Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Nutr Biochem ; 128: 109625, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38521130

RESUMO

Maternal obesity might induce obesity and metabolic alterations in the progeny. The study aimed to determine the effect of supplementing obese mothers with Mel (Mel) on thermogenesis and inflammation. C57BL/6 female mice (mothers) were fed from weaning to 12 weeks control diet (C, 17% kJ as fat) or a high-fat diet (HF, 49% kJ as fat) and then matted with male mice fed the control diet. Melatonin (10 mg/kg daily) was supplemented to mothers during gestation and lactation, forming the groups C, CMel, HF, and HFMel (n = 10/group). Twelve-week male offspring were studied (plasma biochemistry, immunohistochemistry, protein, and gene expressions at the hypothalamus - Hyp, subcutaneous white adipose tissue - sWAT, and interscapular brown adipose tissue - iBAT). Comparing HFMel vs. HF offspring, fat deposits and plasmatic proinflammatory markers decreased. Also, HFMel showed decreased Hyp proinflammatory markers and neuropeptide Y (anabolic) expression but improved proopiomelanocortin (catabolic) expression. Besides, HFMel sWAT adipocytes changed to a beige phenotype with-beta-3 adrenergic receptor and uncoupling protein-1 activation, concomitant with browning genes activation, triggering the iBAT thermogenic activity. In conclusion, compelling evidence indicated the beneficial effects of supplementing obese mothers with Mel on the health of their mature male offspring. Mel led to sWAT browning-related gene enhancement, increased iBAT thermogenis, and mitigated hypothalamic inflammation. Also, principal component analysis of the data significantly separated the untreated obese mother progeny from the progeny of treated obese mothers. If confirmed in humans, the findings encourage a future guideline recommending Mel supplementation during pregnancy and breastfeeding.


Assuntos
Dieta Hiperlipídica , Suplementos Nutricionais , Hipotálamo , Inflamação , Melatonina , Camundongos Endogâmicos C57BL , Obesidade Materna , Termogênese , Animais , Termogênese/efeitos dos fármacos , Feminino , Melatonina/farmacologia , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Masculino , Gravidez , Obesidade Materna/metabolismo , Inflamação/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Fenômenos Fisiológicos da Nutrição Materna , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética
2.
J Acupunct Meridian Stud ; 17(1): 1-11, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38409809

RESUMO

Background: : Brown adipose tissue (BAT) is a unique thermogenic tissue in mammals mediated by uncoupling protein 1 (UCP1). The energy generated by glucose and triglyceride metabolism is released and transmitted throughout the body as heat. Understanding the factors influencing BAT function is crucial to determine its metabolic significance and effects on overall health. Although studies have shown that electroacupuncture (EA) at specific acupoints (e.g., ST36) can stimulate BAT, its effects at other acupoints are not well understood. Further research is needed to investigate the potential effects of EA at these acupoints and their association with BAT activation. Objectives: : This study aimed to investigate the effects of EA at the GV20 and EX-HN3 acupoints. Specifically, the effects of EA on BAT thermogenesis were analyzed by infrared thermography, western blotting, and real-time polymerase chain reaction (PCR). Methods: : A total of 12 C57BL/6J mice were randomly divided into the EA and control groups. The EA group received EA at GV20 and EX-HN3 for 20 min once daily for 14 days. The control group underwent the same procedure but without EA. The core body temperature was monitored. Infrared thermal images of the back of each mouse in both groups were captured. BAT samples were collected after euthanasia to analyze UCP1 protein and UCP1 mRNA. Results: : The average skin temperature in the scapular region of the EA group was increased by 1.1℃ compared with that of the C group (p < 0.05). Additionally, the average temperature along the governor vessel in the EA group was increased by 1.6℃ (p = 0.045). EA significantly increased the expression of UCP1 protein (p = 0.001) and UCP1 mRNA (p = 0.002) in BAT, suggesting a potential link between EA and BAT thermogenesis. Conclusion: : EA induced BAT thermogenesis, suggesting GV20 and EX-HN3 as potential acupoints for BAT stimulation. The experimental results also highlighted unique meridian characteristics as demonstrated by elevated skin temperature along the governor vessel in mice.


Assuntos
Tecido Adiposo Marrom , Eletroacupuntura , Camundongos , Animais , Tecido Adiposo Marrom/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Camundongos Endogâmicos C57BL , Termogênese/fisiologia , RNA Mensageiro/metabolismo , Mamíferos/metabolismo
3.
Biosci Biotechnol Biochem ; 88(1): 16-25, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37777845

RESUMO

We previously demonstrated that dietary supplementation with Dunaliella tertiolecta (DT) increases uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT) and improves diet-induced obesity (DIO) in C57BL/6 J mice at thermoneutrality (30 °C). Here, we investigated whether DT improves DIO in a thermoneutral UCP1-deficient (KO) animal. KO mice were fed a high-fat diet supplemented with DT for 12 weeks. Compared to control group without DT, body weight was significantly reduced in DT group with no difference in food intake. Dunaliella tertiolecta-supplemented mice exhibited lower adiposity and well-maintained multilocular morphology in BAT, in which a significant increase in gene expression of PR domain containing 16 was detected in DT group compared to control group. Moreover, increase in UCP2 level and/or decrease in ribosomal protein S6 phosphorylation were detected in adipose tissues of DT group relative to control group. These results suggest that DT supplementation improves DIO by stimulating UCP1-independent energy dissipation at thermoneutrality.


Assuntos
Metabolismo Energético , Obesidade , Animais , Camundongos , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/genética , Tecido Adiposo Marrom/metabolismo , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Camundongos Knockout
4.
Trials ; 24(1): 489, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528450

RESUMO

BACKGROUND: Obesity is a multifaceted disease characterized by an abnormal accumulation of adipose tissue. Growing evidence has proposed microbiota-derived metabolites as a potential factor in the pathophysiology of obesity and related metabolic conditions over the last decade. As one of the essential metabolites, butyrate affects several host cellular mechanisms related to appetite sensations and weight control. However, the effects of butyrate on obesity in humans have yet to be studied. Thus, the present study was aimed to evaluate the effects of sodium butyrate (SB) supplementation on the expression levels of peroxisome proliferator activated-receptor (PPAR) gamma coactivator-1α (PGC-1α), PPARα and uncoupling protein 1 (UCP1) genes, serum level of glucagon-like peptide (GLP1), and metabolic parameters, as well as anthropometric indices in obese individuals on a weight loss diet. METHODS: This triple-blind randomized controlled trial (RCT) will include 50 eligible obese subjects aged between 18 and 60 years. Participants will be randomly assigned into two groups: 8 weeks of SB (600 mg/day) + hypo-caloric diet or placebo (600 mg/day) + hypo-caloric diet. At weeks 0 and 8, distinct objectives will be pursued: (1) PGC-1α, PPARα, and UCP1 genes expression will be evaluated by real-time polymerase chain reaction; (2) biochemical parameters will be assayed using enzymatic methods; and (3) insulin and GLP1 serum level will be assessed by enzyme-linked immunosorbent assay kit. DISCUSSION: New evidence from this trial may help fill the knowledge gap in this realm and facilitate multi-center clinical trials with a substantially larger sample size. TRIAL REGISTRATION: Iranian Registry of Clinical Trials: IRCT20190303042905N2 . Registered on 31 January 2021.


Assuntos
Dieta Redutora , PPAR alfa , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR alfa/uso terapêutico , Ácido Butírico/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Proteína Desacopladora 1/genética , Fatores de Transcrição , Obesidade/diagnóstico , Obesidade/tratamento farmacológico , Obesidade/genética , Suplementos Nutricionais/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto
5.
Altern Ther Health Med ; 29(3): 134-139, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36735710

RESUMO

Objective: This study was designed to survey the effect and the mechanism of action of calorie restriction combined with high-intensity interval training (HIIT) on the browning of white adipose tissue. Methods: For the human study population, obese adult males were randomly assigned to one of three major groups: the control group (CN group), the calorie restriction combined with HIIT group (CR+HIIT group) and the HIIT group. After 3 months of training, body composition was measured. For the rodent study population, Sprague Dawley rats were randomly split into a normal diet control group (CON group) and an obesity model group. After successful obesity modeling, the latter was divided into the obesity control group (HON group), the calorie restriction plus HIIT group (ONE group) and the HIIT group (OHE group), with 8 animals in each group. A treadmill was used for training 5 days a week for 10 weeks. The messenger RNA (mRNA) expression of uncoupling protein 1 (UCP1), Prdm16 gene, and Cidea gene in visceral adipose tissue were detected with real-time polymer chain reaction (RT-qPCR), while the protein levels of UCP1, PPARγ and PGC-1α in visceral adipose tissue (VAT) were detected by western blot analysis. Results: Body weight and body fat rate in the human experiments demonstrated that fat mass, body weight and body fat rate in the CR+HIIT group were clearly lower than in the CN group. In the rat model, the body fat rate and body weight in the HON group were significantly higher than in the CON group, which indicated that the obesity model was successfully generated. As expected, the body fat rate and body weight in the ONE and OHE groups were considerably lower than in the HON group. Moreover, the body fat rate in the ONE group was considerably lower than in the OHE group. Further investigation indicated that the area under this curve (AUC) of oral glucose tolerance test (AUCOGTT), insulin (INS) levels and fasting blood glucose (FBG) levels in the HON group were more significantly increased than in the CON group, while AUCOGTT and INS levels in the ONE and OHE groups were considerably lower than in the HON group. Hematoxylin and eosin (H&E) staining showed that, compared with the CON group, the adipocyte area in the HON group was expanded, but narrowed in the ONE and OHE groups. In addition, the adipocyte area in the ONE group was apparently smaller than in the OHE group. We also compared molecular markers among the groups. RT-qPCR analysis showed that the expression of UCP1, Prdm16 and Cidea had been downregulated in the HON group compared with CON group but upregulated in the HON group compared with the ONE and OHE groups. Western blot analysis indicated that UCP1 in the HON group was lower than in the CON group but higher than in the ONE and OHE groups. In addition, the protein level of UCP1 was upregulated in the ONE group compared with the OHE group. Furthermore, expression levels of PPARγ coactivator-1α (PGC-1α) and peroxisome proliferator-activated receptor gamma (PPARγ) were downregulated in the HON group compared with the CON group, then further downregulated in the ONE and OHE groups compared with the HON group. In addition, the PGC-1α level in the ONE group was greatly improved compared with the OHE group. Conclusion: Calorie restriction integrated with HIIT and HIIT alone upregulates PPARγ, PGC- 1α, as well as UCP1 in VAT of obese rats, promoting the browning of visceral fat and ultimately achieving fat loss. Calorie restriction integrated with HIIT is more effective than HIIT alone for fat loss.


Assuntos
Treinamento Intervalado de Alta Intensidade , PPAR gama , Humanos , Masculino , Adulto , Ratos , Animais , PPAR gama/genética , PPAR gama/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Restrição Calórica , Ratos Sprague-Dawley , Tecido Adiposo Branco/metabolismo , Obesidade/terapia , Peso Corporal
6.
J Biol Chem ; 298(11): 102568, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36209826

RESUMO

Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) uncoupling in skeletal muscle and mitochondrial uncoupling via uncoupling protein 1 (UCP1) in brown/beige adipose tissue are two mechanisms implicated in energy expenditure. Here, we investigated the effects of glycogen synthase kinase 3 (GSK3) inhibition via lithium chloride (LiCl) treatment on SERCA uncoupling in skeletal muscle and UCP1 expression in adipose. C2C12 and 3T3-L1 cells treated with LiCl had increased SERCA uncoupling and UCP1 protein levels, respectively, ultimately raising cellular respiration; however, this was only observed when LiCl treatment occurred throughout differentiation. In vivo, LiCl treatment (10 mg/kg/day) increased food intake in chow-fed diet and high-fat diet (HFD; 60% kcal)-fed male mice without increasing body mass-a result attributed to elevated daily energy expenditure. In soleus muscle, we determined that LiCl treatment promoted SERCA uncoupling via increased expression of SERCA uncouplers, sarcolipin and/or neuronatin, under chow-fed and HFD-fed conditions. We attribute these effects to the GSK3 inhibition observed with LiCl treatment as partial muscle-specific GSK3 knockdown produced similar effects. In adipose, LiCl treatment inhibited GSK3 in inguinal white adipose tissue (iWAT) but not in brown adipose tissue under chow-fed conditions, which led to an increase in UCP1 in iWAT and a beiging-like effect with a multilocular phenotype. We did not observe this beiging-like effect and increase in UCP1 in mice fed a HFD, as LiCl could not overcome the ensuing overactivation of GSK3. Nonetheless, our study establishes novel regulatory links between GSK3 and SERCA uncoupling in muscle and GSK3 and UCP1 and beiging in iWAT.


Assuntos
Adenosina Trifosfatases , Lítio , Animais , Masculino , Camundongos , Adenosina Trifosfatases/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Dieta Hiperlipídica , Suplementos Nutricionais , Estresse do Retículo Endoplasmático , Quinase 3 da Glicogênio Sintase/metabolismo , Lítio/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
7.
Int J Biol Macromol ; 222(Pt B): 1963-1973, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36252624

RESUMO

BACKGROUND: Obesity, fatty liver, type 2 diabetes, and Non-alcoholic fatty liver disease (NAFLD) are all metabolic diseases caused by excess food consumption. Existing drug molecules had negative side effects and caused other diseases to develop (Orlistat causes angioedema, and menstrual irregularities; megestrol acetate causes hypertension, and insomnia). By enhancing lipid consumption and increasing nonshivering thermogenesis, targeting mitochondrial uncoupling protein-1 (UCP1) expression in adipocytes could be an auspicious treatment strategy against obesity or metabolic disorders associated with obesity. METHODS: We used previously produced UCP1-A-GFP reporter cell lines in this investigation to find new pharmacological compounds against obesity or metabolic syndrome, which we then tested in cellular analysis, cytotoxicity, mitochondrial function, mitochondrial DNA quantification, mitochondrial ATP production, and in-silico models. RESULTS: Baicalein was discovered to play a critical role in obesity prevention via altering mitochondrial function. Baicalein lowers ATP generation while increasing considerable UCP1 gene expression in brown adipocytes. As a result, cellular thermogenesis is boosted. The HEK293T cell line is harmless by baicalein. The investigation by the in-silico study revealed drug-protein interaction and UCP1 binding. Thus, our research clarifies baicalein's therapeutic role in metabolic and obesity-related illnesses via modulating mitochondrial activity (Supplementary Fig. 2). CONCLUSIONS: Further studies are required in both murine and human models to understand the full mechanism of action by mitochondrial modulation. Drug development investigation also requires to development of a precise formulation.


Assuntos
Adipócitos Marrons , Diabetes Mellitus Tipo 2 , Humanos , Camundongos , Animais , Adipócitos Marrons/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Tecido Adiposo Marrom/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células HEK293 , Mitocôndrias , Obesidade/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Mitocondriais/metabolismo
8.
Phytother Res ; 36(10): 3885-3899, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36017979

RESUMO

There are currently few effective and safe pharmacologic means for inducing beige adipogenesis in humans. This study highlights the role of potato protease inhibitor II (PPI II) in regulating the browning of adipose tissue. The in vitro results showed that PPI II increased the expression of the uncoupling protein 1 (UCP1) protein and gene and beige-specific genes, including Cd137, Cited1, Tbx1, and Tmem26 in vitro. PPI II treatment for three months in diet-induced obesity mice increased the levels of the UCP1 protein in white adipose tissue, causing elevated energy expenditure, thus preventing obesity and improving glucose tolerance. Mechanistic studies further revealed that PPI II regulated the abundance and activity of ß3 adrenergic receptor (ß3 -AR) in white adipocytes. Chemical-inhibition experiments revealed the crucial role of ß3 -AR-dependent protein kinase A (PKA)-p38 kinase (p38)/extracellular signal-related kinase1/2 (ERK1/2) signaling in PPI II-mediated browning program of white adipose tissues. In summary, our findings highlight the role of PPI II in beige adipocyte differentiation and thermogenesis and provide new insights into its use in preventing obesity.


Assuntos
Solanum tuberosum , Tecido Adiposo Branco , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Glucose/metabolismo , Humanos , Camundongos , Camundongos Obesos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/prevenção & controle , Inibidores de Proteases/farmacologia , Transdução de Sinais , Solanum tuberosum/metabolismo , Termogênese , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
9.
FASEB J ; 36(8): e22461, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35838582

RESUMO

Brown adipose tissue (BAT) is an important component of energy expenditure and necessary to maintain body temperature for newborn mammals. In the previous study, we found that L-carnitine was enriched in BAT and promoted BAT adipogenesis and thermogenesis in goat brown adipocytes. However, whether dietary L-carnitine regulates BAT heat production and energy expenditure in lambs remains unclear. In this study, maternal L-carnitine supplementation elevated the rectal temperature, as well as the expression of UCP1 and mitochondrial DNA content to promote BAT thermogenesis in newborn goats. Moreover, maternal L-carnitine supplementation increased the levels of triglycerides (TG), non-esterified fatty acids (NEFA), and lactate in plasma, as well as the content of lipid droplet and glycogen in BAT of newborn goats. Lipidomic analysis showed that maternal L-carnitine supplementation remodeled the lipid composition of BAT in newborn goats. L-carnitine significantly increased the levels of TG and diglyceride (DG) and decreased the levels of glycerophospholipids and sphingolipids in BAT. Further studies showed that L-carnitine promoted TG and glycogen deposition in brown adipocytes through AMPKα. Our results indicate that maternal L-carnitine supplementation promotes BAT development and thermogenesis in newborn goats and provides new evidence for newborn goats to maintain body temperature in response to cold exposure.


Assuntos
Tecido Adiposo Marrom , Carnitina , Tecido Adiposo Marrom/metabolismo , Animais , Animais Recém-Nascidos , Carnitina/metabolismo , Carnitina/farmacologia , Temperatura Baixa , Suplementos Nutricionais , Metabolismo Energético , Glicogênio/metabolismo , Cabras/metabolismo , Ovinos , Termogênese/fisiologia , Triglicerídeos/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
10.
Mol Nutr Food Res ; 66(18): e2200082, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35848367

RESUMO

SCOPE: To compare the effects of three high-fat diets (HFDs) based on coconut, sunflower, or extra virgin olive oils (EVOOs) on adipose tissue, metabolism, and inflammation. METHODS AND RESULTS: Mice are fed for 16 weeks on their respective HFD. HFD based on coconut oil produces significantly lower body weight than EVOO- or sunflower oil-based HFDs. Furthermore, the coconut oil HFD leads to metabolic disturbances such as reduction of circulating leptin and adiponectin concentrations, hypertriglyceridemia, hepatomegaly, and liver triglyceride accumulation. Likewise, this diet produces an increase in serum pro-inflammatory cytokines (interleukin 6 [IL-6] and tumor necrosis factor-α [TNF-α]). In white (WAT) and brown (BAT) adipose tissue, the HFD based on coconut oil does not cause significant changes in the expression of studied proteins related to thermogenesis (uncoupling protein 1 [UCP-1]), mitochondrial biogenesis, and browning (peroxisome proliferator-activated receptor-γ coactivator 1α [PGC-1α] and nuclear factor E2-related factor 2 [Nrf2]). However, the HFD based on EVOO induces upregulation of UCP-1, PGC-1α, and Nrf2 expression in BAT, increases the expression of UCP-1 and PGC-1α in inguinal WAT, and enhances the expression of PGC-1α in epididymal WAT. CONCLUSIONS: An HFD based on coconut oil could reduce circulating leptin and adiponectin concentrations, increase the liver fat content, raise serum triglycerides, and promote inflammation by increasing circulating pro-inflammatory cytokines, while an EVOO-based HFD could increase thermogenic activity.


Assuntos
Tecido Adiposo , Óleo de Coco , Dieta Hiperlipídica , Inflamação , Adiponectina/metabolismo , Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Animais , Óleo de Coco/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Feminino , Inflamação/imunologia , Inflamação/metabolismo , Interleucina-6/sangue , Interleucina-6/metabolismo , Leptina/sangue , Leptina/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Azeite de Oliva , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Óleo de Girassol/efeitos adversos , Triglicerídeos/análise , Triglicerídeos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
11.
Biomed Res Int ; 2022: 4483009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35647185

RESUMO

Recent studies indicate existence of beige adipocytes in adults. Upon activation, beige adipocytes burn energy for thermogenesis and contribute to regulation of energy balance. In this study, we have analyzed whether Jinlida granules (JLD) could activate beige adipocytes. JLD suspended in 0.5% carboxymethyl cellulose (CMC) was gavage fed to db/db mice at a daily dose of 3.8 g/kg. After 10 weeks, body weight, biochemical, and histological analyses were performed. In situ hybridization, immunofluorescence, and western blotting were conducted to test beige adipocyte activation in mice. X9 cells were induced with induction medium and maintenance medium containing 400 µg/mL of JLD. After completion of induction, cells were analyzed by Nile red staining, time polymerase chain reaction (PCR), western blotting, and immunofluorescence to understand the effect of JLD on the activation of beige adipocytes. A molecular docking method was used to preliminarily identify compounds in JLD, which hold the potential activation effect on uncoupling protein 1 (UCP1). JLD treatment significantly improved obesity in db/db mice. Biochemical results showed that JLD reduced blood glucose (GLU), triglyceride (TG), and low-density lipoprotein cholesterol (LDL) levels as well as liver aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in mice. Hematoxylin and eosin staining (H&E) showed that JLD reduced hepatocyte ballooning changes in the liver. Immunofluorescence showed that JLD increased the expression of the thermogenic protein, UCP1, in the beige adipose tissue of mice. JLD also increased the expression of UCP1 and inhibited the expression of miR-27a in X9 cells. Molecular docking results showed that epmedin B, epmedin C, icariin, puerarin, and salvianolic acid B had potential activation effects on UCP1. The results suggest that JLD may activate beige adipocytes by inhibiting miR-27a expression, thereby promoting thermogenesis in beige adipocytes. This study provides a new pharmacological basis for the clinical use of JLD.


Assuntos
Adipócitos Bege , MicroRNAs , Adipócitos Bege/metabolismo , Animais , Medicamentos de Ervas Chinesas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , MicroRNAs/metabolismo , Simulação de Acoplamento Molecular , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
12.
Mol Metab ; 55: 101405, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34844020

RESUMO

OBJECTIVE: Uncoupling protein 1 (UCP1) is a mitochondrial protein critical for adaptive thermogenesis in adipose tissues, and it is typically believed to be restricted to thermogenic adipose tissues. UCP1-Cre transgenic mice are utilized in numerous studies to provide "brown adipose-specific" conditional gene targeting. Here, we examined the distribution of Cre and UCP1 throughout the body in UCP1-Cre reporter mice. METHODS: UCP1-Cre mice crossed to Ai14-tdTomato and Ai9-tdTomato reporter mice were used to explore the tissue distribution of Cre recombinase and Ucp1 mRNA in various tissues. UCP1-Cre mice were independently infected with either a Cre-dependent PHP.eB-tdTomato virus or a Cre-dependent AAV-tdTomato virus to determine whether and where UCP1 is actively expressed in the adult central nervous system. In situ analysis of the deposited single cell RNA sequencing data was used to evaluate Ucp1 expression in the hypothalamus. RESULTS: As expected, Ucp1 expression was detected in both brown and inguinal adipose tissues. Ucp1 expression was also detected in the kidney, adrenal glands, thymus, and hypothalamus. Consistent with detectable Ucp1 expression, tdTomato expression was also observed in brown adipose tissue, inguinal white adipose tissue, kidney, adrenal glands, and hypothalamus of both male and female UCP1-Cre; Ai14-tdTomato and UCP1-Cre; Ai9-tdTomato mice by fluorescent imaging and qPCR. Critically, expression of tdTomato, and thus UCP1, within the central nervous system was observed in regions of the brain critical for the regulation of energy homeostasis, including the ventromedial hypothalamus (VMH). CONCLUSIONS: TdTomato expression in UCP1-Cre; tdTomato mice is not restricted to thermogenic adipose tissues. TdTomato was also expressed in the kidneys, adrenal glands, and throughout the brain, including brain regions and cell types that are critical for multiple aspects of central regulation of energy homeostasis. Collectively, these data have important implications for the utility of UCP1-Cre mice as genetic tools to investigate gene function specifically in brown adipose tissue.


Assuntos
Marcação de Genes/métodos , Termogênese/fisiologia , Proteína Desacopladora 1/genética , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Regulação da Temperatura Corporal/genética , Regulação da Temperatura Corporal/fisiologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/fisiologia , Feminino , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , RNA Mensageiro/metabolismo , Proteína Desacopladora 1/metabolismo
13.
Br J Nutr ; 127(6): 810-822, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-33971987

RESUMO

The current epidemic of type 2 diabetes mellitus (T2DM) significantly affects human health worldwide. Activation of brown adipocytes and browning of white adipocytes are considered as a promising molecular target for T2DM treatment. Mulberry leaf, a traditional Chinese medicine, has been demonstrated to have multi-biological activities, including anti-diabetic and anti-inflammatory effects. Our experimental results showed that mulberry leaf significantly alleviated the disorder of glucose and lipid metabolism in T2DM rats. In addition, mulberry leaf induced browning of inguinal white adipose tissue (IWAT) by enhancing the expressions of brown-mark genes as well as beige-specific genes, including uncoupling protein-1 (UCP1), peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), peroxisome proliferator-activated receptor alpha (PPARα), PRD1-BF-1-RIZ1 homologous domain containing protein 16 (PRDM16), cell death inducing DFFA-like effector A (Cidea), CD137 and transmembrane protein 26 (TMEM26). Mulberry leaf also activated brown adipose tissue (BAT) by increasing the expressions of brown-mark genes including UCP1, PGC-1α, PPARα, PRDM16 and Cidea. Moreover, mulberry leaf enhanced the expression of nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM) genes that are responsible for mitochondrial biogenesis in IWAT and BAT. Importantly, mulberry leaf also increased the expression of UCP1 and carnitine palmitoyl transferase 1 (CPT-1) proteins in both IWAT and BAT via a mechanism involving AMP-activated protein kinase (AMPK) and PGC-1α pathway. In conclusion, our findings identify the role of mulberry leaf in inducing adipose browning, indicating that mulberry leaf may be used as a candidate browning agent for the treatment of T2DM.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Morus , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Morus/metabolismo , PPAR alfa/metabolismo , Folhas de Planta , Ratos , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-34501754

RESUMO

Brown adipose tissue (BAT) plays an important role in thermogenic regulation, which contributes to alleviating diet-induced obesity through uncoupling protein 1 (UCP1) expression. While cold exposure and physical exercise are known to increase BAT development and UCP1 expression, the contribution of hyperbaric oxygen (HBO) therapy to BAT maturation remains largely unknown. Here, we show that HBO treatment sufficiently increases BAT volumes and thermogenic protein levels in Sprague-Dawley rats. Through 18F-FDG PET/CT analysis, we found that exposure to high-pressure oxygen (1.5-2.5 ATA) for 7 consecutive days increased radiolabeled glucose uptake and BAT development to an extent comparable to cold exposure. Consistent with BAT maturation, thermogenic protein levels, such as those of UCP1 and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), were largely increased by HBO treatment. Taken together, we suggest HBO therapy as a novel method of inducing BAT development, considering its therapeutic potential for the treatment of metabolic disorders.


Assuntos
Tecido Adiposo Marrom , Oxigenoterapia Hiperbárica , Animais , Temperatura Baixa , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Ratos , Ratos Sprague-Dawley , Proteína Desacopladora 1/genética
15.
Front Endocrinol (Lausanne) ; 12: 669980, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149618

RESUMO

Anorexia nervosa (AN) is an eating disorder leading to malnutrition and, ultimately, to energy wasting and cachexia. Rodents develop activity-based anorexia (ABA) when simultaneously exposed to a restricted feeding schedule and allowed free access to running wheels. These conditions lead to a life-threatening reduction in body weight, resembling AN in human patients. Here, we investigate the effect of ABA on whole body energy homeostasis at different housing temperatures. Our data show that ABA rats develop hyperactivity and hypophagia, which account for a massive body weight loss and muscle cachexia, as well as reduced uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT), but increased browning of white adipose tissue (WAT). Increased housing temperature reverses not only the hyperactivity and weight loss of animals exposed to the ABA model, but also hypothermia and loss of body and muscle mass. Notably, despite the major metabolic impact of ABA, none of the changes observed are associated to changes in key hypothalamic pathways modulating energy metabolism, such as AMP-activated protein kinase (AMPK) or endoplasmic reticulum (ER) stress. Overall, this evidence indicates that although temperature control may account for an improvement of AN, key hypothalamic pathways regulating thermogenesis, such as AMPK and ER stress, are unlikely involved in later stages of the pathophysiology of this devastating disease.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Marrom/patologia , Tecido Adiposo Branco/patologia , Anorexia/fisiopatologia , Hipotálamo/patologia , Termogênese , Proteína Desacopladora 1/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal , Metabolismo Energético , Homeostase , Hipotálamo/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína Desacopladora 1/genética
16.
J Therm Biol ; 98: 102909, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34016336

RESUMO

OBJECTIVE: Uncoupling protein one (UCP1) is involved in thermogenesis, especially in non-shivering heat production. In chickens, a single nucleotide polymorphism (SNP) of the av-UCP (avian UCP) gene has been reported to be associated with body weight gain and increased abdominal fat. The purpose of this study was to examine the relationship between the av-UCP gene SNP and heat production in chicks. METHODS: C/C and T/T male chicks (Rhode Island Red) of av-UCP gene SNP (g. 1270, C > T) were exposed to a low temperature environment (16 °C for 15 min) and their physiological responses were compared. RESULTS: After cold exposure, mean rectal temperatures of C/C chicks were higher than those of T/T chicks. In pectoral muscle, genes expression of av-UCP and carnitine palmitoyltransferase-1 were higher in C/C chicks than T/T chicks. Hypothalamic expression levels of thyrotropin-releasing hormone and proopiomelanocortin genes were higher in C/C chicks than T/T chicks. Expression of hypothalamic corticotropin-releasing hormone, arginine vasotocin, brain-derived neurotrophic factor and neuropeptide Y genes did not differ between C/C and T/T chicks. In addition, plasma free fatty acid levels in C/C chicks were lower than those of T/T chicks. CONCLUSION: These results suggest that the av-UCP gene SNP affects non-shivering heat production via the hypothalamo-pituitary-thyroid axis and fatty acid metabolism in the chicken.


Assuntos
Galinhas/genética , Galinhas/fisiologia , Temperatura Baixa , Termogênese/genética , Proteína Desacopladora 1/genética , Animais , Glicemia , Ácidos Graxos/sangue , Expressão Gênica , Hipotálamo/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Mutação , Polimorfismo de Nucleotídeo Único
17.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799501

RESUMO

The growth hormone (GH)/insulin-like growth factor I (IGF-I) axis is involved in metabolic control. Malnutrition reduces IGF-I and modifies the thermogenic capacity of brown adipose tissue (BAT). Leptin has effects on the GH/IGF-I axis and the function of BAT, but its interaction with IGF-I and the mechanisms involved in the regulation of thermogenesis remains unknown. We studied the GH/IGF-I axis and activation of IGF-I-related signaling and metabolism related to BAT thermogenesis in chronic central leptin infused (L), pair-fed (PF), and control rats. Hypothalamic somatostatin mRNA levels were increased in PF and decreased in L, while pituitary GH mRNA was reduced in PF. Serum GH and IGF-I concentrations were decreased only in PF. In BAT, the association between suppressor of cytokine signaling 3 and the IGF-I receptor was reduced, and phosphorylation of the IGF-I receptor increased in the L group. Phosphorylation of Akt and cyclic AMP response element binding protein and glucose transporter 4 mRNA levels were increased in L and mRNA levels of uncoupling protein-1 (UCP-1) and enzymes involved in lipid anabolism reduced in PF. These results suggest that modifications in UCP-1 in BAT and changes in the GH/IGF-I axis induced by negative energy balance are dependent upon leptin levels.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Hormônio do Crescimento/genética , Fator de Crescimento Insulin-Like I/genética , Leptina/farmacologia , Termogênese/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Metabolismo Energético/genética , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Hormônio do Crescimento/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Injeções Intraventriculares , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Fosforilação/efeitos dos fármacos , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Somatostatina/genética , Somatostatina/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
18.
Cell Metab ; 33(3): 565-580.e7, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33657393

RESUMO

Stimulation of adipose tissue thermogenesis is regarded as a promising avenue in the treatment of obesity. However, pharmacologic engagement of this process has proven difficult. Using the Connectivity Map (CMap) approach, we identified the phytochemical hyperforin (HPF) as an anti-obesity agent. We found that HPF efficiently promoted thermogenesis by stimulating AMPK and PGC-1α via a Ucp1-dependent pathway. Using LiP-SMap (limited proteolysis-mass spectrometry) combined with a microscale thermophoresis assay and molecular docking analysis, we confirmed dihydrolipoamide S-acetyltransferase (Dlat) as a direct molecular target of HPF. Ablation of Dlat significantly attenuated HPF-mediated adipose tissue browning both in vitro and in vivo. Furthermore, genome-wide association study analysis indicated that a variation in DLAT is significantly associated with obesity in humans. These findings suggest that HPF is a promising lead compound in the pursuit of a pharmacological approach to promote energy expenditure in the treatment of obesity.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Floroglucinol/análogos & derivados , Transdução de Sinais/efeitos dos fármacos , Terpenos/farmacologia , Termogênese/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Sítios de Ligação , Temperatura Baixa , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/química , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Humanos , Hypericum/química , Hypericum/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Simulação de Acoplamento Molecular , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Floroglucinol/química , Floroglucinol/metabolismo , Floroglucinol/farmacologia , Floroglucinol/uso terapêutico , Terpenos/química , Terpenos/metabolismo , Terpenos/uso terapêutico , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Regulação para Cima/efeitos dos fármacos
19.
Sci Rep ; 11(1): 2008, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479386

RESUMO

Obesity is associated with the growth and expansion of adipocytes which could be decreased via several mechanisms. Cissus Quadrangularis (CQ) extract has been shown to reduce obesity in humans; however, its effect on human white adipocytes (hWA) has not been elucidated. This study aimed to investigate the effects of CQ on obesity, lipolysis, and browning of hWA. CQ treatment in obese humans significantly decreased waist circumference at week 4 and week 8 when compared with the baseline values (p < 0.05 all) and significantly decreased hip circumference at week 8 when compared with the baseline and week 4 values (p < 0.05 all). Serum leptin levels of the CQ-treated group were significantly higher at week 8 compared to baseline levels (p < 0.05). In hWA, glycerol release was reduced in the CQ-treated group when compared with the vehicle-treated group. In the browning experiment, pioglitazone, the PPAR-γ agonist, increased UCP1 mRNA when compared to vehicle (p < 0.01). Interestingly, 10, 100, and 1000 ng/ml CQ extract treatment on hWA significantly enhanced UCP1 expression in a dose-dependent manner when compared to pioglitazone treatment (p < 0.001 all). In conclusion, CQ decreased waist and hip circumferences in obese humans and enhanced UCP1 mRNA in hWA suggestive of its action via browning of hWA.


Assuntos
Cissus/química , Obesidade Abdominal/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Proteína Desacopladora 1/genética , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Brancos/efeitos dos fármacos , Adulto , Feminino , Humanos , Leptina/genética , Lipólise/efeitos dos fármacos , Masculino , Obesidade Abdominal/patologia , Extratos Vegetais/química , RNA Mensageiro/genética
20.
Exp Biol Med (Maywood) ; 246(2): 163-176, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33045853

RESUMO

Obesity is one of major risk factors increasing chronic diseases including type II diabetes, cardiovascular diseases, and hypertension. The effects of epigallocatechin gallate (EGCG), the major active compound in green tea, on reduced obesity and improved metabolic profiles are still controversial. Furthermore, the effects of EGCG on human adipocyte lipolysis and browning of white adipocytes have not been elucidated. This study aimed to investigate the effects of EGCG on obesity, lipolysis, and browning of human white adipocytes. The results showed that, when compared to the baseline values, EGCG significantly decreased fasting plasma triglyceride levels (P < 0.05), systolic blood pressure (P < 0.05), diastolic blood pressure (P < 0.05), and serum kisspeptin levels (P < 0.05) after 8 weeks of supplement. On the other hand, supplement of EGCG in obese human subjects for 4 or 8 weeks did not decrease body weight, body mass index, waist and hip circumferences, nor total body fat mass or percentage when compared to their baseline values. The study in human adipocytes showed that EGCG did not increase the glycerol release when compared to vehicle, suggesting that it had no lipolytic effect. Furthermore, treatment of EGCG did not enhance uncoupling protein 1 (UCP1) mRNA expression in human white adipocytes when compared with treatment of pioglitazone, the peroxisome proliferator-activated receptor γ (PPAR-γ) agonist, suggesting that EGCG did not augment the browning effect of PPAR-γ on white adipocytes. This study revealed that EGCG reduced 2 metabolic risk factors which are triglyceride and blood pressure in the human experiment. We also showed a novel evidence that EGCG decreased kisspeptin levels. However, EGCG had no effects on obesity reduction in humans, lipolysis, nor browning of human white adipocytes.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Catequina/análogos & derivados , Kisspeptinas/sangue , Obesidade/sangue , Obesidade/fisiopatologia , Triglicerídeos/sangue , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Marrons/metabolismo , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/metabolismo , Adiponectina/sangue , Adulto , Glicemia/metabolismo , Catequina/farmacologia , Humanos , Rim/efeitos dos fármacos , Rim/fisiopatologia , Leptina/sangue , Lipólise , Fígado/efeitos dos fármacos , Fígado/fisiopatologia , Pessoa de Meia-Idade , Obesidade/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA