RESUMO
Inflammation induces a wide response of the neuroendocrine system, which leads to modifications in all the endocrine axes. The hypothalamic-growth hormone (GH)-insulin-like growth factor-1 (IGF-1) axis is deeply affected by inflammation, its response being characterized by GH resistance and a decrease in circulating levels of IGF-1. The endocrine and metabolic responses to inflammation allow the organism to survive. However, in chronic inflammatory conditions, the inhibition of the hypothalamic-GH-IGF-1 axis contributes to the catabolic process, with skeletal muscle atrophy and cachexia. Here, we review the changes in pituitary GH secretion, IGF-1, and IGF-1 binding protein-3 (IGFBP-3), as well as the mechanism that mediated those responses. The contribution of GH and IGF-1 to muscle wasting during inflammation has also been analyzed.
Assuntos
Caquexia/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Caquexia/fisiopatologia , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento Humano/metabolismo , Humanos , Hipotálamo/metabolismo , Inflamação/fisiopatologia , Insulina/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/fisiologia , Fator de Crescimento Insulin-Like I/fisiologia , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatologiaRESUMO
IGF-binding protein-3 (IGFBP-3) is a modulator of the IGF-signaling pathway and was described as an anti-cancer agent in prostate cancer. The molecular mechanisms underlying these effects remained, however, largely undefined. We analyzed the influence of recombinant IGFBP-3 on cell proliferation of PC3, Du145, and LNCaP prostate cancer cells. As expected, IGFBP-3 inhibited IGF-stimulated cell proliferation by blocking IGF-mediated proliferation signals, but we observed an IGF-independent inhibitory effect of IGFBP-3 on prostate cancer cell proliferation in long-term cultures. We further investigated the influence of IGFBP-3 on adhesion, motility, and invasion of prostate cancer cells using adhesion assays, live-cell imaging techniques, and matrigel invasion measurements. There was a clear inhibitory effect of IGFBP-3 on tumor cell adhesion to extracellular matrix components in the presence and absence of IGF, whereas cell-cell adhesion was not affected. The same inhibitory effect of IGFBP-3 was determined on cell motility when real-time cell movements were followed. In addition, IGFBP-3 was able to inhibit tumor cell invasion through matrigel. In summary, we show that IGFBP-3 inhibits proliferation, adhesion, migration, and invasion processes of prostate tumor cells. These newly described mechanisms of IGFBP-3 can be of importance for tumor progression and support a role of IGFBP-3 in therapeutic settings.
Assuntos
Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/farmacologia , Neoplasias da Próstata/patologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Transformada , Regulação para Baixo/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/fisiologia , Masculino , Neoplasias da Próstata/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Células Tumorais CultivadasRESUMO
PURPOSE: Lung cancer is a leading cause of cancer-related deaths worldwide. Here, we assessed the chemotherapeutic effect of grape seed proanthocyanidins (GSPs) on human non-small cell lung cancer (NSCLC) cells in vitro and in vivo using a tumor xenograft model. EXPERIMENTAL DESIGN: The effects of GSPs on human NSCLC cell lines in terms of cellular proliferation were determined. The chemotherapeutic effects of a GSP- supplemented AIN76A control diet fed to nude mice bearing tumor xenografts (A549 and H1299) were evaluated in terms of biomarkers of cell proliferation and angiogenesis and on insulin-like growth factor binding protein-3 using immunohistochemical detection, ELISA, and Western blotting. RESULTS: In vitro treatment of NSCLC cells with GSPs resulted in inhibition of cellular proliferation. Administration of GSPs (0.1%, 0.2%, and 0.5%, w/w) as a supplement of an AIN76A control diet resulted in a dose-dependent inhibition of the growth of NSCLC (A549 and H1299) tumor xenografts in athymic nude mice (25-76%; P < 0.05-0.001). The growth-inhibitory effect of GSPs on the NSCLC xenograft tumors was associated with the enhancement of the levels of insulin-like growth factor binding protein-3 in the tumor microenvironment and plasma and antiproliferative, antiangiogenic, and proapoptotic effects. CONCLUSIONS: This preclinical study reveals for the first time that dietary GSPs have the ability to inhibit the growth of human NSCLC tumor xenografts grown in vivo in athymic nude mice. More studies are needed to develop GSPs as a pharmacologically safe agent for the prevention of lung cancer in humans.
Assuntos
Indutores da Angiogênese/antagonistas & inibidores , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Proantocianidinas/farmacologia , Proantocianidinas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dieta , Extrato de Sementes de Uva , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/fisiologia , Camundongos , Camundongos Nus , Extratos Vegetais/administração & dosagem , Proantocianidinas/administração & dosagem , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
IGF-I is recognized as an insulin sensitizer at the liver and muscle, while recent evidence suggests that IGF-binding protein (IGFBP)-3 acts as an insulin antagonist. As there is a paucity of IGF-I receptors in the liver and as the IGF-IGFBP system in the central nervous system is emerging as physiologically relevant, we examined whether the effects of IGF-I and IGFBP-3 on insulin action are mediated through central mechanisms. Intracerebroventricular (ICV) infusion of IGF-I during the insulin clamp (3 mU x kg(-1) x min(-1)) resulted in significant improvement in hepatic insulin action (50%, P < 0.05). In contrast, ICV infusion of IGFBP-3 significantly impaired insulin action at the liver (45% increase in hepatic glucose production, P < 0.01). While IGF-I marginally increased peripheral glucose uptake, IGFBP-3 significantly decreased peripheral glucose uptake (approximately 30%, P < 0.01). As the nuclear localization signal mutant IGFBP-3, which has a normal affinity to IGFs but binds other IGFBP-3 partners poorly and fails to normally internalize, has reduced central activity on metabolism, we conclude that the effects of IGFBP-3 on the hypothalamus involve activity mediated by interfacing with other molecules in addition to IGFs. Marked, opposing, and independent physiological effects of IGF-I and IGFBP-3 through central mechanisms may have implications on potential strategies in specific modulation of peripheral insulin action.
Assuntos
Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/fisiologia , Fator de Crescimento Insulin-Like I/fisiologia , Insulina/fisiologia , Animais , Glucose/biossíntese , Técnica Clamp de Glucose , Glicólise/efeitos dos fármacos , Hipotálamo/metabolismo , Infusões Intravenosas , Injeções Intraventriculares , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/administração & dosagem , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Fígado/metabolismo , Masculino , Sinais de Localização Nuclear/genética , Ratos , Ratos Sprague-DawleyRESUMO
IGF-independent effects of IGF-binding protein-3 (IGFBP-3) have been demonstrated in vitro; however, the physiological significance of these effects in vivo is unclear. We generated two transgenic (Tg) mouse strains that overexpress a human Gly56/Gly80/Gly81-mutant IGFBP-3 cDNA. This mutant has a markedly reduced affinity for the IGFs, but retains the IGF-independent effects. Serum levels of mutant IGFBP-3 were 156 +/- 12 and 400 +/- 24 ng/ml in hemizygous mice of strains 5005 and 5012, respectively. When Tg and wild-type mice were compared, there was no reduction in birth weight, litter size, or postnatal growth. Despite differences in transgene expression in various tissues, relative organ weight was similar in Tg and wild-type mice, with exception of brain, where a modest reduction in brain weight was observed in the high-expressing 5012 lineage. There was also a significant reduction in proliferating cell nuclear antigen-staining cells observed in the periventricular region of the developing brain in embryonic d 18 Tg embryos. In the higher expressing 5012 Tg strain, IGF-I and murine IGFBP-3 levels, marker of GH action were increased. Furthermore, there was a positive correlation between mutant IGFBP-3 levels and IGF-I levels and between mutant IGFBP-3 levels and murine IGFBP-3 (P = 0.002 and P < 0.001, respectively). These data indicate that overexpression of mutant IGFBP-3 is not associated with growth retardation. The higher levels of IGF-I and murine IGFBP-3 in the 5012 Tg strain suggest that the growth inhibitory effect of mutant IGFBP-3 may be compensated for by other mechanisms.
Assuntos
Glicina/química , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/fisiologia , Mutação , Animais , Apoptose , Southern Blotting , Western Blotting , Encéfalo/metabolismo , Células COS , Cromatografia , DNA Complementar/metabolismo , Embrião de Mamíferos/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Fator de Crescimento Insulin-Like I/metabolismo , Ligantes , Masculino , Camundongos , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Tamanho do Órgão , Antígeno Nuclear de Célula em Proliferação/metabolismo , RNA/metabolismo , Ribonucleases/metabolismo , Fatores Sexuais , Especificidade da Espécie , Distribuição Tecidual , TransgenesRESUMO
We earlier demonstrated that oral infusion of green tea polyphenols inhibits development and progression of prostate cancer in transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Evidence indicates that elevated levels of IGF-I with concomitant lowering of IGF binding protein (IGFBP)-3 are associated with increased risk for prostate cancer development and progression. In this study, we examined the role of IGF/IGFBP-3 signaling and its downstream and other associated events during chemoprevention of prostate cancer by green tea polyphenols in TRAMP mice. Our data demonstrated an increase in the levels of IGF-I, phosphatidylinositol 3'-kinase, phosphorylated Akt (Thr-308), and extracellular signal-regulated kinase 1/2 with concomitant decrease in IGFBP-3 in dorso-lateral prostate of TRAMP mice during the course of cancer progression, i.e., as a function of age. Continuous green tea polyphenol infusion for 24 weeks to these mice resulted in substantial reduction in the levels of IGF-I and significant increase in the levels of IGFBP-3 in the dorso-lateral prostate. This modulation of IGF/IGFBP-3 was found to be associated with an inhibition of protein expression of phosphatidylinositol 3'-kinase, phosphorylated forms of Akt (Thr-308) and extracellular signal-regulated kinase 1/2. Furthermore, green tea polyphenol infusion resulted in marked inhibition of markers of angiogenesis and metastasis most notably vascular endothelial growth factor, urokinase plasminogen activator, and matrix metalloproteinases 2 and 9. Based on our data, we suggest that IGF-I/IGFBP-3 signaling pathway is a prime pathway for green tea polyphenol-mediated inhibition of prostate cancer that limits the progression of cancer through inhibition of angiogenesis and metastasis.
Assuntos
Adenocarcinoma/tratamento farmacológico , Flavonoides/farmacologia , Fator de Crescimento Insulin-Like I/antagonistas & inibidores , Fenóis/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Chá , Adenocarcinoma/irrigação sanguínea , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Progressão da Doença , MAP Quinases Reguladas por Sinal Extracelular/biossíntese , Feminino , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/antagonistas & inibidores , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/fisiologia , Fator de Crescimento Insulin-Like I/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Metástase Neoplásica , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Fosfatidilinositol 3-Quinases/biossíntese , Polifenóis , Neoplasias da Próstata/irrigação sanguínea , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais/efeitos dos fármacosRESUMO
UNLABELLED: IGF-I and their binding proteins are important in bone health. Examination of BMD, osteoblast proliferation, and markers of bone resorption in transgenic mice that constitutively overexpress IGFBP-3 indicates that overexpression of IGFBP-3 increases osteoclast number and bone resorption, impairs osteoblast proliferation, and has a significant negative effect on bone formation. INTRODUCTION: Low serum insulin-like growth factor I (IGF-I) levels correlate with an increased risk of osteoporotic fractures. Serum IGF-I is largely bound to IGF-binding protein-3 (IGFBP-3), which can inhibit IGF-I action and enhance delivery of IGF-I to tissues. Its role in bone biology is unclear. METHODS: Bone mineral density (BMD), osteoblast proliferation, and markers of bone resorption were examined in transgenic (Tg) mice that constitutively overexpressed human IGFBP-3 cDNA driven by either the cytomegalovirus (CMV) or phosphoglycerate kinase (PGK) promoter. RESULTS: Cultured calvarial osteoblasts from Tg mice expressed the transgene and grew more slowly than cells from wild-type (Wt) mice, and the mitogenic response to IGF-I was attenuated in osteoblasts from Tg mice. Total volumetric BMD and cortical BMD, measured in the femur using peripheral quantitative computed tomography (pQCT) were significantly reduced in both Tg mouse strains compared with Wt mice. PGKBP-3 Tg mice showed the most marked reduction in bone density. Osteocalcin levels were similar in Wt and CMVBP-3 Tg mice but were significantly reduced in PGKBP-3 Tg mice. Urinary deoxypyridinoline and osteoclast perimeter, markers of bone resorption, were significantly increased in both Tg mouse strains compared with Wt mice. Using double labeling with tetracycline, we demonstrated that pericortical and endocortical mineral apposition rate was significantly reduced in PGKBP-3 Tg mice compared with Wt mice. CONCLUSIONS: These data show that overexpression of IGFBP-3 increases osteoclast number and bone resorption, impairs osteoblast proliferation, and has a significant negative effect on bone formation.
Assuntos
Osso e Ossos/patologia , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/fisiologia , Aminoácidos/farmacologia , Animais , Western Blotting , Densidade Óssea , Divisão Celular , Corantes/farmacologia , Citomegalovirus/genética , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Camundongos Transgênicos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Fenótipo , Fosfoglicerato Quinase/genética , Regiões Promotoras Genéticas , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia , Fatores de TempoRESUMO
The identification of hormones and regulatory factors in colostrum and milk has led to intensive investigations on their roles in the development and maintenance of the mammary and neonatal tissues. Insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) in transgenic mice influence mammary biology gland towards the end of lactation. In the bovine, IGFBP-3 is the major IGFBP in mammary secretions. In addition to binding IGFs, IGFBP-3 also binds to lactoferrin (Lf). Secreted IGFBP-3 re-enters mammary epithelial cells and with the presence of a nuclear localization sequence, IGFBP-3 and Lf enter the nucleus. Nuclear IGFBP-3 affects apoptotic signaling through the retinoic-x-receptors, while Lf affects apoptotic events through unknown mechanisms. Such interactions likely influence mammary development and involution. Furthermore, ingested colostral bioactive factors can exert regulatory functions in neonates. Intestinal receptors for IGFs and insulin are modified by age and/or diet. Feeding IGF-I had no effect, but colostrum extracts had small intestinal effects (stimulation of proliferation and villus size), suggesting that several factors, rather than one single bioactive factor were responsible. Systemic changes of metabolic and endocrine profiles in neonates depend on composition, amounts, time and duration of feeding colostrum. Early postnatal colostrum intake is not only important for the provision and absorption of immunoglobulins. Thus, in neonatal calves the lack of colostrum intake during the first 24h after birth results in a low immunoglobulin G, beta-carotene and Vitamin A status that persists for weeks and plasma patterns of fatty acids, essential amino acids and the glutamine/glutamate ratios are affected. In calves oral administration of IGF-I had no and feeding of colostrum whey extracts had only minor effects on metabolic and endocrine traits. Thus, mammary secretions influence regulatory functions of mammary and neonatal tissues.
Assuntos
Animais Recém-Nascidos/fisiologia , Mama/fisiologia , Colostro/química , Leite/química , Somatomedinas/fisiologia , Animais , Sistema Digestório/crescimento & desenvolvimento , Feminino , Insulina/fisiologia , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/fisiologia , Fator de Crescimento Insulin-Like I/fisiologia , Fator de Crescimento Insulin-Like II/fisiologia , Lactoferrina/fisiologia , GravidezRESUMO
Transgenic mice which expressed human IGF-binding protein-3 (hIGFBP-3) were generated by pronuclear injection of an hIGFBP-3 cDNA driven by the mouse metallothionein 1 promoter. Two of the seven founder mice had measurable levels of hIGFBP-3 in the circulation. The serum levels of hIGFBP-3 increased as the mice were bred to homozygosity and were further induced by supplementing the drinking water with 25 mM ZnCl2. While the birth weight, litter size and body weight of transgenic mice were not significantly different from non-transgenic litter mates or wild-type mice derived from the same genetic background, the transgenic mice demonstrated selective organomegaly. The spleen, liver and heart of mice derived from both founders were significantly heavier compared with organs from non-transgenic mice (P < 0.05, P < 0.005 and P < 0.01 respectively). The weights of the brain and kidney were similar in transgenic and non-transgenic mice. Expression of the transgene was detected in the kidney, small intestine and colon by Northern blot analysis. Western ligand blotting of serum from transgenic mice did not demonstrate any change in the abundance of the IGFBPs detected by this method. When serum from transgenic mice was incubated with 125I-labeled IGF-I and analyzed by Sephacryl S-200 chromatography under neutral conditions a significantly (P < 0.05) increased amount of the radioactivity was found in the 140 kDa ternary complex compared with serum from wild-type mice. Immunoreactive hIGFBP-3 was detected in the 140 kDa ternary complex but the majority of immunoreactive hIGFBP-3 present in transgenic mouse serum eluted in later fractions indicating that it was not associated with the acid-labile subunit. These data demonstrate that modest constitutive expression of hIGFBP-3 has a selective effect on organ growth and development. The establishment of these IGFBP-3 transgenic mouse strains may provide useful models to investigate further the physiological role of IGFBP-3.