Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 188: 106332, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37890559

RESUMO

Down syndrome (DS) is a genetic disorder caused by triplication of human chromosome 21. In addition to intellectual disability, DS is defined by a premature aging phenotype and Alzheimer's disease (AD) neuropathology, including septohippocampal circuit vulnerability and degeneration of basal forebrain cholinergic neurons (BFCNs). The Ts65Dn mouse model recapitulates key aspects of DS/AD pathology, namely age-associated atrophy of BFCNs and cognitive decline in septohippocampal-dependent behavioral tasks. We investigated whether maternal choline supplementation (MCS), a well-tolerated treatment modality, protects vulnerable BFCNs from age- and genotype-associated degeneration in trisomic offspring. We also examined the effect of trisomy, and MCS, on GABAergic basal forebrain parvalbumin neurons (BFPNs), an unexplored neuronal population in this DS model. Unbiased stereological analyses of choline acetyltransferase (ChAT)-immunoreactive BFCNs and parvalbumin-immunoreactive BFPNs were conducted using confocal z-stacks of the medial septal nucleus and the vertical limb of the diagonal band (MSN/VDB) in Ts65Dn mice and disomic (2N) littermates at 3-4 and 10-12 months of age. MCS trisomic offspring displayed significant increases in ChAT-immunoreactive neuron number and density compared to unsupplemented counterparts, as well as increases in the area of the MSN/VDB occupied by ChAT-immunoreactive neuropil. MCS also rescued BFPN number and density in Ts65Dn offspring, a novel rescue of a non-cholinergic cell population. Furthermore, MCS prevented age-associated loss of BFCNs and MSN/VDB regional area in 2N offspring, indicating genotype-independent neuroprotective benefits. These findings demonstrate MCS provides neuroprotection of vulnerable BFCNs and non-cholinergic septohippocampal BFPNs, indicating this modality has translational value as an early life therapy for DS, as well as extending benefits to the aging population at large.


Assuntos
Doença de Alzheimer , Prosencéfalo Basal , Síndrome de Down , Humanos , Animais , Camundongos , Idoso , Parvalbuminas , Neurônios GABAérgicos , Colina O-Acetiltransferase , Modelos Animais de Doenças , Degeneração Neural , Suplementos Nutricionais , Colina
2.
FASEB J ; 37(6): e22944, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37191946

RESUMO

Basal forebrain cholinergic neuron (BFCN) degeneration is a hallmark of Down syndrome (DS) and Alzheimer's disease (AD). Current therapeutics in these disorders have been unsuccessful in slowing disease progression, likely due to poorly understood complex pathological interactions and dysregulated pathways. The Ts65Dn trisomic mouse model recapitulates both cognitive and morphological deficits of DS and AD, including BFCN degeneration and has shown lifelong behavioral changes due to maternal choline supplementation (MCS). To test the impact of MCS on trisomic BFCNs, we performed laser capture microdissection to individually isolate choline acetyltransferase-immunopositive neurons in Ts65Dn and disomic littermates, in conjunction with MCS at the onset of BFCN degeneration. We utilized single population RNA sequencing (RNA-seq) to interrogate transcriptomic changes within medial septal nucleus (MSN) BFCNs. Leveraging multiple bioinformatic analysis programs on differentially expressed genes (DEGs) by genotype and diet, we identified key canonical pathways and altered physiological functions within Ts65Dn MSN BFCNs, which were attenuated by MCS in trisomic offspring, including the cholinergic, glutamatergic and GABAergic pathways. We linked differential gene expression bioinformatically to multiple neurological functions, including motor dysfunction/movement disorder, early onset neurological disease, ataxia and cognitive impairment via Ingenuity Pathway Analysis. DEGs within these identified pathways may underlie aberrant behavior in the DS mice, with MCS attenuating the underlying gene expression changes. We propose MCS ameliorates aberrant BFCN gene expression within the septohippocampal circuit of trisomic mice through normalization of principally the cholinergic, glutamatergic, and GABAergic signaling pathways, resulting in attenuation of underlying neurological disease functions.


Assuntos
Doença de Alzheimer , Prosencéfalo Basal , Síndrome de Down , Camundongos , Animais , Síndrome de Down/genética , Síndrome de Down/metabolismo , Camundongos Transgênicos , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/patologia , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Doença de Alzheimer/metabolismo , Modelos Animais de Doenças , Colina/metabolismo , Suplementos Nutricionais
3.
CNS Neurosci Ther ; 29(11): 3364-3377, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37208941

RESUMO

BACKGROUND: General anesthesia has long been used in clinical practice, but its precise pharmacological effects on neural circuits are not fully understood. Recent investigations suggest that the sleep-wake system may play a role in the reversible loss of consciousness induced by general anesthetics. Studies in mice have shown that microinjection of dopamine receptor 1 (D1R) agonists into the nucleus accumbens (NAc) promotes recovery from isoflurane anesthesia, while microinjection of D1R antagonists has the opposite effect. Furthermore, during the induction and maintenance of sevoflurane anesthesia, there is a significant decrease in extracellular dopamine levels in the NAc, which subsequently increases during the recovery period. These findings suggest the involvement of the NAc in the regulation of general anesthesia. However, the specific role of D1R-expressing neurons in the NAc during general anesthesia and the downstream effect pathways are still not well understood. METHODS: In order to analyze the impact of sevoflurane anesthesia on NAcD1R neurons and the NAcD1R -VP pathway, this study employed calcium fiber photometry to investigate alterations in the fluorescence intensity of calcium signals in dopamine D1-receptor-expressing neurons located in the nucleus accumbens (NAcD1R neurons) and the NAcD1R -VP pathway during sevoflurane anesthesia. Subsequently, optogenetic techniques were utilized to activate or inhibit NAcD1R neurons and their synaptic terminals in the ventral pallidum (VP), aiming to elucidate the role of NAcD1R neurons and the NAcD1R -VP pathway in sevoflurane anesthesia. These experiments were supplemented with electroencephalogram (EEG) recordings and behavioral tests. Lastly, a genetically-encoded fluorescent sensor was employed to observe changes in extracellular GABA neurotransmitters in the VP during sevoflurane anesthesia. RESULTS: Our findings revealed that sevoflurane administration led to the inhibition of NAcD1R neuron population activity, as well as their connections within the ventral pallidum (VP). We also observed a reversible reduction in extracellular GABA levels in the VP during both the induction and emergence phases of sevoflurane anesthesia. Additionally, the optogenetic activation of NAcD1R neurons and their synaptic terminals in the VP resulted in a promotion of wakefulness during sevoflurane anesthesia, accompanied by a decrease in EEG slow wave activity and burst suppression rate. Conversely, the optogenetic inhibition of the NAcD1R -VP pathway exerted opposite effects. CONCLUSION: The NAcD1R -VP pathway serves as a crucial downstream pathway of NAcD1R neurons, playing a significant role in regulating arousal during sevoflurane anesthesia. Importantly, this pathway appears to be associated with the release of GABA neurotransmitters from VP cells.


Assuntos
Anestesia , Prosencéfalo Basal , Camundongos , Animais , Núcleo Accumbens/metabolismo , Dopamina/metabolismo , Sevoflurano/farmacologia , Prosencéfalo Basal/metabolismo , Cálcio/metabolismo , Receptores de Dopamina D1/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurotransmissores/metabolismo , Neurotransmissores/farmacologia , Ácido gama-Aminobutírico/metabolismo
4.
Sci Rep ; 12(1): 22044, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543829

RESUMO

Environmental cues and internal states such as mood, reward, or aversion directly influence feeding behaviors beyond homeostatic necessity. The hypothalamus has been extensively investigated for its role in homeostatic feeding. However, many of the neural circuits that drive more complex, non-homeostatic feeding that integrate valence and sensory cues (such as taste and smell) remain unknown. Here, we describe a basal forebrain (BF)-to-lateral habenula (LHb) circuit that directly modulates non-homeostatic feeding behavior. Using viral-mediated circuit mapping, we identified a population of glutamatergic neurons within the BF that project to the LHb, which responds to diverse sensory cues, including aversive and food-related odors. Optogenetic activation of BF-to-LHb circuitry drives robust, reflexive-like aversion. Furthermore, activation of this circuitry suppresses the drive to eat in a fasted state. Together, these data reveal a role of basal forebrain glutamatergic neurons in modulating LHb-associated aversion and feeding behaviors by sensing environmental cues.


Assuntos
Prosencéfalo Basal , Habenula , Habenula/fisiologia , Prosencéfalo Basal/fisiologia , Afeto , Hipotálamo/fisiologia , Comportamento Alimentar , Vias Neurais/fisiologia
5.
Mol Psychiatry ; 27(10): 3980-3991, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35764708

RESUMO

Psychostimulant exposure alters the activity of ventral pallidum (VP) projection neurons. However, the molecular underpinnings of these circuit dysfunctions are unclear. We used RNA-sequencing to reveal alterations in the transcriptional landscape of the VP that are induced by cocaine self-administration in mice. We then probed gene expression in select VP neuronal subpopulations to isolate a circuit associated with cocaine intake. Finally, we used both overexpression and CRISPR-mediated knockdown to test the role of a gene target on cocaine-mediated behaviors as well as dendritic spine density. Our results showed that a large proportion (55%) of genes associated with structural plasticity were changed 24 h following cocaine intake. Among them, the transcription factor Nr4a1 (Nuclear receptor subfamily 4, group A, member 1, or Nur77) showed high expression levels. We found that the VP to mediodorsal thalamus (VP → MDT) projection neurons specifically were recapitulating this increase in Nr4a1 expression. Overexpressing Nr4a1 in VP → MDT neurons enhanced drug-seeking and drug-induced reinstatement, while Nr4a1 knockdown prevented self-administration acquisition and subsequent cocaine-mediated behaviors. Moreover, we showed that Nr4a1 negatively regulated spine dynamics in this specific cell subpopulation. Together, our study identifies for the first time the transcriptional mechanisms occurring in VP in drug exposure. Our study provides further understanding on the role of Nr4a1 in cocaine-related behaviors and identifies the crucial role of the VP → MDT circuit in drug intake and relapse-like behaviors.


Assuntos
Prosencéfalo Basal , Cocaína , Animais , Camundongos , Cocaína/metabolismo , Prosencéfalo Basal/metabolismo , Recompensa , Neurônios/metabolismo , Tálamo , Perfilação da Expressão Gênica
6.
Psychopharmacology (Berl) ; 239(2): 353-364, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34549316

RESUMO

The subthalamic nucleus (STN) is a key node in cortico-basal-ganglia thalamic circuits, guiding behavioral output through its position as an excitatory relay of the striatal indirect pathway and its direct connections with the cortex. There have been conflicting results regarding the role of the STN in addiction-related behavior to psychostimulants, and little is known with respect to the role of STN afferents. To address this, we used viral vectors to express DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) in the STN of rats in order to bidirectionally manipulate STN activity during the induction of amphetamine sensitization. In addition, we used a Cre-recombinase dependent Gi/o-coupled DREADD approach to transiently inhibit afferents from ventral pallidum (a subcomponent of the striatal indirect pathway) or the prelimbic cortex (a subcomponent of the cortico-STN hyperdirect pathway). Despite inducing mild hyperactivity in non-drug controls, stimulation of STN neurons with Gq-DREADDs blocked the development and persistence of amphetamine sensitization as well as conditioned responding. In contrast, inhibition of STN neurons with Gi/o-DREADDs enhanced the induction of sensitization without altering its persistence or conditioned responding. Chemogenetic inhibition of afferents from ventral pallidum had no effect on amphetamine sensitization but blocked conditioned responding whereas chemogenetic inhibition of afferents from prelimbic cortex attenuated the persistence of sensitization as well as conditioned responding. These results suggest the STN and its afferents play complex roles in the regulation of amphetamine sensitization and highlight the need for further characterization of how integration of inputs within STN guide behavior.


Assuntos
Prosencéfalo Basal , Estimulantes do Sistema Nervoso Central , Núcleo Subtalâmico , Anfetamina/farmacologia , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Vias Neurais , Ratos , Tálamo
7.
Sci Rep ; 11(1): 16080, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373525

RESUMO

We assessed the structure-function relationship of the human cholinergic system and hypothesized that structural measures are associated with short-latency sensory afferent inhibition (SAI), an electrophysiological measure of central cholinergic signal transmission. Healthy volunteers (n = 36) and patients with mild cognitive impairment (MCI, n = 20) underwent median nerve SAI and 3T structural MRI to determine the volume of the basal forebrain and the thalamus. Patients with MCI had smaller basal forebrain (p < 0.001) or thalamus volumes (p < 0.001) than healthy volunteers. Healthy SAI responders (> 10% SAI) had more basal forebrain volume than non-responders (p = 0.004) or patients with MCI (p < 0.001). More basal forebrain volume was associated with stronger SAI in healthy volunteers (r = 0.33, p < 0.05) but not patients with MCI. There was no significant relationship between thalamus volumes and SAI. Basal forebrain volume is associated with cholinergic function (SAI) in healthy volunteers but not in MCI patients. The in-vivo investigation of the structure-function relationship could further our understanding of the human cholinergic system in patients with suspected or known cholinergic system degeneration.


Assuntos
Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/fisiopatologia , Colinérgicos/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Tálamo/metabolismo , Tálamo/fisiopatologia , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Inibição Neural/fisiologia , Testes Neuropsicológicos
8.
Alzheimers Res Ther ; 12(1): 150, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33198763

RESUMO

BACKGROUND: In recent years, mechanistic, epidemiologic, and interventional studies have indicated beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) against brain aging and age-related cognitive decline, with the most consistent effects against Alzheimer's disease (AD) confined especially in the early or prodromal stages of the pathology. In the present study, we investigated the action of n-3 PUFA supplementation on behavioral performances and hippocampal neurogenesis, volume, and astrogliosis in aged mice subjected to a selective depletion of basal forebrain cholinergic neurons. Such a lesion represents a valuable model to mimic one of the most reliable hallmarks of early AD neuropathology. METHODS: Aged mice first underwent mu-p75-saporin immunotoxin intraventricular lesions to obtain a massive cholinergic depletion and then were orally supplemented with n-3 PUFA or olive oil (as isocaloric control) for 8 weeks. Four weeks after the beginning of the dietary supplementation, anxiety levels as well as mnesic, social, and depressive-like behaviors were evaluated. Subsequently, hippocampal morphological and biochemical analyses and n-3 PUFA brain quantification were carried out. RESULTS: The n-3 PUFA treatment regulated the anxiety alterations and reverted the novelty recognition memory impairment induced by the cholinergic depletion in aged mice. Moreover, n-3 PUFA preserved hippocampal volume, enhanced neurogenesis in the dentate gyrus, and reduced astrogliosis in the hippocampus. Brain levels of n-3 PUFA were positively related to mnesic abilities. CONCLUSIONS: The demonstration that n-3 PUFA are able to counteract behavioral deficits and hippocampal neurodegeneration in cholinergically depleted aged mice promotes their use as a low-cost, safe nutraceutical tool to improve life quality at old age, even in the presence of first stages of AD.


Assuntos
Doença de Alzheimer , Prosencéfalo Basal , Ácidos Graxos Ômega-3 , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Animais , Colinérgicos , Hipocampo , Camundongos
9.
Sci Data ; 7(1): 288, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32901008

RESUMO

We present high-density EEG datasets of auditory steady-state responses (ASSRs) recorded from the cortex of freely moving mice with or without optogenetic stimulation of basal forebrain parvalbumin (BF-PV) neurons, known as a subcortical hub circuit for the global workspace. The dataset of ASSRs without BF-PV stimulation (dataset 1) contains raw 36-channel EEG epochs of ASSRs elicited by 10, 20, 30, 40, and 50 Hz click trains and time stamps of stimulations. The dataset of ASSRs with BF-PV stimulation (dataset 2) contains raw 36-channel EEG epochs of 40-Hz ASSRs during BF-PV stimulation with latencies of 0, 6.25, 12.5, and 18.75 ms and time stamps of stimulations. We provide the datasets and step-by-step tutorial analysis scripts written in Python, allowing for descriptions of the event-related potentials, spectrograms, and the topography of power. We complement this experimental dataset with simulation results using a time-dependent perturbation on coupled oscillators. This publicly available dataset will be beneficial to the experimental and computational neuroscientists.


Assuntos
Estimulação Acústica , Prosencéfalo Basal/citologia , Eletroencefalografia , Neurônios/fisiologia , Animais , Potenciais Evocados , Camundongos
10.
Curr Biol ; 30(12): 2379-2385.e4, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32413301

RESUMO

The ability to rapidly arouse from sleep is important for survival. However, increased arousals in patients with sleep apnea and other disorders prevent restful sleep and contribute to cognitive, metabolic, and physiologic dysfunction [1, 2]. Little is currently known about which neural systems mediate these brief arousals, hindering the development of treatments that restore normal sleep. The basal forebrain (BF) receives inputs from many nuclei of the ascending arousal system, including the brainstem parabrachial neurons, which promote arousal in response to elevated blood carbon dioxide levels, as seen in sleep apnea [3]. Optical inhibition of the terminals of parabrachial neurons in the BF impairs cortical arousals to hypercarbia [4], but which BF cell types mediate cortical arousals in response to hypercarbia or other sensory stimuli is unknown. Here, we tested the role of BF parvalbumin (PV) neurons in arousal using optogenetic techniques in mice. Optical stimulation of BF-PV neurons produced rapid transitions to wakefulness from non-rapid eye movement (NREM) sleep but did not affect REM-wakefulness transitions. Unlike previous studies of BF glutamatergic and cholinergic neurons, arousals induced by stimulation of BF-PV neurons were brief and only slightly increased total wake time, reminiscent of clinical findings in sleep apnea [5, 6]. Bilateral optical inhibition of BF-PV neurons increased the latency to arousal produced by exposure to hypercarbia or auditory stimuli. Thus, BF-PV neurons are an important component of the brain circuitry that generates brief arousals from sleep in response to stimuli, which may indicate physiological dysfunction or danger to the organism.


Assuntos
Estimulação Acústica , Nível de Alerta/fisiologia , Carboidratos/administração & dosagem , Neurônios/fisiologia , Ração Animal/análise , Animais , Prosencéfalo Basal/fisiologia , Dieta , Camundongos , Parvalbuminas/metabolismo , Sono/fisiologia , Vigília/fisiologia
11.
Neuron ; 105(2): 370-384.e8, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31813653

RESUMO

The medial frontal cortex has been linked to voluntary action, but an explanation of why decisions to act emerge at particular points in time has been lacking. We show that, in macaques, decisions about whether and when to act are predicted by a set of features defining the animal's current and past context; for example, respectively, cues indicating the current average rate of reward and recent previous voluntary action decisions. We show that activity in two brain areas-the anterior cingulate cortex and basal forebrain-tracks these contextual factors and mediates their effects on behavior in distinct ways. We use focused transcranial ultrasound to selectively and effectively stimulate deep in the brain, even as deep as the basal forebrain, and demonstrate that alteration of activity in the two areas changes decisions about when to act.


Assuntos
Prosencéfalo Basal/fisiologia , Tomada de Decisões/fisiologia , Giro do Cíngulo/fisiologia , Estimulação Acústica , Animais , Sinais (Psicologia) , Estimulação Encefálica Profunda/métodos , Neuroimagem Funcional , Macaca , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Fatores de Tempo , Ondas Ultrassônicas
12.
Neurosci Biobehav Rev ; 108: 207-217, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31733222

RESUMO

Moral motivations drive humans to sacrifice selfish needs to serve the needs of others and internalized sociocultural norms. Over the past two decades, several brain regions have been associated with different aspects of moral cognition and behaviour. Only more recently, however, investigations have highlighted the importance of the basal forebrain for moral motivation. This includes the septo-hypothalamic region, implicated in kinship bonding across mammal species, and the closely connected subgenual frontal cortex. Understanding the neuroanatomy of moral motivation and its impairments will be fundamental for future research aiming to promote prosocial behaviour and mental health.


Assuntos
Prosencéfalo Basal/fisiologia , Giro do Cíngulo/fisiologia , Hipotálamo/fisiologia , Princípios Morais , Motivação/fisiologia , Apego ao Objeto , Cognição Social , Humanos
13.
Neurology ; 93(13): e1281-e1287, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31484715

RESUMO

OBJECTIVE: To determine whether ascending arousal network (AAn) connectivity is reduced in patients presenting with traumatic coma. METHODS: We performed high-angular-resolution diffusion imaging in 16 patients with acute severe traumatic brain injury who were comatose on admission and in 16 matched controls. We used probabilistic tractography to measure the connectivity probability (CP) of AAn axonal pathways linking the brainstem tegmentum to the hypothalamus, thalamus, and basal forebrain. To assess the spatial specificity of CP differences between patients and controls, we also measured CP within 4 subcortical pathways outside the AAn. RESULTS: Compared to controls, patients showed a reduction in AAn pathways connecting the brainstem tegmentum to a region of interest encompassing the hypothalamus, thalamus, and basal forebrain. When each pathway was examined individually, brainstem-hypothalamus and brainstem-thalamus CPs, but not brainstem-forebrain CP, were significantly reduced in patients. Only 1 subcortical pathway outside the AAn showed reduced CP in patients. CONCLUSIONS: We provide initial evidence for the reduced integrity of axonal pathways linking the brainstem tegmentum to the hypothalamus and thalamus in patients presenting with traumatic coma. Our findings support current conceptual models of coma as being caused by subcortical AAn injury. AAn connectivity mapping provides an opportunity to advance the study of human coma and consciousness.


Assuntos
Nível de Alerta/fisiologia , Lesões Encefálicas/fisiopatologia , Tronco Encefálico/fisiopatologia , Estado de Consciência/fisiologia , Adulto , Prosencéfalo Basal/fisiopatologia , Lesões Encefálicas/complicações , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/fisiopatologia , Feminino , Humanos , Masculino , Vias Neurais/fisiopatologia , Tálamo/fisiologia
14.
Development ; 146(18)2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31488566

RESUMO

During development, the p75 neurotrophin receptor (p75NTR) is widely expressed in the nervous system where it regulates neuronal differentiation, migration and axonal outgrowth. p75NTR also mediates the survival and death of newly born neurons, with functional outcomes being dependent on both timing and cellular context. Here, we show that knockout of p75NTR from embryonic day 10 (E10) in neural progenitors using a conditional Nestin-Cre p75NTR floxed mouse causes increased apoptosis of progenitor cells. By E14.5, the number of Tbr2-positive progenitor cells was significantly reduced and the rate of neurogenesis was halved. Furthermore, in adult knockout mice, there were fewer cortical pyramidal neurons, interneurons, cholinergic basal forebrain neurons and striatal neurons, corresponding to a relative reduction in volume of these structures. Thalamic midline fusion during early postnatal development was also impaired in Nestin-Cre p75NTR floxed mice, indicating a novel role for p75NTR in the formation of this structure. The phenotype of this strain demonstrates that p75NTR regulates multiple aspects of brain development, including cortical progenitor cell survival, and that expression during early neurogenesis is required for appropriate formation of telencephalic structures.


Assuntos
Prosencéfalo Basal/embriologia , Neocórtex/embriologia , Neostriado/embriologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Tálamo/embriologia , Animais , Animais Recém-Nascidos , Caspase 3/metabolismo , Proliferação de Células , Sobrevivência Celular , Complexo de Golgi/metabolismo , Interneurônios/metabolismo , Camundongos , Nestina/metabolismo , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Tamanho do Órgão , Células Piramidais/metabolismo
15.
Dev Neurobiol ; 79(7): 664-683, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31120189

RESUMO

Down syndrome (DS), trisomy 21, is marked by intellectual disability and a premature aging profile including degeneration of the basal forebrain cholinergic neuron (BFCN) projection system, similar to Alzheimer's disease (AD). Although data indicate that perinatal maternal choline supplementation (MCS) alters the structure and function of these neurons in the Ts65Dn mouse model of DS and AD (Ts), whether MCS affects the molecular profile of vulnerable BFCNs remains unknown. We investigated the genetic signature of BFCNs obtained from Ts and disomic (2N) offspring of Ts65Dn dams maintained on a MCS diet (Ts+, 2N+) or a choline normal diet (ND) from mating until weaning, then maintained on ND until 4.4-7.5 months of age. Brains were then collected and prepared for choline acetyltransferase (ChAT) immunohistochemistry and laser capture microdissection followed by RNA extraction and custom-designed microarray analysis. Findings revealed upregulation of select transcripts in classes of genes related to the cytoskeleton (Tubb4b), AD (Cav1), cell death (Bcl2), presynaptic (Syngr1), immediate early (Fosb, Arc), G protein signaling (Gabarap, Rgs10), and cholinergic neurotransmission (Chrnb3) in Ts compared to 2N mice, which were normalized with MCS. Moreover, significant downregulation was seen in select transcripts associated with the cytoskeleton (Dync1h1), intracellular signaling (Itpka, Gng3, and Mlst8), and cell death (Ccng1) in Ts compared to 2N mice that was normalized with MCS. This study provides insight into genotype-dependent differences and the effects of MCS at the molecular level within a key vulnerable cell type in DS and AD.


Assuntos
Prosencéfalo Basal/metabolismo , Colina/administração & dosagem , Neurônios Colinérgicos/metabolismo , Suplementos Nutricionais , Síndrome de Down/genética , Síndrome de Down/metabolismo , Animais , Prosencéfalo Basal/efeitos dos fármacos , Neurônios Colinérgicos/efeitos dos fármacos , Modelos Animais de Doenças , Síndrome de Down/tratamento farmacológico , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Gravidez
16.
Brain Struct Funct ; 224(4): 1505-1518, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30826928

RESUMO

High-density electroencephalographic (hdEEG) recordings are widely used in human studies to determine spatio-temporal patterns of cortical electrical activity. How these patterns of activity are modulated by subcortical arousal systems is poorly understood. Here, we couple selective optogenetic stimulation of a defined subcortical cell-type, basal forebrain (BF) parvalbumin (PV) neurons, with hdEEG recordings in mice (Opto-hdEEG). Stimulation of BF PV projection neurons preferentially generated time-locked gamma oscillations in frontal cortices. BF PV gamma-frequency stimulation potently modulated an auditory sensory paradigm used to probe cortical function in neuropsychiatric disorders, the auditory steady-state response (ASSR). Phase-locked excitation of BF PV neurons in advance of 40 Hz auditory stimuli enhanced the power, precision and reliability of cortical responses, and the relationship between responses in frontal and auditory cortices. Furthermore, synchronization within a frontal hub and long-range cortical interactions were enhanced. Thus, phasic discharge of BF PV neurons changes cortical processing in a manner reminiscent of global workspace models of attention and consciousness.


Assuntos
Percepção Auditiva/fisiologia , Prosencéfalo Basal/fisiologia , Potenciais Evocados Auditivos , Ritmo Gama , Neurônios/fisiologia , Estimulação Acústica , Animais , Eletroencefalografia , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Optogenética , Parvalbuminas/metabolismo
17.
Sci Rep ; 9(1): 3055, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816142

RESUMO

In natural settings, the prospect of reward often influences the focus of our attention, but how cognitive and motivational systems influence sensory cortex is not well understood. Also, challenges in training nonhuman animals on cognitive tasks complicate cross-species comparisons and interpreting results on the neurobiological bases of cognition. Incentivized attention tasks could expedite training and evaluate the impact of attention on sensory cortex. Here we develop an Incentivized Attention Paradigm (IAP) and use it to show that macaque monkeys readily learn to use auditory or visual reward cues, drastically influencing their performance within a simple auditory task. Next, this paradigm was used with functional neuroimaging to measure activation modulation in the monkey auditory cortex. The results show modulation of extensive auditory cortical regions throughout primary and non-primary regions, which although a hallmark of attentional modulation in human auditory cortex, has not been studied or observed as broadly in prior data from nonhuman animals. Psycho-physiological interactions were identified between the observed auditory cortex effects and regions including basal forebrain sites along acetylcholinergic and dopaminergic pathways. The findings reveal the impact and regional interactions in the primate brain during an incentivized attention engaging auditory task.


Assuntos
Atenção/fisiologia , Córtex Auditivo/fisiologia , Prosencéfalo Basal/fisiologia , Sinais (Psicologia) , Recompensa , Acetilcolina/metabolismo , Estimulação Acústica , Animais , Córtex Auditivo/diagnóstico por imagem , Percepção Auditiva/fisiologia , Prosencéfalo Basal/diagnóstico por imagem , Mapeamento Encefálico , Dopamina/metabolismo , Retroalimentação Fisiológica , Neuroimagem Funcional , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Modelos Animais , Vias Neurais/fisiologia , Percepção Visual/fisiologia
18.
Neuroimage ; 189: 615-630, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30708105

RESUMO

Despite the association between brainstem lesions and coma, a mechanistic understanding of coma pathogenesis and recovery is lacking. We developed a coma model in the rat mimicking human brainstem coma, which allowed multimodal analysis of a brainstem tegmentum lesion's effects on behavior, cortical electrophysiology, and global brain functional connectivity. After coma induction, we observed a transient period (∼1h) of unresponsiveness accompanied by cortical burst-suppression. Comatose rats then gradually regained behavioral responsiveness concurrent with emergence of delta/theta-predominant cortical rhythms in primary somatosensory cortex. During the acute stage of coma recovery (∼1-8h), longitudinal resting-state functional MRI revealed an increase in functional connectivity between subcortical arousal nuclei in the thalamus, basal forebrain, and basal ganglia and cortical regions implicated in awareness. This rat coma model provides an experimental platform to systematically study network-based mechanisms of coma pathogenesis and recovery, as well as to test targeted therapies aimed at promoting recovery of consciousness after coma.


Assuntos
Prosencéfalo Basal/fisiopatologia , Gânglios da Base/fisiopatologia , Mapeamento Encefálico/métodos , Tronco Encefálico/lesões , Córtex Cerebral/fisiopatologia , Coma/fisiopatologia , Rede Nervosa/fisiopatologia , Tálamo/fisiopatologia , Animais , Prosencéfalo Basal/diagnóstico por imagem , Gânglios da Base/diagnóstico por imagem , Comportamento Animal/fisiologia , Córtex Cerebral/diagnóstico por imagem , Coma/diagnóstico por imagem , Modelos Animais de Doenças , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Ratos , Ratos Sprague-Dawley , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/fisiopatologia , Tálamo/diagnóstico por imagem
19.
Neuroimage ; 190: 107-117, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29277400

RESUMO

Past animal and human studies robustly report that the cholinergic system plays an essential role in both top-down and bottom-up attentional control, as well as other aspects of cognition (see Ballinger et al., 2016 for a recent review). However, current understanding of how two major cholinergic pathways in the human brain (the basal forebrain-cortical pathway, and the brainstem pedunculopontine-thalamic pathway) contribute to specific cognitive functions remains somewhat limited. To address this issue, we examine how individual variation in the integrity of striatal-dopaminergic, thalamic-cholinergic, and cortical-cholinergic pathways (measured using Positron Emission Tomography in patients with Parkinson's disease) was associated with individual variation in the initial goal-directed focus of attention, the ability to sustain attentional performance over time, and the ability to avoid distraction from a highly-salient, but irrelevant, environmental stimulus. Compared to healthy controls, PD patients performed similarly in the precision of attention-dependent judgments of duration, and in sustaining attention over time. However, PD patients' performance was strikingly more impaired by the distractor. More critically, regression analyses indicated that only cortical-cholinergic integrity, not thalamic-cholinergic or striatal-dopaminergic integrity, made a specific contribution to the ability to resist distraction after controlling for the other variables. These results demonstrate that the basal forebrain cortical cholinergic system serves a specific role in executing top-down control to resist external distraction.


Assuntos
Acetilcolina/fisiologia , Atenção/fisiologia , Prosencéfalo Basal , Córtex Cerebral , Neostriado , Doença de Parkinson , Tomografia por Emissão de Pósitrons , Desempenho Psicomotor/fisiologia , Tálamo , Idoso , Prosencéfalo Basal/diagnóstico por imagem , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Dopamina/fisiologia , Humanos , Pessoa de Meia-Idade , Neostriado/diagnóstico por imagem , Neostriado/metabolismo , Neostriado/fisiopatologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/metabolismo , Vias Neurais/fisiopatologia , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Tálamo/diagnóstico por imagem , Tálamo/metabolismo , Tálamo/fisiopatologia
20.
Nutr Neurosci ; 22(8): 587-595, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29286866

RESUMO

Although attention deficit hyperactivity disorder is associated with deficits in docosahexaenoic acid (DHA), an omega-3 fatty acid implicated in dopamine and glutamate synaptic plasticity, its role in neuroplastic brain changes that occur following repeated amphetamine (AMPH) treatment are not known. This study used pharmacological magnetic resonance imaging to investigate the impact of repeated AMPH exposure and alterations in brain DHA levels on AMPH-induced brain activation patterns. Male rats were fed a diet with no n-3 fatty acids (Deficient, DEF, n = 20), a diet fortified with preformed DHA (fish oil, FO, n = 20), or a control diet fortified with alpha-linolenic acid (n = 20) from P21 to P90. During adolescence (P40-60), one-half of each diet group received daily AMPH injections escalated weekly (0.5, 1.0, 2.5, 5.0 mg/kg/d) or drug vehicle. Following a 30-d abstinence period blood oxygen level dependent (BOLD) responses were determined in a 7 T Bruker Biospec system following an AMPH challenge (7.5 mg/kg, i.v). Postmortem erythrocyte and forebrain DHA composition were determined by gas chromatography. Compared with control rats, forebrain and erythrocyte DHA levels were significantly lower in DEF rats and significantly higher in FO rats. Across AMPH doses DEF rats exhibited greater locomotor activity compared to control and FO rats. In AMPH-naïve rats, the AMPH challenge increased BOLD activity in the substantia nigra and basal forebrain and no diet group differences were observed. In AMPH-pretreated control and FO rats, the AMPH challenge similarly increased BOLD activation in the bilateral caudate putamen, thalamus, and motor and cingulate cortices. In contrast, BOLD activation in AMPH-pretreated DEF rats was similar to AMPH-naïve DEF animals, and AMPH-pretreated DEF rats exhibited attenuated frontostriatal BOLD activation compared with AMPH-pretreated control and FO rats. These findings demonstrate that chronic escalating AMPH treatment induces enduring frontostriatal recruitment and that peri-adolescent deficits in brain DHA accrual impair this response.


Assuntos
Anfetamina/administração & dosagem , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Ácidos Docosa-Hexaenoicos/administração & dosagem , Animais , Prosencéfalo Basal/efeitos dos fármacos , Prosencéfalo Basal/fisiologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/fisiologia , Ácidos Docosa-Hexaenoicos/metabolismo , Eritrócitos/metabolismo , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/fisiologia , Locomoção/efeitos dos fármacos , Imageamento por Ressonância Magnética , Masculino , Córtex Motor/efeitos dos fármacos , Córtex Motor/fisiologia , Prosencéfalo/metabolismo , Ratos Long-Evans , Substância Negra/efeitos dos fármacos , Substância Negra/fisiologia , Tálamo/efeitos dos fármacos , Tálamo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA