The highest expression (25-fold) of the phenylalanine ammonia-lyase (PAL) gene was recorded in seedlings supplemented with SiNPs. The physiological and molecular assessments demonstrated that employing SiNPs is a sustainable strategy for improving plant primary/secondary metabolism and crop protection.


Assuntos
Nanopartículas , Ocimum basilicum , Ocimum basilicum/metabolismo , Metabolismo Secundário , Proteção de Cultivos , Antioxidantes/metabolismo , Estresse Salino , Plântula , Prolina/metabolismo , Solo , Expressão Gênica
4.
J Hazard Mater ; 468: 133134, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387171

RESUMO

The rising heavy metal contamination of soils imposes toxic impacts on plants as well as other life forms. One such highly toxic and carcinogenic heavy metal is hexavalent chromium [Cr(VI)] that has been reported to prominently retard the plant growth. The present study investigated the potential of silicon (Si, 10 µM) to alleviate the toxicity of Cr(VI) (25 µM) on roots of wheat (Triticum aestivum L.) seedlings. Application of Si to Cr(VI)-stressed wheat seedlings improved their overall growth parameters. This study also reveals the involvement of two phytohormones, namely auxin and cytokinin and their crosstalk in Si-mediated mitigation of the toxic impacts of Cr(VI) in wheat seedlings. The application of cytokinin alone to wheat seedlings under Cr(VI) stress reduced the intensity of toxic effects of Cr(VI). In combination with Si, cytokinin application to Cr(VI)-stressed wheat seedlings significantly minimized the decrease induced by Cr(VI) in different parameters such as root-shoot length (10.8% and 13%, respectively), root-shoot fresh mass (11.3% and 10.1%, respectively), and total chlorophyll and carotenoids content (13.4% and 6.8%, respectively) with respect to the control. This treatment also maintained the regulation of proline metabolism (proline content, and P5CS and PDH activities), ascorbate-glutathione (AsA-GSH) cycle and nutrient homeostasis. The protective effect of Si and cytokinin against Cr(VI) stress was minimized upon supplementation of an inhibitor of polar auxin transport- 2,3,5-triiodobenzoic acid (TIBA) which suggested a potential involvement of auxin in Si and cytokinin-mediated mitigation of Cr(VI) toxicity. The exogenous addition of a natural auxin - indole-3-acetic acid (IAA) confirmed auxin is an active member of a signaling cascade along with cytokinin that aids in Si-mediated Cr(VI) toxicity alleviation as IAA application reversed the negative impacts of TIBA on wheat roots treated with Cr(VI), cytokinin and Si. The results of this research are also confirmed by the gene expression analysis conducted for nutrient transporters (Lsi1, CCaMK, MHX, SULT1 and ZIP1) and enzymes involved in the AsA-GSH cycle (APX, GR, DHAR and MDHAR). The overall results of this research indicate towards possible induction of a crosstalk between cytokinin and IAA upon Si supplementation which in turn stimulates physiological, biochemical and molecular changes to exhibit protective effects against Cr(VI) stress. Further, the information obtained suggests probable employment of Si, cytokinin and IAA alone or combined in agriculture to maintain plant productivity under Cr(VI) stress and data regarding expression of key genes can be used to develop new crop varieties with enhanced resistance against Cr(VI) stress together with its reduced load in seedlings.


Assuntos
Plântula , Ácidos Tri-Iodobenzoicos , Triticum , Triticum/metabolismo , Silício/farmacologia , Citocininas/farmacologia , Citocininas/metabolismo , Antioxidantes/metabolismo , Cromo/toxicidade , Cromo/metabolismo , Ácidos Indolacéticos/farmacologia , Prolina/metabolismo , Prolina/farmacologia , Estresse Oxidativo
5.
Environ Sci Pollut Res Int ; 31(7): 10545-10564, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38198089

RESUMO

Arsenic (As), one of the major pollutants in the soil, is an important environmental concern as its consumption can cause adverse health symptoms in living organisms. Its contamination of rice grown over As-contaminated areas is a serious concern in South Asian countries. Selenium (Se) has been reported to influence various osmolytes under metal stress in plants. The present study reports the role of Se in mitigating As stress in rice by modulating osmolyte metabolism. Rice plants grown in As-amended soil (2.5-10 mg kg-1) in pots were treated with sodium selenate (0.5-1.0 mg Se kg-1 soil) in glass house conditions and leaf samples were collected at 60 and 90 days after sowing (DAS). As-treated rice leaves displayed a reduction in relative water content (RWC) and dry weight than control with a maximum reduction of 1.68- and 2.47-fold in RWC and 1.95- and 1.69-fold in dry weight in As10 treatment at 60 and 90 DAS, respectively. Free amino acids (1.38-2.26-fold), proline (3.88-3.93-fold), glycine betaine (GB) (1.27-1.72-fold), choline (1.67-3.1-fold), total soluble sugars (1.29-1.61-fold), and reducing sugars (1.67-2.19-fold) increased in As-treated rice leaves as compared to control at both stages. As stress increased the γ-aminobutyric acid (GABA), putrescine content, and glutamate decarboxylase activity whereas diamine oxidase and polyamine oxidase activities declined by 1.69-1.88-fold and 1.52-1.86-fold, respectively. Se alone or in combination with As improved plant growth, RWC, GB, choline, putrescine, and sugars; lowered proline and GABA; and showed a reverse trend of enzyme activities related to their metabolism than respective As treatments. As stress resulted in a higher accumulation of osmolytes to combat its stress which was further modulated by the Se application. Hence, the current investigation suggested the role of osmoprotectants in Se-induced amelioration of As toxicity in rice plants.


Assuntos
Arsênio , Oryza , Selênio , Selênio/metabolismo , Arsênio/toxicidade , Putrescina/metabolismo , Prolina/metabolismo , Solo , Ácido gama-Aminobutírico/metabolismo , Colina/metabolismo , Açúcares/metabolismo
6.
Sci Total Environ ; 915: 169869, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38218476

RESUMO

Nanotechnology is capturing great interest worldwide due to their stirring applications in various fields and also individual application of iron oxide nanoparticle (FeO - NPs) and selenium nanoparticles (Se - NPs) have been studied in many literatures. However, the combined application of FeO and Se - NPs is a novel approach and studied in only few studies. For this purpose, a pot experiment was conducted to examine various growth and biochemical parameters in wheat (Triticum aestivum L.) under the toxic concentration of cadmium (Cd) i.e., 50 mg kg-1 which were primed with combined application of two levels of FeO and Se - NPs i.e., 15 and 30 mg L-1 respectively. The results showed that the Cd toxicity in the soil showed a significantly (P < 0.05) declined in the growth, gas exchange attributes, sugars, AsA-GSH cycle, cellular fractionation, proline metabolism in T. aestivum. However, Cd toxicity significantly (P < 0.05) increased oxidative stress biomarkers, enzymatic and non-enzymatic antioxidants including their gene expression in T. aestivum. Although, the application of FeO and Se - NPs showed a significant (P < 0.05) increase in the plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds and their gene expression and also decreased the oxidative stress, and Cd uptake. In addition, individual or combined application of FeO and Se - NPs enhanced the cellular fractionation and decreases the proline metabolism and AsA - GSH cycle in T. aestivum. These results open new insights for sustainable agriculture practices and hold immense promise in addressing the pressing challenges of heavy metal contamination in agricultural soils.


Assuntos
Compostos Férricos , Nanopartículas , Selênio , Poluentes do Solo , Selênio/metabolismo , Cádmio/análise , Triticum , Antioxidantes/metabolismo , Nanopartículas/química , Solo/química , Prolina/metabolismo , Poluentes do Solo/análise
7.
Protoplasma ; 261(3): 553-570, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38159129

RESUMO

Drought is a major limiting factor for rice (Oryza sativa L.) production globally, and a cost-effective seed priming technique using bio-elicitors has been found to have stress mitigating effects. Till date, mostly phytohormones have been preferred as bio-elicitors, but the present study is a novel attempt to demonstrate the favorable role of micronutrients-phytohormone cocktail, i.e., iron (Fe), zinc (Zn), and methyl jasmonate (MJ) via seed priming method in mitigating the deleterious impacts of drought stress through physio-biochemical and molecular manifestations. The effect of cocktail/priming was studied on the relative water content, chlorophyll a/b and carotenoid contents, proline content, abscisic acid (ABA) content, and on the activities of ascorbate peroxidase (APX), superoxide dismutase (SOD), NADPH oxidase (Nox), and catalase (CAT). The expressions of drought-responsive genes OsZn-SOD, OsFe-SOD, and Nox1 were found to be modulated under drought stress in contrasting rice genotypes -N-22 (Nagina-22, drought-tolerant) and PS-5 (Pusa Sugandh-5, drought-sensitive). A progressive rise in carotenoids (10-19%), ABA (18-50%), proline (60-80%), activities of SOD (27-62%), APX (46-61%), CAT (50-80%), Nox (16-30%), and upregulated (0.9-1.6-fold) expressions of OsZn-SOD, OsFe-SOD, and Nox1 genes were found in the primed plants under drought condition. This cocktail would serve as a potential supplement in modern agricultural practices utilizing seed priming technique to mitigate drought stress-induced oxidative burst in food crops.


Assuntos
Acetatos , Ciclopentanos , Oryza , Oxilipinas , Oryza/genética , Antioxidantes/metabolismo , Resistência à Seca , Clorofila A/metabolismo , Estresse Oxidativo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Carotenoides/metabolismo , Superóxido Dismutase/metabolismo , Secas , Sementes/metabolismo , Prolina/metabolismo
8.
Toxicol Appl Pharmacol ; 478: 116708, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37778480

RESUMO

Pentachlorophenol (PCP) is a ubiquitous environmental toxicant with various adverse effects. Although its neurotoxicity has been reported, the underlying mechanism and subsequent detoxification remain unclear. In this study, embryos and adult zebrafish were exposed to PCP to determine its potential neurotoxic mechanism and protective indicators. The survival rate, heart rate, mobility time, active status and moving distance were significantly decreased in larvae after 30 µg/L PCP exposure. Likewise, the mobile time, latency to the first movement, velocity and moving distance of adult zebrafish were significantly reduced by PCP exposure. Untargeted metabolomics analysis of larvae revealed that arginine and proline metabolism was the primary pathway affected by PCP exposure, reflected by increased proline and decreased citrulline (CIT) contents, which were confirmed by quantitative data. PCP exposure suppressed the conversion from arginine to CIT in larvae by downregulating the expression of nos1 and nos2a. Ornithine content was increased in the brains and intestines of adult zebrafish after PCP exposure, which inhibited ornithine catabolism to CIT by downregulating otc, resulting in reduced CIT. Intriguingly, CIT supplementation significantly restored the neurobehavioral defects induced by PCP in larvae and adult zebrafish. CIT supplementation upregulated the expression of ef1α and tuba1 in larvae and inhibited the downregulation of ef1α in the brains of adult zebrafish. Taken together, these results indicated that CIT supplementation could protect against PCP-induced neurotoxicity by upregulating the expression of genes involved in neuronal development and function.


Assuntos
Pentaclorofenol , Animais , Pentaclorofenol/farmacologia , Pentaclorofenol/toxicidade , Peixe-Zebra/metabolismo , Citrulina/metabolismo , Citrulina/farmacologia , Larva , Arginina/metabolismo , Arginina/farmacologia , Ornitina/metabolismo , Ornitina/farmacologia , Prolina/metabolismo , Prolina/farmacologia
9.
Curr Protein Pept Sci ; 24(6): 518-532, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37259218

RESUMO

BACKGROUND: A hallmark pathology of Alzheimer's disease (AD) is the construction of neurofibrillary tangles, which are made of hyperphosphorylated Tau. The cis-proline isomer of the pThr/Ser-Pro sequence has been suggested to act as an aggregation precursor according to the 'Cistauosis' hypothesis; however, this aggregation scheme is not yet completely approved. Various peptidyl-prolyl isomerases (PPIases) may specifically isomerize cis/trans-proline bonds and restitute Tau's ability to attach microtubules and may control Tau amyloid aggregation in AD. METHODS: In this study, we provided experimental evidence for indicating the effects of the plant Cyclophilin (P-Cyp) from Platanus orientalis pollens on the Tau aggregation by various spectroscopic techniques. RESULTS: Our findings disclosed that the rate/extent of amyloid formation in the Tau sample which is incubated with P-Cyp decreased and these observations do not seem to be due to the macromolecular crowding effect. Also, as proven that 80% of the prolines in the unfolded protein are in the trans conformation, urea-induced unfolding analyses confirmed this conclusion and showed that the aggregation rate/extent of urea-treated Tau samples decreased compared with those of the native protein. Also, XRD analysis indicated the reduction of scattering intensities and beta structures of amyloid fibrils in the presence of P-Cyp. Therefore, the ability of P-Cyp to suppress Tau aggregation probably depends on cis to trans isomerization of proline peptide bonds (X-Pro) and decreasing cis isomers in vitro. CONCLUSION: The findings of the current study may inspire possible protective/detrimental effects of various types of cyclophilins on AD onset/progression through direct regulation of intracellular Tau molecules and provides evidence that a protein from a plant source is able to enter the cell cytoplasm and may affect the behavior of cytoplasmic proteins.


Assuntos
Doença de Alzheimer , Ciclofilinas , Ciclofilinas/metabolismo , Amiloide/metabolismo , Alérgenos , Proteínas tau/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Pólen/metabolismo , Prolina/farmacologia , Prolina/química , Prolina/metabolismo , Ureia , Peptídeos beta-Amiloides
10.
J Plant Physiol ; 286: 154006, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37196413

RESUMO

Calcineurin B-like-interacting protein kinase (CIPK) is a serine/threonine kinase, which transmits the Ca2+ signal sensed by CBL proteins. A CdtCIPK21 showing highly identical to OsCIPK21 in rice was isolated from triploid bermudagrass (Cynodon dactylon × Cynodon transvaalensis). CdtCIPK21 transcript could be detected in roots, rhizomes, stems, stolons, and leaves, with highest level in roots. It was induced by salinity, dehydration and chilling, but reduced by ABA treatment. Transgenic rice plants overexpressing CdtCIPK21 had decreased salt and drought tolerance as well as ABA sensitivity but increased chilling tolerance. Lower SOD and CAT activities was observed in transgenic lines under salinity and drought stress conditions, but higher levels under chilling stress. Similarly, lower levels of proline concentration and P5CS1 and P5CS2 transcripts were maintained in transgenic lines under salinity and drought stresses, and higher levels were maintained under chilling. In addition, transgenic lines had lower transcript levels of ABA-independent genes (OsDREB1A, OsDREB1B, and OsDREB2A) and ABA responsive genes (OsLEA3, OsLIP9, and OsRAB16A) under salinity and drought but higher levels under chilling compared with WT. The results suggest that CdtCIPK21 regulates salt and drought tolerance negatively and chilling tolerance positively, which are associated with the altered ABA sensitivity, antioxidants, proline accumulation and expression of ABA-dependent and ABA-independent stress responsive genes.


Assuntos
Cynodon , Regulação da Expressão Gênica de Plantas , Oryza , Cynodon/genética , Resistência à Seca , Secas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Prolina/metabolismo , Cloreto de Sódio/farmacologia , Estresse Fisiológico/genética , Triploidia
11.
Microb Pathog ; 178: 106053, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36907362

RESUMO

Biotic stress deleteriously affects growth, development, and productivity in plants. Proline (Pro) plays a significant role in enhancing plant resistance to pathogen infection. However, its effects on reducing Lelliottia amnigena-induced oxidative stress in potato tubers remain unknown. The present study aims to evaluate the in vitro Pro treatment in potato tubers exposed to a newly emerging bacterium, L. amnigena. Sterilized healthy potato tubers were inoculated with 0.3 mL of L. amnigena suspension (3.69 × 107 CFU mL-1) 24 h before Pro (5.0 mM) application. The L. amnigena treatment significantly increased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in the potato tubers by 80.6 and 85.6%, respectively, compared to the control. Application of proline (Pro) decreased MDA and H2O2 contents by 53.6 and 55.9%, respectively, compared to the control. Application of Pro to L. amnigena-stressed potato tubers increased the activities of NADPH oxidase (NOX), superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), polyphenol oxidase (PPO), phenylalanine ammonia-lyase (PAL), cinnamyl alcohol dehydrogenase (CAD), 4-coumaryl-CoA ligase (4CL) and cinnamate-4-hydroxylase (C4H) C4H by 94.2, 96.3, 97.3, 97.1, 96.6, 79.3, 96.4, 93.6, and 96.2%, respectively, compared to the control. In comparison to the control, the genes PAL, SOD, CAT, POD, and NOX were significantly increased in the Pro-treated tubers at 5.0 mM concentration. Tubers treated with Pro + L. amnigena increased the transcript levels of PAL, SOD, CAT, POD, and NOX by 2.3, 2.2, 2.3, 2.5, and 2.8-fold respectively, compared to the control. Our findings suggested that pretreatment of tubers with Pro might reduce lipid peroxidation and oxidative stress by enhancing enzymatic antioxidant activity and gene expression.


Assuntos
Solanum tuberosum , Prolina/metabolismo , Prolina/farmacologia , Peróxido de Hidrogênio/metabolismo , Antioxidantes/farmacologia , Superóxido Dismutase/metabolismo , Peroxidase/metabolismo
12.
J Plant Res ; 136(3): 397-412, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36809401

RESUMO

Under natural conditions plants are generally subjected to complex scenarios of combined or sequential environmental stresses. Among the various components of plant biochemistry modulated by abiotic variables, a pivotal role is played by antioxidant systems, including specialized metabolites and their interaction with central pathways. To help address this knowledge gap, a comparative analysis of metabolic changes in leaf tissues of the alkaloid accumulating plant Psychotria brachyceras Müll Arg. under individual, sequential, and combined stress conditions was carried out. Osmotic and heat stresses were evaluated. Protective systems (accumulation of the major antioxidant alkaloid brachycerine, proline, carotenoids, total soluble protein, and activity of the enzymes ascorbate peroxidase and superoxide dismutase) were measured in conjunction with stress indicators (total chlorophyll, ChA/ChB ratio, lipid peroxidation, H2O2 content and electrolyte leakage). Metabolic responses had a complex profile in sequential and combined stresses compared to single ones, being also modified over time. Different stress application schemes affected alkaloid accumulation in distinct ways, exhibiting similar profile to proline and carotenoids, constituting a complementary triad of antioxidants. These complementary non-enzymatic antioxidant systems appeared to be essential for mitigating stress damage and re-establishing cellular homeostasis. The data herein provides clues that may aid the development of a key component framework of stress responses and their appropriate balance to modulate tolerance and yield of target specialized metabolites.


Assuntos
Alcaloides , Psychotria , Antioxidantes/metabolismo , Psychotria/química , Psychotria/metabolismo , Peróxido de Hidrogênio/metabolismo , Alcaloides/metabolismo , Carotenoides/análise , Carotenoides/metabolismo , Folhas de Planta/metabolismo , Prolina/análise , Prolina/metabolismo
13.
Theriogenology ; 201: 59-67, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36842262

RESUMO

Successful in-vitro production of bovine embryos relies on meiotic maturation of oocytes in vitro (IVM) before they can be fertilised. High levels of IVM are currently achieved using a complex medium that contains all 20 common amino acids, namely TCM199, but can also be achieved using a simple inorganic salt solution containing non-essential amino acids, proline, and glutamine. Further simplification of the amino acid content of medium used for IVM could lead to a more defined medium that provides reproducible IVM. The aim of this study was, therefore, to determine the minimal amino acid requirements for bovine oocyte nuclear maturation, as measured by progression to metaphase II (MII) of meiosis. Supplementation of a simple medium composed of inorganic salts (M1 medium) with multiple amino-acid combinations showed that M1 containing glutamine, proline, and isoleucine resulted in nuclear maturation comparable to that of TCM199 (57.4 ± 3.4% vs 67% ± 1.7%, respectively) but was reduced when cystine (Cys2) to that seen with M1 alone (38.0 ± 2.2%). Viability of oocytes matured in this simplified medium was equal to those matured in TCM199 since the same proportion of zygotes with 2 pronuclei were observed following fertilisation in medium containing no amino acids (33.9 ± 6.5% vs 33.3 ± 3.6%, respectively). Addition of glutamine, proline and isoleucine to fertilisation medium also increased the proportion of zygotes but did not increase blastocyst development rates. Thus, a defined medium containing only glutamine, proline and isoleucine is sufficient for oocyte maturation and successful fertilisation.


Assuntos
Glutamina , Isoleucina , Animais , Bovinos , Glutamina/farmacologia , Isoleucina/farmacologia , Isoleucina/metabolismo , Prolina/farmacologia , Prolina/metabolismo , Oócitos , Aminoácidos/metabolismo , Fertilização
14.
Life Sci ; 316: 121402, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36669678

RESUMO

AIMS: Despite its high concentration in pancreatic islets of Langerhans and broad range of antihyperglycemic effects, the route facilitating the import of dietary taurine into pancreatic ß-cell and mechanisms underlying its insulinotropic activity are unclear. We therefore studied the impact of taurine on beta-cell function, alongside that of other small neutral amino acids, L-alanine and L-proline. MAIN METHODS: Pharmacological profiling of insulin secretion was conducted using clonal BRIN BD11 ß-cells, the impact of taurine on the metabolic fate of glucose carbons was assessed using NMR and the findings were verified by real-time imaging of Ca2+ dynamics in the cytosol of primary mouse and human islet beta-cells. KEY FINDINGS: In our hands, taurine, alanine and proline induced secretory responses that were dependent on the plasma membrane depolarisation, import of Ca2+, homeostasis of K+ and Na+ as well as on cell glycolytic and oxidative metabolism. Taurine shifted the balance between the oxidation and anaplerosis towards the latter, in BRIN BD11 beta-cells. Furthermore, the amino acid signalling was significantly attenuated by inhibition of Na+-K+-Cl- symporter (NKCC). SIGNIFICANCE: These data suggest that taurine, like L-alanine and L-proline, acutely induces glucose-dependent insulin-secretory responses by modulating electrogenic Na+ transport, with potential role of intracellular K+ and Cl- in the signal transduction. The acute action delineated would be consistent with antidiabetic potential of dietary taurine supplementation.


Assuntos
Aminoácidos Neutros , Ilhotas Pancreáticas , Camundongos , Animais , Humanos , Insulina/metabolismo , Taurina/farmacologia , Taurina/metabolismo , Aminoácidos Neutros/metabolismo , Aminoácidos Neutros/farmacologia , Linhagem Celular , Ilhotas Pancreáticas/metabolismo , Alanina/farmacologia , Alanina/metabolismo , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Prolina/metabolismo
15.
Mol Biol Rep ; 50(4): 3141-3153, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36693987

RESUMO

BACKGROUND: Mineral stress is one of the dominating abiotic stresses, which leads to decrease in crop production. Selenium (Se) seed priming is a recent approach to mitigate the plant's mineral deficiency stress. Although not an essential element, Se has beneficial effects on the plants in terms of growth, quality, yield and plant defense system thus, enhancing plant tolerance to mineral deficiency. METHODS AND RESULTS: The present research was accomplished to find out the effect of Se priming on common bean plant (SFB-1 variety) under phosphorus (P) stress. The seeds were grown invitro on four different MGRL media which are normal MGRL media as control with non-Se primed seeds (Se- P+), non -Se primed seeds grown on P deficient MGRL media (Se- P-), Se primed seeds grown on normal MGRL media (Se+P+) and Se primed seeds grown on P deficient MGRL media (Se+P -). The various morphological and biochemical parameters such as proline content, total sugar content, polyphenols and expression of proteins were analyzed under P stress. The results showed that Se priming has significantly (p ≤ 0.05) affected the morphological as well as biochemical parameters under normal and P stress conditions. The morphological parameters-length, weight, number of nodes and leaves of Se+P+, Se+P- root and shoot tissue showed significant increase as compared to Se-P+, Se-P-. Similarly various biochemical parameters such as total chlorophyll content, proline, total sugar content and polyphenols of Se+P+, Se+P- increased significantly as compared to Se-P+, Se-P-. The differential protein expression in both Se+P+, Se+P- and Se-P+, Se-P- plants were determined using MALDI-MS/MS. The differentially expressed proteins in Se+P+, Se+P- plants were identified as caffeic acid-3-O-methyltransferase (COMT) and SecA protein (a subunit of Protein Translocan transporter), and are found responsible for lignin synthesis in root cell walls and ATP dependent movement of thylakoid proteins across the membranes in shoot respectively. The differential expression of proteins in plant tissues, validated morphological and biochemical responses such as maintaining membrane integrity, enhanced modifications in cellular metabolism, improved polyphenol activities and expression of defensive proteins against mineral deficiency. CONCLUSIONS: The study provided an understanding of Se application as a potential approach increasing tolerance and yield in crop plants against mineral deficiency.


Assuntos
Phaseolus , Selênio , Selênio/farmacologia , Selênio/metabolismo , Phaseolus/metabolismo , Fósforo/metabolismo , Espectrometria de Massas em Tandem , Proteômica , Sementes/metabolismo , Prolina/metabolismo , Polifenóis/farmacologia , Açúcares/metabolismo
16.
Int J Phytoremediation ; 25(4): 403-414, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35758213

RESUMO

Allium cepa L. is an important medicinal and food plant enormously affected by salinity in terms of its growth and quality. This experiment investigates ameliorative potential of NO donor sodium nitroprusside (SNP) on chromosomal aberrations and physiological parameters in A. cepa L. roots exposed to salinity stress. Roots with different concentrations of NaCl (25, 50, and 100 mM) alone, and in combination with 100 µM SNP were analyzed for mitotic aberrations, DNA damage, proline, malondialdehyde (MDA) content, and ascorbate-glutathione (AsA-GSH) cycle after 120 h of salinity treatments. Results revealed that salinity stress increased chromosomal aberrations, MDA, proline accumulation, and severely hampered the AsA-GSH cycle function. The comet assay revealed a significant (p ≤ 0.05) enhancement in tail length (4.35 ± 0.05 µm) and olive tail moment (3.19 ± 0.04 µm) at 100 mM NaCl exposure. However, SNP supplementation decreased total percent abnormalities, while increased the prophase, metaphase, anaphase, and telophase indexes. Moreover, ascorbate peroxidase and glutathione reductase activities increased with AsA/DHA and GSH/GSSG ratios, respectively. Results suggest that SNP supplementation alleviates salinity stress responses by improving AsA-GSH cycle and proline accumulation. Based on present findings, NO supplementation could be recommended as a promising approach for sustainable crop production under salinity stress.


Allium cepa L. response to salt stress has been investigated but its role on chromosomal changes and DNA damage are less investigated therefore, our focus is to explore NO supplementation effects on cytological aberrations and biochemical responses in A. cepa L. roots under salinity stress.


Assuntos
Óxido Nítrico , Cebolas , Óxido Nítrico/metabolismo , Cebolas/metabolismo , Cloreto de Sódio/metabolismo , Plântula , Biodegradação Ambiental , Ácido Ascórbico/metabolismo , Antioxidantes/metabolismo , Glutationa/metabolismo , Estresse Salino , Dano ao DNA , Prolina/metabolismo , Aberrações Cromossômicas , Estresse Oxidativo
17.
BMC Plant Biol ; 22(1): 475, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36203134

RESUMO

Astragalus mongholicus is a widely used Traditional Chinese Medicine. However, cultivated A. mongholicus is often threatened by water shortage at all growth stage, and the content of medicinal compounds of cultivated A. mongholicus is much lower than that of wild plants. To alleviate drought stress on A. mongholicus and improve the accumulation of medicinal components in roots of A. mongholicus, we combined different bacteria with plant growth promotion or abiotic stress resistance characteristics and evaluated the role of bacterial consortium in helping plants tolerate drought stress and improving medicinal component content in roots simultaneously. Through the determination of 429 bacterial strains, it was found that 97 isolates had phosphate solubilizing ability, 63 isolates could release potassium from potash feldspar, 123 isolates could produce IAA, 58 isolates could synthesize ACC deaminase, and 21 isolates could secret siderophore. Eight bacterial consortia were constructed with 25 bacterial isolates with more than three functions or strong growth promoting ability, and six out of eight bacterial consortia significantly improved the root dry weight. However, only consortium 6 could increase the root biomass, astragaloside IV and calycosin-7-glucoside content in roots simultaneously. Under drought challenge, the consortium 6 could still perform these functions. Compared with non-inoculated plants, the root dry weight of consortium inoculated-plants increased by 120.0% and 78.8% under mild and moderate drought stress, the total content of astragaloside IV increased by 183.83% and 164.97% under moderate and severe drought stress, calycosin-7-glucoside content increased by 86.60%, 148.56% and 111.45% under mild, moderate and severe drought stress, respectively. Meanwhile, consortium inoculation resulted in a decrease in MDA level, while soluble protein and proline content and SOD, POD and CAT activities increased. These findings provide novel insights about multiple bacterial combinations to improve drought stress responses and contribute to accumulate more medicinal compounds.


Assuntos
Astragalus propinquus , Secas , Bactérias , Glucosídeos/metabolismo , Fosfatos/metabolismo , Raízes de Plantas/metabolismo , Plantas , Potássio/metabolismo , Prolina/metabolismo , Saponinas , Sideróforos/metabolismo , Superóxido Dismutase/metabolismo , Triterpenos , Água/metabolismo
18.
PLoS One ; 17(10): e0273908, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36240136

RESUMO

Endophytic fungi from the Chilli were used to help okra plants exposed to cadmium (Cd) or chromium (Cr) stress. Initially, the strain Ch06 produced higher amounts of indole acetic acid (IAA) (230.5 µg/mL), sugar (130.7 µg/mL), proteins (128.2 µg/mL), phenolics (525.6 µg/mL) and flavonoids (98.4 µg/mL) in Czapek broth supplemented with Cd or Cr. The production of IAA and other metabolites in such a higher concentration suggested that Ch06 might improve plant growth under heavy metal stress. For this reason, an experiment was designed, in which biomass of Ch06 (at 2g/100g of sand) were applied to the okra plants exposed to Cd or Cr stress (at 100 or 500 µg/g). The results exhibited that Ch06 improved the total chlorophyll (36.4±0.2 SPAD), shoot length (22.6±0.2 cm), root length (9.1±0.6 cm), fresh weight (5±0.6 g), dry weight (1.25±0.01 g), sugars (151.6 µg/g), proteins (114.8 µg/g), proline (6.7 µg/g), flavonoids (37.9 µg/g), phenolics (70.7 µg/g), IAA (106.7 µg/g), catalase (0.75 enzyme units/g tissue) and ascorbic acid oxidaze (2.2 enzyme units/g tissue) of the associated okra plants. Similar observations have been recorded in Ch06 associated okra plants under Cd and Cr stress. Also, Ch06 association reduced translocation of Cd (35% and 45%) and Cr (47% and 53%) to the upper parts of the okra plants and thus reduced their toxicity. The internal transcribed spacer (ITS) region amplification of 18S rDNA (ribosomal deoxyribo nucleic acid) exhibited that the potent strain Ch06 was Aspergillus violaceofuscus. The results implied that A. violaceofuscus has the ability to promote host species growth exposed to Cd and Cr. Moreover, it helped the host plants to recover in Cd and Cr polluted soils, hence can be used as biofertilizer.


Assuntos
Abelmoschus , Metais Pesados , Ácidos Nucleicos , Poluentes do Solo , Abelmoschus/metabolismo , Ácido Ascórbico , Aspergillus , Biodegradação Ambiental , Cádmio/metabolismo , Cádmio/toxicidade , Catalase , Clorofila , Cromo/toxicidade , DNA Ribossômico , Flavonoides , Prolina/metabolismo , Areia , Poluentes do Solo/análise , Açúcares
19.
Plant Signal Behav ; 17(1): 2134675, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36281762

RESUMO

Analysis of PCST1 expression characteristics and the role of PCST1 in response to osmotic stress in Arabidopsis thaliana. The structure of PCST1 was analyzed using Bioinformatics method. Real-time PCR, GUS tissue localization and subcellular localization were adopted to analyze the expression pattern of PCST1 in Arabidopsis. To validate the transgenic positive strain of PCST1 using Real-time PCR, overexpression experiments were performed in wild type. Full-length cDNA was cloned and connected into a binary vector with 35S promoter, and the construction was transformed into wild type. With NaCl and mannitol treatments, the germination rate, green leaves rate, physiological indexes were carried out and counted in Arabidopsis with overexpression of PCST1 and T-DNA insertion mutants. The molecular mechanism of PCST1 in response to osmotic stress in Arabidopsis was analyzed. Based on the bioinformatic analysis, PCST1 is a hydrophobin with 403 amino acids, and the molecular weight is 45.3236 KDa. It contains only the START (the lipid/sterol - binding StAR - related lipid transfer protein domains) conservative domain. PCST1 possesses phosphatidylcholine binding sites and transmembrane region. Expression pattern analysis showed that expression of PCST1 increased with time. The PCST1 widely expressed in Arabidopsis, including roots, axils of stem leaves, flowers (sepal, conductive tissue of the petal, thrum, anther and stigmas), and the top and basal parts of the siliquas. It mainly localized in cell membrane. The overexpression of PCST1 enhanced the sensitivity to osmotic stress in Arabidopsis based on the germination rate. While expression of PCST1 decreased, and the sensitivity to osmotic stress had no obvious change in Arabidopsis. Its molecular mechanism study showed, that PCST1 response to osmotic stress resistance by regulating the proline, betaine synthesis, as well as the expression of key genes SOS, NCED, CIPK. PCST1 is composed of 403 amino acids. The START conservative domain, a transmembrane structure, the phosphatidyl choline binding sites are contained in PCST1. It is localized in cytoplasmic membrane. The PCST1 widely expressed in the root, leaf, flower and siliquas. NaCl and mannitol suppressed the expression of PCST1 and PCST1 can negatively control action of Arabidopsis in the osmotic stress. PCST1 regulates the synthetic pathway of proline, betaine and the expression of SOS, NCED and CIPK in response to the osmotic stress resistance.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Cloreto de Sódio , DNA Complementar , Betaína/metabolismo , Prolina/metabolismo , Aminoácidos/metabolismo , Manitol/metabolismo , Fosfatidilcolinas/metabolismo , Esteróis/metabolismo
20.
Environ Pollut ; 313: 120229, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36152705

RESUMO

The promising response of chromium-stressed (Cr(VI)-S) plants to hydrogen sulphide (H2S) has been observed, but the participation of nitric oxide (NO) synthesis in H2S-induced Cr(VI)-S tolerance in plants remains to be elucidated. It was aimed to assess the participation of NO in H2S-mediated Cr(VI)-S tolerance by modulating subcellular distribution of Cr and the ascorbate-glutathione (AsA-GSH) cycle in the pepper seedlings. Two weeks following germination, plants were exposed to control (no Cr) or Cr(VI)-S (50 µM K2Cr2O7) for further two weeks. The Cr(VI)-S-plants grown in nutrient solution were supplied with 200 µM sodium hydrosulphide (NaHS, donor of H2S), or NaHS plus 100 µM sodium nitroprusside (SNP, a donor of NO). Chromium stress suppressed plant growth and leaf water status, while elevated proline content, oxidative stress, and the activities of AsA-GSH related enzymes, as well as endogenous H2S and NO contents. The supplementation of NaHS increased Cr accumulation at root cell walls and vacuoles of leaves as soluble fraction to reduce its toxicity. Furthermore it limited oxidative stress, improved plant growth, modulated leaf water status, and the AsA-GSH cycle-associated enzymes' activities, as well as it further improved H2S and NO contents. The positive effect of NaHS was found to be augmented on those parameters in the CrS-plants by the SNP supplementation. However, 0.1 mM cPTIO, the scavenger of NO, inverted the prominent effect of NaHS by decreasing NO content. The supplementation of SNP along with NaHS + cPTIO reinstalled the positive effect of NaHS by restoring NO content, which suggested that NO might have a potential role in H2S-induced tolerance to Cr(VI)-S in pepper plants by stepping up the AsA-GSH cycle.


Assuntos
Capsicum , Sulfeto de Hidrogênio , Antioxidantes/metabolismo , Benzoatos , Capsicum/metabolismo , Cromo/metabolismo , Cromo/toxicidade , Glutationa/metabolismo , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/toxicidade , Imidazóis , Óxido Nítrico/metabolismo , Nitroprussiato/farmacologia , Estresse Oxidativo , Prolina/metabolismo , Prolina/farmacologia , Plântula , Sulfetos , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA