Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Altern Ther Health Med ; 30(11)2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38401106

RESUMO

Objective: To assess the role of miR-30c-5p in subarachnoid hemorrhage (SAH) and its possible mechanism. Methods: We established a SAH model by injecting fresh arterial non-heparinized blood into the anterior cistern of the optic chiasm of healthy Sprague-Dawley rats. Next, we treated the rats with a miR-30c-5p inhibitor or miR-30c-5p mimics. We then assessed behavior, serum lactate dehydrogenase levels, albumin expression, neuronal degeneration, neuronal apoptosis, neuronal survival, and the cerebral edema index in the SAH model rats. We identified downstream target genes of miR-30c-5p using the Targetscan database and confirmed them via luciferase reporter assay. Finally, we assessed the effect of these targeted genes on brain injury in SAH rats through a recovery assay. Results: Our results showed that the overexpression of miR-30c-5p in brain tissue 24h after SAH prevented brain injury, reduced inflammation levels and nerve function scores, inhibited neuronal apoptosis, and improved neuronal survival. Meanwhile, inhibiting miR-30c-5p yielded opposite effects. Two genes related to the autophagy pathway, ATG5 and ATG12, were identified as miR-30c-5p downstream target genes. Silencing ATG5 and ATG12 alleviated brain injury induced by knocking down miR-30c-5p. Conclusion: Our findings suggest that miR-30c-5p protects from SAH-induced brain injury by inhibiting the ATG5/ATG12 pathway and it may serve as a new diagnostic maker or target for treatment of SAH patients.


Assuntos
Proteína 5 Relacionada à Autofagia , MicroRNAs , Ratos Sprague-Dawley , Hemorragia Subaracnóidea , Animais , Hemorragia Subaracnóidea/complicações , MicroRNAs/metabolismo , MicroRNAs/genética , Ratos , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Masculino , Lesões Encefálicas , Proteína 12 Relacionada à Autofagia/metabolismo , Proteína 12 Relacionada à Autofagia/genética , Modelos Animais de Doenças , Transdução de Sinais , Autofagia , Apoptose , Aneurisma Intracraniano/genética , Aneurisma Intracraniano/complicações
2.
Theranostics ; 12(13): 6038-6056, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966597

RESUMO

Rationale: Immunosuppression in the tumor microenvironment (TME) is key to the pathogenesis of solid tumors. Tumor cell-intrinsic autophagy is critical for sustaining both tumor cell metabolism and survival. However, the role of autophagy in the host immune system that allows cancer cells to escape immune destruction remains poorly understood. Here, we determined if attenuated host autophagy is sufficient to induce tumor rejection through reinforced adaptive immunity. Furthermore, we determined whether dietary glutamine supplementation, mimicking attenuated host autophagy, is capable of promoting antitumor immunity. Methods: A syngeneic orthotopic tumor model in Atg5+/+ and Atg5flox/flox mice was established to determine the impact of host autophagy on the antitumor effects against mouse malignant salivary gland tumors (MSTs). Multiple cohorts of immunocompetent mice were used for oncoimmunology studies, including inflammatory cytokine levels, macrophage, CD4+, and CD8+ cells tumor infiltration at 14 days and 28 days after MST inoculation. In vitro differentiation and in vivo dietary glutamine supplementation were used to assess the effects of glutamine on Treg differentiation and tumor expansion. Results: We showed that mice deficient in the essential autophagy gene, Atg5, rejected orthotopic allografts of isogenic MST cells. An enhanced antitumor immune response evidenced by reduction of both M1 and M2 macrophages, increased infiltration of CD8+ T cells, elevated IFN-γ production, as well as decreased inhibitory Tregs within TME and spleens of tumor-bearing Atg5flox/flox mice. Mechanistically, ATG5 deficiency increased glutamine level in tumors. We further demonstrated that dietary glutamine supplementation partially increased glutamine levels and restored potent antitumor responses in Atg5+/+ mice. Conclusions: Dietary glutamine supplementation exposes a previously undefined difference in plasticity between cancer cells, cytotoxic CD8+ T cells and Tregs.


Assuntos
Glutamina , Neoplasias das Glândulas Salivares , Animais , Autofagia , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Linfócitos T CD8-Positivos , Camundongos , Neoplasias das Glândulas Salivares/tratamento farmacológico , Microambiente Tumoral
3.
Toxicol Appl Pharmacol ; 435: 115833, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34933056

RESUMO

Clinical utilization of doxorubicin (DOX), which is a commonly used chemotherapeutic, is restricted due to toxic effects on various tissues. Using hesperetin (HST), an antioxidant used in Chinese traditional medicine protects testis against DOX-induced toxicity although the molecular mechanisms are not well-known. The study was aimed to examine the possible role of the mechanistic target of rapamycin kinase (mTOR) and dynamin 1-like dynamin-related protein 1 (DRP1) in the therapeutic effects of HST on the DOX-induced testicular toxicity. Rats were divided into Control, DOX, DOX + HST, and HST groups (n = 7). Single-dose DOX (15 mg/kg) was administered intraperitoneally and HST (50 mg/kg) was administered by oral gavage every other day for 28 days. Total antioxidant status (TAS), histopathological evaluations, immunohistochemistry, and gene expression level detection analyses were performed. Histopathologically, DOX-induced testicular damage was ameliorated by HST treatment. DOX reduced testicular TAS levels and increased oxidative stress markers, 8-Hydroxy-deoxyguanosine (8-OHdG), and 4-Hydroxynonenal (4-HNE). Also, upregulated mTOR and DRP1 expressions with DOX exposure were decreased after HST treatment in the testis (p < 0.05). On the other hand, DOX-administration downregulated miR-150-5p and miR-181b-2-3p miRNAs, targeting mTOR and mRNA levels of beclin 1 (BECN1) and autophagy-related 5 (ATG5), autophagic markers. Furthermore, these levels were nearly similar to control testis samples in the DOX + HST group (p < 0.05). The study demonstrated that HST may have a therapeutic effect on DOX-induced testicular toxicity by removing reactive oxygen species (ROS) and by modulating the mTOR and DRP1 expressions, which have a critical role in regulating the balance of generation/elimination of ROS.


Assuntos
Antibióticos Antineoplásicos , Doxorrubicina , Dinaminas/biossíntese , Hesperidina/uso terapêutico , Serina-Treonina Quinases TOR/biossíntese , Doenças Testiculares/induzido quimicamente , Doenças Testiculares/tratamento farmacológico , Animais , Antioxidantes/metabolismo , Proteína 5 Relacionada à Autofagia/biossíntese , Proteína 5 Relacionada à Autofagia/genética , Proteína Beclina-1/biossíntese , Proteína Beclina-1/genética , Dinaminas/genética , Expressão Gênica/efeitos dos fármacos , Masculino , MicroRNAs/biossíntese , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/genética , Doenças Testiculares/patologia , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia
4.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34948250

RESUMO

Hypoxia is a major obstacle to gastric cancer (GC) therapy and leads to chemoresistance as GC cells are frequently exposed to the hypoxia environment. Apigenin, a flavonoid found in traditional medicine, fruits, and vegetables and an HDAC inhibitor, is a powerful anti-cancer agent against various cancer cell lines. However, detailed mechanisms involved in the treatment of GC using APG are not fully understood. In this study, we investigated the biological activity of and molecular mechanisms involved in APG-mediated treatment of GC under hypoxia. APG promoted autophagic cell death by increasing ATG5, LC3-II, and phosphorylation of AMPK and ULK1 and down-regulating p-mTOR and p62 in GC. Furthermore, our results show that APG induces autophagic cell death via the activation of the PERK signaling, indicating an endoplasmic reticulum (ER) stress response. The inhibition of ER stress suppressed APG-induced autophagy and conferred prolonged cell survival, indicating autophagic cell death. We further show that APG induces ER stress- and autophagy-related cell death through the inhibition of HIF-1α and Ezh2 under normoxia and hypoxia. Taken together, our findings indicate that APG activates autophagic cell death by inhibiting HIF-1α and Ezh2 under hypoxia conditions in GC cells.


Assuntos
Apigenina/metabolismo , Neoplasias Gástricas/metabolismo , Adenilato Quinase/metabolismo , Apigenina/farmacologia , Apoptose , Morte Celular Autofágica/efeitos dos fármacos , Autofagia , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Morte Celular , Hipóxia Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Estresse do Retículo Endoplasmático , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Neoplasias Gástricas/fisiopatologia , Serina-Treonina Quinases TOR/metabolismo
5.
Biomed Pharmacother ; 142: 112045, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34426257

RESUMO

OBJECTIVE: Asthma is characterized by airway hyperresponsiveness(AHR), inflammation and remodeling. Autophagy and endoplasmic reticulum stress(ERS) are dysregulated in asthma, and ATG5 has attracted wide attentions a representative gene of autophagy. Previous evidence shows that acupuncture may treat asthma by regulating the immune environment.However,the precise mechanism involved in acupuncture's effects on asthma is unclear. Thus, we investigated the inner-relationships of acupuncture and ATG5-mediated autophagy, ERS and CD4+ T lymphocyte differentiation in asthma. METHODS: Ovalbumin (OVA)-sensitized and challenged ATG5+/- and ATG5-/-mice with asthma were treated by acupuncture at Dazhui(GV14),Feishu(BL13) and Zusanli(ST36),and sacrificed the next day.Then blood and bronchoalveolar lavage fluid (BALF)samples were collected to determine inflammatory cell counts and cytokine levels. Lung tissue samples were obtained for histological examination, and the spleen was harvested for flow cytometry. RESULTS: Compared with the untreated group, acupuncture decreased BALF inflammatory cell counts and AHR in OVA-induced mice.Acupuncture decreased autophagy-related protein and mRNA (ATG5,Beclin-1,p62 and LC3B)amounts and ERS-related protein (p-PERK, p-IRE-1,Grp78, and ATF6)levels as well as autophagosome formation in lung tissue, concomitant with increased IFN-γ and decreased IL-4, IL-17 and TGF-ß amounts in BALF.Consistently, the imbalance of CD4+ T lymphocyte subsets(Th1/Th2 and Treg/Th17) was also corrected by acupuncture.Meanwhile, AHR and inflammation were decreased in ATG5-/- mice compared with ATG+/-animals,without affecting the therapeutic effect of acupuncture. CONCLUSION: Acupuncture reduces airway inflammation and AHR in asthma by inhibiting ATG5-mediated autophagy to regulate endoplasmic reticulum stress and CD4+T lymphocyte differentiation.


Assuntos
Terapia por Acupuntura , Asma/terapia , Proteína 5 Relacionada à Autofagia/antagonistas & inibidores , Proteína 5 Relacionada à Autofagia/genética , Autofagia/genética , Linfócitos T CD4-Positivos/imunologia , Estresse do Retículo Endoplasmático/genética , Animais , Asma/induzido quimicamente , Asma/imunologia , Asma/patologia , Autofagossomos/ultraestrutura , Autofagia/imunologia , Proteína 5 Relacionada à Autofagia/imunologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Linfócitos T CD4-Positivos/citologia , Diferenciação Celular/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/imunologia , Feminino , Inflamação/genética , Inflamação/imunologia , Camundongos Endogâmicos C57BL , Ovalbumina/toxicidade , Hipersensibilidade Respiratória
6.
Zhongguo Zhong Yao Za Zhi ; 46(9): 2260-2266, 2021 May.
Artigo em Chinês | MEDLINE | ID: mdl-34047129

RESUMO

Non-alcoholic steatohepatitis(NASH) was induced by high-sugar and high-fat diet in mice to investigate the intervention effect of total saponins from Panax japonicus(TSPJ) and explore its possible mechanism. Mice were fed with high-sugar and high-fat diet to establish NASH model, and intervened with different doses of TSPJ(15, 45 mg·kg~(-1)). The animals were fed for 26 weeks. The histomorphology and pathological changes of liver tissues were observed by HE staining. The transcriptional expression levels of miR-199 a-5 p, autophagy related gene 5(ATG5) and inflammatory cytokines interleukin-6(IL-6), interleukin-1ß(IL-1ß) and tumor necrosis factor α(TNF-α) in mouse liver were measured by quantitative Real-time polymerase chain reaction(qRT-PCR). Western blot was used to detect the expression of autophagy-related proteins ATG5, P62/SQSTM1(P62), and microtubule-associated protein light chain 3(LC3)-I/Ⅱ proteins in mouse liver. The expression of P62 protein was detected by immunofluorescence staining. In order to verify the targeting regulation relationship between miR-199 a-5 p and ATG5, miR mimic/inhibitor NC and miR-199 a-5 p mimic/inhibitor were transfected into Hepa 1-6 cells, and the expression of ATG5 mRNA and protein was detected. pMIR-reportor ATG5-3'UTR luciferase reporter gene plasmid was constructed and co-transfected with miR mimic/inhibitor NC and miR-199 a-5 p mimic/inhibitor into Hepa 1-6 cells to detect luciferase activity. In vivo, HE staining in the model group showed typical fatty degeneration and inflammatory infiltration, with increased expression of miR-199 a-5 p and decreased expression of ATG5 mRNA and protein. The expression of autophagy-associated protein P62 increased significantly, the ratio of LC3Ⅱ/Ⅰ decreased, and the transcriptional expression of inflammatory factors increased significantly. After the intervention by TSPJ, the pathological performance of liver tissue was significantly improved, the expression of miR-199 a-5 p decreased and the expression of ATG5 mRNA and protein increased, the expression of autophagy-associated protein P62 decreased significantly, the ratio of LC3Ⅱ/Ⅰ increased, and the transcriptional expression of inflammatory cytokines IL-6, IL-1ß and TNF-α decreased significantly. In vitro, it was found that the expression of ATG5 mRNA and protein and luciferase activity decreased significantly in miR-199 a-5 p overexpression cells, while after inhibition of miR-199 a-5 p expression, the expression level of ATG5 mRNA and protein and luciferase activity increased. The results showed that TSPJ can improve NASH in mice fed with high-sugar and high-fat diet, and its mechanism may be related to the regulation of miR-199 a-5 p/ATG5 signal pathway, the regulation of autophagy activity and the improvement of inflammatory response of NASH.


Assuntos
MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Panax , Saponinas , Animais , Autofagia , Proteína 5 Relacionada à Autofagia , Camundongos , MicroRNAs/genética , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Saponinas/farmacologia
7.
J Tradit Chin Med ; 41(2): 236-245, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33825403

RESUMO

OBJECTIVE: To explore the effects of Qingguang'an () containing serum on the expression levels of autophagy related genes in the transforming growth factor beta 1 (TGF-ß1)-activated human Tenon's fibroblasts (HTFs). METHODS: (a) Primary HTFs were stimulated by TGF-ß1 and underwent immunohistochemistry, which established a cell model after Glaucoma filtration surgery (GFS). (b) The cell models were divided into 4 group: normal group (normal cells), model group (+TGF-ß1),treatment group (+TGF-ß1+ medicated serum), and positive control group (TGF-ß1+ rapamycin). Then, Qingguang'an medicated serum with optimum concentration was added to the corresponding group. The autophagy positive cells were identified by the Cyto-ID autophagy detection kits under fluorescent microscope and Cytation 5 multifunctional instrument for cell imaging. And the mean fluorescence intensity of autophagy positive cells was determined by flow cytometry. The expression levels of autophagy related genes - Beclin-1, autophagy related gene 5 (ATG-5), and microtubule-associated protein 1 light chain 3 (LC-3Ⅱ were detected by quantitative reverse transcription-polymerase chain reaction and Western blot analysis. RESULTS: Compared with the normal group and the model group, the relative mRNA expression levels of autophagy-related genes (Beclin-1, ATG-5 and LC-3Ⅱ in the experimental group were notably increased (P < 0.05, P < 0.01), and with the extension of treatment time, it had an increasing trend (48 h was more obvious), which showed a certain time dependency; the protein expression levels of autophagy-related genes (Beclin-1, ATG-5, and LC-3Ⅱ were significantly increased in the experimental group (P < 0.05, P < 0.01). With the prolongation of treatment time, there was an increasing trend (48 h was relatively obvious), and it revealed a certain time dependency. CONCLUSION: The Qingguang'an medicated serum could up-regulate autophagy related genes (Beclin1, ATG5, and LC3Ⅱ in the TGF-ß1-activated HTFs.


Assuntos
Proteína 5 Relacionada à Autofagia/metabolismo , Autofagia/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Fibroblastos/efeitos dos fármacos , Glaucoma/tratamento farmacológico , Cápsula de Tenon/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Animais , Proteína 5 Relacionada à Autofagia/genética , Proteína Beclina-1/genética , Células Cultivadas , Fibroblastos/metabolismo , Glaucoma/genética , Glaucoma/metabolismo , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Soro/química , Cápsula de Tenon/citologia , Cápsula de Tenon/metabolismo , Fator de Crescimento Transformador beta1/genética
8.
Commun Biol ; 4(1): 1, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33398033

RESUMO

Disorders of autophagy, a key regulator of cellular homeostasis, cause a number of human diseases. Due to the role of autophagy in metabolic dysregulation, there is a need to identify autophagy regulators as therapeutic targets. To address this need, we conducted an autophagy phenotype-based screen and identified the natural compound kaempferide (Kaem) as an autophagy enhancer. Kaem promoted autophagy through translocation of transcription factor EB (TFEB) without MTOR perturbation, suggesting it is safe for administration. Moreover, Kaem accelerated lipid droplet degradation in a lysosomal activity-dependent manner in vitro and ameliorated metabolic dysregulation in a diet-induced obesity mouse model. To elucidate the mechanism underlying Kaem's biological activity, the target protein was identified via combined drug affinity responsive target stability and LC-MS/MS analyses. Kaem directly interacted with the mitochondrial elongation factor TUFM, and TUFM absence reversed Kaem-induced autophagy and lipid degradation. Kaem also induced mitochondrial reactive oxygen species (mtROS) to sequentially promote lysosomal Ca2+ efflux, TFEB translocation and autophagy induction, suggesting a role of TUFM in mtROS regulation. Collectively, these results demonstrate that Kaem is a potential therapeutic candidate/chemical tool for treating metabolic dysregulation and reveal a role for TUFM in autophagy for metabolic regulation with lipid overload.


Assuntos
Autofagia/efeitos dos fármacos , Quempferóis/uso terapêutico , Metabolismo dos Lipídeos/efeitos dos fármacos , Síndrome Metabólica/tratamento farmacológico , Proteínas Mitocondriais/metabolismo , Fator Tu de Elongação de Peptídeos/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Animais , Proteína 12 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Avaliação Pré-Clínica de Medicamentos , Células HeLa , Humanos , Quempferóis/farmacologia , Camundongos , Camundongos Endogâmicos C57BL
9.
J Ethnopharmacol ; 270: 113821, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33460753

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Guizhi Fuling Wan (GFW) is a traditional Chinese medicine used to remove blood stasis and dissipate phlegm for treating gynecological diseases that was invented by Zhang Zhongjing in the Eastern Han dynasty. In recent years, GFW has been widely used to treat patients with polycystic ovary syndrome (PCOS). Clinical and animal studies have shown that it is effective in the treatment of PCOS, but its mechanism is unknown. Generally, it works by regulating autophagy via the PI3K/AKT/mTOR signaling pathway. AIM OF THE STUDY: This study investigated the effects and mechanism of GFW in PCOS rats with insulin resistance (IR) in order to provide better understanding of its observed clinical effects and a theoretical basis for the study of traditional Chinese medicine. MATERIALS AND METHODS: Eighty-four female Sprague-Dawley rats were randomly divided into seven groups (n = 12 per group): 1) control, 2) PCOS model, 3) low-dose GFW, 4) medium-dose GFW, 5) high-dose GFW, 6) metformin, and 7) medium-dose GFW plus LY294002. In all non-control groups, we induced PCOS through daily letrozole combined with intragastric high-fat emulsion for 21 days. After treatment, rats were sacrificed and serum follicle-stimulating hormone (FSH), testosterone (T), progesterone, luteinizing hormone (LH), 17ß-estradiol, fasting insulin (FINS), and fasting plasma glucose levels were measured by enzyme-linked immunosorbent assay (ELISA). The LH/FSH ratios and HOMA-IR values were calculated. Ovarian morphology was observed by hematoxylin and eosin staining, and all follicles were counted under a microscope. MDC-positive vesicles were used as markers to detect autophagy, and the expression levels of p62, Beclin1, and LC3-II were examined by immunostaining. Western blotting was used to measure PI3K/AKT/mTOR pathway activation, granulosa cell apoptosis, and autophagy. RESULTS: Compared with the PCOS model group, GFW-treated rats had less atretic and cystic follicles, and more mature follicles and corpus lutea. The GFW-treated rats had lower serum T, LH, and FINS levels than the PCOS model group, as well as lower LH/FSH ratios and HOMA-IR values. GFW treatment resulted in significantly reduced levels of cleaved-Caspase-3, cleaved-Caspase-9, BAX, Beclin1, Atg5, and LC3-II. Phosphorylation of PI3K, AKT, and mTOR was significantly higher in GFW-treated rats compared with the PCOS model group. The phosphorylation of PI3K, AKT, and mTOR was decreased with the use of a PI3K antagonist. CONCLUSIONS: Our results indicate that GFW inhibited granulosa cell autophagy and promoted follicular development to attenuate ovulation disorder in PCOS-IR rats. This was associated with activation of the PI3K/AKT/mTOR signaling pathway.


Assuntos
Autofagia/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Células da Granulosa/efeitos dos fármacos , Síndrome do Ovário Policístico/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Medicamentos de Ervas Chinesas/uso terapêutico , Feminino , Hormônios/sangue , Resistência à Insulina , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Folículo Ovariano/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Síndrome do Ovário Policístico/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
10.
Autophagy ; 17(2): 529-552, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32019420

RESUMO

The precise mechanism through which macroautophagy/autophagy affects psoriasis is poorly understood. Here, we found that keratinocyte (KC) autophagy, which was positively correlated with psoriatic severity in patients and mouse models and could be inhibited by mitogen-activated protein kinase (MAPK) family inactivation. The impairment of autophagic flux alleviated psoriasisform inflammation. We also found that an autophagy-based unconventional secretory pathway (autosecretion) dependent on ATG5 (autophagy related 5) and GORASP2 (golgi reassembly stacking protein 2) promoted psoriasiform KC inflammation. Moreover, the alarmin HMGB1 (high mobility group box 1) was more effective than other autosecretory proteins in regulating psoriasiform cutaneous inflammation. HMGB1 neutralization in autophagy-efficient KCs eliminated the differences in psoriasiform inflammation between Krt14+/+-Atg5f/f KCs and Krt14Cre/+-atg5f/f KCs, and conversely, recombinant HMGB1 almost completely restored psoriasiform inflammation in Krt14Cre/+-atg5f/f KCs in vivo. These results suggest that HMGB1-associated autosecretion plays a pivotal role in cutaneous inflammation. Finally, we demonstrated that Krt14Cre/+-hmgb1f/f mice displayed attenuated psoriatic inflammation due to the essential crosstalk between KC-specific HMGB1-associated autosecretion and γδT cells. Thus, this study uncovered a novel autophagy mechanism in psoriasis pathogenesis, and the findings imply the clinical significance of investigating and treating psoriasis.Abbreviations: 3-MA: 3-methyladenine; ACTB: actin beta; AGER: advanced glycosylation end-product specific receptor; Anti-HMGB1: anti-HMGB1 neutralizing antibody; Anti-IL18: anti-IL18 neutralizing antibody; Anti-IL1B: anti-IL1B neutralizing antibody; ATG5: autophagy related 5; BAF: bafilomycin A1; BECN1: beclin 1; CASP1: caspase 1; CCL: C-C motif chemokine ligand; CsA: cyclosporine A; ctrl shRNA: lentivirus harboring shRNA against control; CXCL: C-X-C motif chemokine ligand; DCs: dendritic cells; DMEM: dulbecco's modified Eagle's medium; ELISA: enzyme-linked immunosorbent assay; EM: electron microscopy; FBS: fetal bovine serum; GORASP2 shRNA: lentivirus harboring shRNA against GORASP2; GORASP2/GRASP55: golgi reassembly stacking protein 2; GR1: a composite epitope between LY6 (lymphocyte antigen 6 complex) locus C1 and LY6 locus G6D antigens; H&E: hematoxylin and eosin; HMGB1: high mobility group box 1; HMGB1 shRNA: lentivirus harboring shRNA against HMGB1; IFNG/IFN-γ: interferon gamma; IL17A: interleukin 17A; IL18: interleukin 18; IL1A/IL-1α: interleukin 1 alpha; IL1B/IL-1ß: interleukin 1 beta; IL22/IL-22: interleukin 22; IL23A: interleukin 23 subunit alpha; IL23R: interleukin 23 receptor; IMQ: imiquimod; ITGAM/CD11B: integrin subunit alpha M; ITGAX/CD11C: integrin subunit alpha X; IVL: involucrin; KC: keratinocyte; KD: knockdown; KO: knockout; Krt14+/+-Atg5f/f mice: mice bearing an Atg5 flox allele, in which exon 3 of the Atg5 gene is flanked by two loxP sites; Krt14+/+-Hmgb1f/f: mice bearing an Hmgb1 flox allele, in which exon 2 to 4 of the Hmgb1 gene is flanked by two loxP sites; Krt14Cre/+-atg5f/f mice: keratinocyte-specific atg5 knockout mice generated by mating Atg5-floxed mice with mice expressing Cre recombinase under the control of the promoter of Krt4; Krt14Cre/+-hmgb1f/f mice: keratinocyte-specific hmgb1 knockout mice generated by mating Hmgb1-floxed mice with mice expressing Cre recombinase under the control of the promoter of Krt14; Krt14-Vegfa mice: mice expressing 164-amino acid Vegfa splice variant recombinase under the control of promoter of Krt14; LAMP1: lysosomal associated membrane protein 1; LDH: lactate dehydrogenase; LORICRIN: loricrin cornified envelope precursor protein; M5: TNF, IL1A, IL17A, IL22 and OSM in combination; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MKI67: marker of proliferation Ki-67; MTT: thiazolyl blue tetrazolium bromide; NFKB/NF-κB: nuclear factor kappa B; NHEKs: primary normal human epidermal keratinocytes; NS: not significant; OSM: oncostatin M; PASI: psoriasis area and severity index; PtdIns3K: class III phosphatidylinositol 3-kinase; qRT-PCR: quantitative RT-PCR; RELA/p65: RELA proto-oncogene, NF-kB subunit; rHMGB1: recombinant HMGB1; rIL18: recombinant interleukin 18; rIL1B: recombinant interleukin 1 beta; S100A: S100 calcium binding protein A; SQSTM1/p62: sequestosome 1; T17: IL17A-producing T; TCR: T-cell receptor; tcrd KO mice: tcrd (T cell receptor delta chain) knockout mice, which show deficient receptor expression in all adult lymphoid and epithelial organs; TLR: toll-like receptor; TNF/TNF-α: tumor necrosis factor; WOR: wortmannin; WT: wild-type; γδT17 cells: IL17A-producing γδ T cells.


Assuntos
Autofagia/fisiologia , Proteína HMGB1/metabolismo , Inflamação/metabolismo , Queratinócitos/metabolismo , Animais , Proteína 5 Relacionada à Autofagia/metabolismo , Interleucina-1beta/metabolismo , Camundongos Transgênicos , NF-kappa B/metabolismo , Proto-Oncogene Mas
11.
J Cell Physiol ; 236(2): 1148-1157, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32686156

RESUMO

Saracatinib is an oral Src-kinase inhibitor and has been studied in preclinical models and clinical trials of cancer therapy. GMI, a fungal immunomodulatory protein from Ganoderma microsporum, possesses antitumor capacity. The aim of this study is to evaluate the cytotoxic effect of combination treatment with saracatinib and GMI on parental and pemetrexed-resistant lung cancer cells. Cotreatment with saracatinib and GMI induced synergistic and additive cytotoxic effect in A549 and A400 cells by annexin V/propidium iodide assay and combination index. Using western blot assay, saracatinib, and GMI combined treatment synergistically induced caspase-7 activation in A549 cells. Different from A549 cells, saracatinib and GMI cotreatment markedly increased LC3B-II in A400 cells. ATG5 silencing abolished the caspase-7 activation and reduced cell death in A549 cells after cotreatment. This is the first study to provide a novel strategy of treating lung cancer with or without drug resistance via combination treatment with GMI and saracatinib.


Assuntos
Proteína 5 Relacionada à Autofagia/genética , Benzodioxóis/farmacologia , Caspase 7/genética , Inibidores Enzimáticos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Quinazolinas/farmacologia , Quinases da Família src/genética , Células A549 , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Proteínas Fúngicas/química , Proteínas Fúngicas/farmacologia , Ganoderma/química , Humanos , Fatores Imunológicos/farmacologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Mutações Sintéticas Letais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases da Família src/antagonistas & inibidores
12.
Zhongguo Zhong Yao Za Zhi ; (24): 2260-2266, 2021.
Artigo em Chinês | WPRIM | ID: wpr-879186

RESUMO

Non-alcoholic steatohepatitis(NASH) was induced by high-sugar and high-fat diet in mice to investigate the intervention effect of total saponins from Panax japonicus(TSPJ) and explore its possible mechanism. Mice were fed with high-sugar and high-fat diet to establish NASH model, and intervened with different doses of TSPJ(15, 45 mg·kg~(-1)). The animals were fed for 26 weeks. The histomorphology and pathological changes of liver tissues were observed by HE staining. The transcriptional expression levels of miR-199 a-5 p, autophagy related gene 5(ATG5) and inflammatory cytokines interleukin-6(IL-6), interleukin-1β(IL-1β) and tumor necrosis factor α(TNF-α) in mouse liver were measured by quantitative Real-time polymerase chain reaction(qRT-PCR). Western blot was used to detect the expression of autophagy-related proteins ATG5, P62/SQSTM1(P62), and microtubule-associated protein light chain 3(LC3)-I/Ⅱ proteins in mouse liver. The expression of P62 protein was detected by immunofluorescence staining. In order to verify the targeting regulation relationship between miR-199 a-5 p and ATG5, miR mimic/inhibitor NC and miR-199 a-5 p mimic/inhibitor were transfected into Hepa 1-6 cells, and the expression of ATG5 mRNA and protein was detected. pMIR-reportor ATG5-3'UTR luciferase reporter gene plasmid was constructed and co-transfected with miR mimic/inhibitor NC and miR-199 a-5 p mimic/inhibitor into Hepa 1-6 cells to detect luciferase activity. In vivo, HE staining in the model group showed typical fatty degeneration and inflammatory infiltration, with increased expression of miR-199 a-5 p and decreased expression of ATG5 mRNA and protein. The expression of autophagy-associated protein P62 increased significantly, the ratio of LC3Ⅱ/Ⅰ decreased, and the transcriptional expression of inflammatory factors increased significantly. After the intervention by TSPJ, the pathological performance of liver tissue was significantly improved, the expression of miR-199 a-5 p decreased and the expression of ATG5 mRNA and protein increased, the expression of autophagy-associated protein P62 decreased significantly, the ratio of LC3Ⅱ/Ⅰ increased, and the transcriptional expression of inflammatory cytokines IL-6, IL-1β and TNF-α decreased significantly. In vitro, it was found that the expression of ATG5 mRNA and protein and luciferase activity decreased significantly in miR-199 a-5 p overexpression cells, while after inhibition of miR-199 a-5 p expression, the expression level of ATG5 mRNA and protein and luciferase activity increased. The results showed that TSPJ can improve NASH in mice fed with high-sugar and high-fat diet, and its mechanism may be related to the regulation of miR-199 a-5 p/ATG5 signal pathway, the regulation of autophagy activity and the improvement of inflammatory response of NASH.


Assuntos
Animais , Camundongos , Autofagia , Proteína 5 Relacionada à Autofagia , MicroRNAs/genética , Hepatopatia Gordurosa não Alcoólica/genética , Panax , Saponinas/farmacologia
13.
Am J Chin Med ; 48(8): 1915-1940, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33308096

RESUMO

Autophagy is an important tightly controlled cellular process that regulates cellular homeostasis and is involved in deciding cell fate such as cell survival and death. The role of autophagy in many intracellular signaling pathways explains its interaction with other different types of cell death, including apoptosis and immunogenic cell death (ICD). The reports showed the complex and intriguing relationship existing between autophagy and immune system signaling pathways. However, the role of autophagy in ICD remains to be clearly elucidated. In this study, we demonstrated that Brucine, a clinically-used small molecule in traditional Chinese medicine, elicited autophagy inhibition. Brucine also triggered cell stress and induced features of ICD, including calreticulin (CRT) exposure and high-mobility group box 1 (HMGB1) release in MDA-MB-231 and CT26 cancer cells. Brucine impaired autolysosomal degradation and exerted a feedback regulation of ERK1/2-mTOR-p70S6K signaling cascade. Brucine-elicited ICD was confirmed by the rejection of CT26 tumor cells, implanted in the mice after vaccination with Brucine-treated CT26 cells. The impaired autophagy contributed to Brucine-induced ICD, as knock-down of Atg5 significantly reduced Brucine-elicited CRT exposure and HMGB1 release. Our results revealed Brucine as a novel autophagy regulator, ICD inducer and hitherto undocumented role of autophagy in ICD. Thus, these results imply the importance of Brucine in cancer immunotherapy. Therefore, Brucine may be used as an ICD inducer and improve its application in cancer treatment with minimized toxicity.


Assuntos
Autofagia/efeitos dos fármacos , Morte Celular/genética , Morte Celular/imunologia , Medicamentos de Ervas Chinesas , Lisossomos/efeitos dos fármacos , Estricnina/análogos & derivados , Animais , Autofagia/fisiologia , Proteína 5 Relacionada à Autofagia/genética , Calreticulina , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Proteína HMGB1/metabolismo , Humanos , Imunoterapia , Lisossomos/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Neoplasias/tratamento farmacológico , Fitoterapia , Estricnina/farmacologia , Estricnina/uso terapêutico
14.
Mol Biol Rep ; 47(11): 9021-9032, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33034883

RESUMO

Despite the depth of knowledge concerning the pathogenesis of melanoma, the most aggressive type of skin cancer, the prognosis and survival of patients still remain a challenge. In addition, responses to chemotherapy and immunotherapy are still poor, which underscore an urgent need in the development of new therapeutic strategies for the treatment of melanoma. Recently, the dynamic role of autophagy has gained considerable interest in the pathogenesis and treatment of melanoma. Whereas a decrease in autophagy activity promotes melanoma formation by increasing oncogene-induced tumorigenesis and DNA damage accumulation, an enhanced level of autophagy sustains melanoma cell viability and contributes to drug resistance. Obviously, the understanding of autophagy regulation may lead to a better defining melanoma pathogenesis and the progression toward new treatment options. In this review, we present new insights into a dual role of autophagy during melanoma tumorigenesis. In addition to summarizing current therapeutics for treating melanoma, we discuss how autophagy manipulation may improve the patients' outcome. Finally, autophagy-modulating drugs and nanoparticles, alone or in combination with current therapeutics, are proposed for possible clinical use in melanoma management.


Assuntos
Autofagia/fisiologia , Carcinogênese/efeitos dos fármacos , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Sorafenibe/uso terapêutico , Animais , Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Carcinogênese/genética , Expressão Gênica/efeitos dos fármacos , Humanos , Melanoma/genética , Melanoma/fisiopatologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/fisiopatologia
15.
Int J Mol Med ; 46(5): 1816-1826, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32901853

RESUMO

The aim of the present study was to identify natural compounds that bear significant anti­tumor activity. Thus, the effects of 63 small molecules that were isolated from traditional Chinese medicinal herbs on A549 human non­small cell lung cancer (NSCLC) and MCF­7 breast cancer cells were examined. It was found that ursolic acid (UA), a natural pentacyclic triterpenoid, exerted significant inhibitory effect on these cells. Further experiments revealed that UA inhibited the proliferation of various lung cancer cells, including the NSCLC cells, H460, H1975, A549, H1299 and H520, the human small cell lung cancer (SCLC) cells, H82 and H446, and murine Lewis lung carcinoma (LLC) cells. UA induced the apoptosis and autophagy of NSCLC cells. The inhibition of the mammalian target of rapamycin (mTOR) signaling pathway, but not the activation of the extracellular signal­regulated kinase 1/2 (ERK1/2) signaling pathway contributed to the UA­induced autophagy of NSCLC cells. Moreover, the inhibition of autophagy by chloroquine (CQ) or siRNA for autophagy­related gene 5 (ATG5) enhanced the UA­induced inhibition of cell proliferation and promotion of apoptosis, indicating that UA­induced autophagy is a pro­survival mechanism in NSCLC cells. On the whole, these findings suggest that combination treatment with autophagy inhibitors may be a novel strategy with which enhance the antitumor activity of UA in lung cancer.


Assuntos
Autofagia/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Triterpenos/farmacologia , Células A549 , Animais , Apoptose/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cloroquina/farmacologia , Humanos , Neoplasias Pulmonares/metabolismo , Células MCF-7 , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Ácido Ursólico
16.
Am J Chin Med ; 48(4): 945-966, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32476431

RESUMO

Tetramethylpyrazine has shown neuroprotective and axonal outgrowth-promoting effects and can improve cognitive deficit in a rat model of chronic hypoperfusion. However, the role of tetramethylpyrazine in sevoflurane-induced neurotoxicity is still vague. Therefore, this study was designed to investigate the effects and mechanisms of tetramethylpyrazine on sevoflurane-induced autophagy, apoptosis, and the expression of BACE1 and A[Formula: see text] in SH-SY5Y cells. We measured the expression levels of the apoptosis protein markers Bax and Bcl-2, autophagy protein markers Atg5 and LC3-II, BACE1, and A[Formula: see text] in SH-SY5Y cells after sevoflurane treatment and determined the effects of tetramethylpyrazine on sevoflurane-induced expression of these proteins after silencing GPR50 or Atg5 with siRNA in vitro. We found that exposure to 3.4% sevoflurane for 6 h decreased the expression of autophagy protein markers and increased the expression of the apoptosis protein markers, BACE1, and A[Formula: see text] in SH-SY5Y cells. The number of red puncta (autolysosomes) and yellow puncta (autophagosomes) in each SH-SY5Y cell decreased after transient transfection with the mRFP-GFP-LC3 expression plasmid. Silencing of GPR50 decreased the expression of pCREB, Atg5, and LC3-II, while silencing of Atg5 increased the expression of BACE1 and A[Formula: see text] in SH-SY5Y cells. Our results demonstrate that tetramethylpyrazine attenuated sevoflurane-induced neurotoxicity by enhancing autophagy through the GPR50/CREB pathway in SH-SY5Y cells.


Assuntos
Autofagia/efeitos dos fármacos , Autofagia/genética , Proteína de Ligação a CREB/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroprostanos , Pirazinas/farmacologia , Pirazinas/uso terapêutico , Receptores Acoplados a Proteínas G/metabolismo , Sevoflurano/toxicidade , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Células Tumorais Cultivadas
17.
Nat Cell Biol ; 22(4): 412-424, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32203415

RESUMO

Although the transition metal copper (Cu) is an essential nutrient that is conventionally viewed as a static cofactor within enzyme active sites, a non-traditional role for Cu as a modulator of kinase signalling is emerging. Here, we found that Cu is required for the activity of the autophagic kinases ULK1 and ULK2 (ULK1/2) through a direct Cu-ULK1/2 interaction. Genetic loss of the Cu transporter Ctr1 or mutations in ULK1 that disrupt the binding of Cu reduced ULK1/2-dependent signalling and the formation of autophagosome complexes. Increased levels of intracellular Cu are associated with starvation-induced autophagy and are sufficient to enhance ULK1 kinase activity and, in turn, autophagic flux. The growth and survival of lung tumours driven by KRASG12D is diminished in the absence of Ctr1, is dependent on ULK1 Cu binding and is associated with reduced levels of autophagy and signalling. These findings suggest a molecular basis for exploiting Cu-chelation therapy to prevent autophagy signalling to limit proliferation and improve patient survival in cancer.


Assuntos
Adenocarcinoma de Pulmão/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Autofagia/genética , Cobre/metabolismo , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Pulmonares/genética , Proteínas Serina-Treonina Quinases/genética , Adenocarcinoma de Pulmão/enzimologia , Adenocarcinoma de Pulmão/patologia , Sequência de Aminoácidos , Animais , Autofagossomos/enzimologia , Proteína 5 Relacionada à Autofagia/deficiência , Proteína 5 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Transportador de Cobre 1/deficiência , Transportador de Cobre 1/genética , Fibroblastos/enzimologia , Fibroblastos/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/deficiência , Proteínas Proto-Oncogênicas p21(ras)/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Atherosclerosis ; 295: 8-17, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31978760

RESUMO

BACKGROUND AND AIMS: Dietary long-chain (≥20 carbons) n-3 polyunsaturated fatty acids (PUFAs) reduce atherosclerosis and enhance macrophage autophagy activation. How macrophage autophagy impacts atherosclerotic progression, particularly when comparing dietary n-3 PUFA supplementation vs. saturated fat feeding, is unknown. METHODS: We generated myeloid-specific autophagy-deficient and control mice in the Ldlr-/- background by transplanting bone marrow from myeloid-specific autophagy-related (atg) 5 knockout mice and wild type controls into irradiated Ldlr-/- recipients. After 7 weeks for recovery from radiation, mice were fed an atherogenic diet containing 0.2% cholesterol and 20% calories as palm oil (PO diet), or 10% calories as PO plus 10% calories as fish oil (FO diet) for 16 weeks. RESULTS: Compared to PO, FO significantly reduced plasma cholesterol, triglyceride, hepatic neutral lipid, and aortic caspase-1 cleavage, but increased aortic efferocytosis, leading to attenuated atherosclerosis in Ldlr-/- mice receiving wild type bone marrow. Myeloid atg5 deletion had little impact on plasma lipid concentrations and hepatic neutral lipid content, regardless of diet. Myeloid atg5 deletion increased aortic caspase-1 cleavage, decreased aortic efferocytosis and worsened atherosclerosis only in the FO-fed Ldlr-/- mice. CONCLUSIONS: Deficient myeloid autophagy significantly attenuated FO-induced atheroprotection, suggesting that dietary n-3 PUFAs reduce atherosclerosis, in part, by activation of macrophage autophagy.


Assuntos
Aterosclerose/etiologia , Aterosclerose/prevenção & controle , Proteína 5 Relacionada à Autofagia/fisiologia , Ácidos Graxos Ômega-3/uso terapêutico , Animais , Modelos Animais de Doenças , Feminino , Lipídeos/sangue , Masculino , Camundongos , Camundongos Knockout , Receptores de LDL
19.
Food Funct ; 10(12): 7634-7644, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31728459

RESUMO

Chemotherapy is currently used to treat colorectal cancer (CRC), the most common cancer worldwide. However, chemotherapeutic drugs are limited by severe side effects or drug resistance. In this study, bioactive compound(s), a mixture of palmitic acid, stearic acid, and glyceryl 1,3-dipalmitate (PSG), in Lactobacillus paracasei subsp. paracasei NTU 101-fermented reconstituted skimmed milk ethanol extract (NTU 101-FMEE) were isolated and identified. PSG (1 : 1.5 : 6.3) at 125 µg mL-1 could significantly decrease CRC cell viability at dosages that were not cytotoxic to healthy colon epithelial cells or macrophages. Moreover, the inhibitory effect of the combination of 62.5 µg mL-1 PSG (1 : 1.5 : 6.3) and 5-fluorouracil (5-FU) was significantly higher than that of 5-FU alone (p < 0.05). PSG up-regulated the activities of apoptosis-related proteins and down-regulated the nuclear factor-κB signaling pathway compared to the levels in the control group. Overall, PSG purified from NTU 101-FMEE possesses the potential to ameliorate CRC by improving the effects of adjuvant chemotherapy drugs and reducing side effects.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Produtos Fermentados do Leite/análise , Fluoruracila/farmacologia , Lacticaseibacillus paracasei/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/fisiopatologia , Produtos Fermentados do Leite/microbiologia , Fermentação , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia , Ácidos Esteáricos/metabolismo , Ácidos Esteáricos/farmacologia
20.
Cell Physiol Biochem ; 53(5): 747-759, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31622062

RESUMO

BACKGROUND/AIMS: Angiotensin II (Ang II) induces podocyte injury resulting in apoptosis in vitro and in vivo. However, the relationship between autophagy and apoptosis in Ang II-induced podocyte injury is unknown and the role of Ang II-induced autophagy in podocyte survival or death remains unclear. We investigated the sequential relationship between autophagy and apoptosis in Ang II-induced podocytes as well as the role of phosphatidylinositide 3-kinase (PI3-kinase). METHODS: Mouse podocytes were incubated in media containing various concentrations of Ang II and at different incubation times. The changes of podocyte autophagy and apoptosis were observed by electron microscopy, confocal imaging, western blotting, and FACS assay according to the presence of Ang II. RESULTS: Ang II enhanced the podocyte expression of the autophagic proteins, LC3A/B-II and beclin-1, and also increased the number of autophagosomes compared with control cells at early phase of 12 hours in a dose-dependent manner. This effect was inhibited by pretreatment with 3-methyladenine (3-MA), a PI3-kinase class III inhibitor. Thereafter, the Ang II-induced enhancement in autophagy decreased, whereas, podocyte apoptosis appeared later at 24 hours in concentration- and time-dependent manners in FACS and TUNEL assays. 3-MA and LY294002, a pan PI3-kinase inhibitor, further increased Ang II-induced podocyte apoptosis. Suppression of autophagy by Atg5 siRNA could induce podocyte apoptosis and further augment high-dose Ang II-induced podocyte apoptosis. CONCLUSION: These findings suggest that Ang II promotes autophagy in podocytes before apoptosis as an early adaptive cytoprotective mechanism for podocyte survival after Ang II treatment, and the transitional imbalance between autophagy and apoptosis causes podocyte injury.


Assuntos
Angiotensina II/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Autofagossomos/metabolismo , Proteína 5 Relacionada à Autofagia/antagonistas & inibidores , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Podócitos/citologia , Podócitos/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA