Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Med Food ; 27(5): 385-395, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574296

RESUMO

This study aimed to investigate the effects and mechanism of Lactobacillus gasseri BNR17, a probiotic strain isolated from human breast milk, on dexamethasone-induced muscle loss in mice and cultured myotubes. BALB/c mice were intraperitoneally injected with dexamethasone, and orally administered L. gasseri BNR17 for 21 days. L. gasseri BNR17 treatment ameliorated dexamethasone-induced decline in muscle function, as evidenced by an increase in forelimb grip strength, treadmill running time, and rotarod retention time in both female and male mice. In addition, L. gasseri BNR17 treatment significantly increased the mass of the gastrocnemius and quadriceps muscles. Dual-energy X-ray absorptiometry showed a significant increase in lean body mass and a decrease in fat mass in both whole body and hind limb after treatment with L. gasseri BNR17. It was found that L. gasseri BNR17 treatment downregulated serum myostatin level and the protein degradation pathway composed of muscle-specific ubiquitin E3 ligases, MuRF1 and MAFbx, and their transcription factor FoxO3. In contrast, L. gasseri BNR17 treatment upregulated serum insulin-like growth factor-1 level and Akt-mTOR-p70S6K signaling pathway involved in protein synthesis in muscle. As a result, L. gasseri BNR17 treatment significantly increased the levels of major muscular proteins such as myosin heavy chain and myoblast determination protein 1. Consistent with in vivo results, L. gasseri BNR17 culture supernatant significantly ameliorated dexamethasone-induced C2C12 myotube atrophy in vitro. In conclusion, L. gasseri BNR17 ameliorates muscle loss by downregulating the protein degradation pathway and upregulating the protein synthesis pathway.


Assuntos
Dexametasona , Lactobacillus gasseri , Camundongos Endogâmicos BALB C , Fibras Musculares Esqueléticas , Proteínas Musculares , Músculo Esquelético , Atrofia Muscular , Probióticos , Ubiquitina-Proteína Ligases , Animais , Dexametasona/efeitos adversos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Camundongos , Feminino , Masculino , Proteínas Musculares/metabolismo , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/metabolismo , Atrofia Muscular/tratamento farmacológico , Lactobacillus gasseri/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Serina-Treonina Quinases TOR/metabolismo
2.
Zhen Ci Yan Jiu ; 49(4): 376-383, 2024 Apr 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38649205

RESUMO

OBJECTIVES: To observe the effects of moxibustion on blood lipid metabolism, pathological morphology of thoracic aorta, and the expression of silent information regulator 1 (SIRT1) and forkhead box transcription factor O3a (FOXO3a) in ApoE-/- atherosclerosis (AS) mice, so as to explore the potential mechanism of moxibustion in preventing and treating AS. METHODS: Ten C57BL/6J mice were fed a normal diet as the control group, and 30 ApoE-/- mice were fed a high-fat diet to establish the AS model, which were randomly divided into the model group, simvastatin group, and moxibustion group, with 10 mice in each group. From the first day of modeling, mice in the moxibustion group received mild moxibustion treatment at "Shenque"(CV8), "Yinlingquan"(SP9), bilateral "Neiguan"(PC6) and "Xuehai"(SP10) for 30 min per time;the mice in the simvastatin group were given simvastatin orally (2.5 mg·kg-1·d-1), with both treatments given once daily, 5 times a week, with a total intervention period of 12 weeks. The body weight and general condition of the mice were observed and recorded during the intervention period. After the intervention, the contents of serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were measured using an automated biochemistry analyzer. Hematoxylin eosin (HE) staining was used to observe the pathological morphology of the thoracic aorta. ELISA was used to measure the contents of serum oxidized low-density lipoprotein (ox-LDL) and superoxide dismutase (SOD) activity. Western blot and real-time fluorescent quantitative PCR analysis were used to detect the expression levels of SIRT1 and FOXO3a protein and mRNA in the thoracic aorta. RESULTS: Compared with the control group, body weight at the 8th and 12th week, serum TC, TG, LDL-C, and ox-LDL contents of the model group mice were significantly increased(P<0.05, P<0.01), while the HDL-C contents, SOD activity, and the expression levels of SIRT1 protein and mRNA in the thoracic aorta were significantly decreased(P<0.05, P<0.01). HE staining showed thickening of the aortic intima, endothelial cell degeneration, swelling, and shedding. Compared with the model group, body weight at the 8th and 12th week, serum TC, TG, LDL-C, and ox-LDL contents of mice in the simvastatin group and moxibustion group were significantly decreased(P<0.01), while the serum SOD activity, expression levels of SIRT1 protein and mRNA in the thoracic aorta were significantly increased(P<0.01). The HDL-C contents were significantly increased in the simvastatin group(P<0.05). The thoracic aortic structure was more intact in both groups, with a more regular lumen and orderly arrangement of the elastic membrane in the media, and a slight amount of endothelial cell degeneration and swelling in the intima. There was no significant difference in the evaluated indexes between the moxibustion group and the simvastatin group and the pathological changes in the thoracic aorta were similar between the two groups. CONCLUSIONS: Moxibustion can reduce the body weight of AS model mice, regulate lipid levels, repair vascular intima, and alleviate endothelial damage. Its mechanism of action may be related to the regulation of the SIRT1/FOXO3a signaling pathway to improve oxidative damage.


Assuntos
Apolipoproteínas E , Aterosclerose , Proteína Forkhead Box O3 , Moxibustão , Sirtuína 1 , Animais , Humanos , Masculino , Camundongos , Pontos de Acupuntura , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/terapia , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Sirtuína 1/metabolismo , Sirtuína 1/genética , Triglicerídeos/sangue , Triglicerídeos/metabolismo
3.
J Bone Miner Metab ; 40(6): 914-926, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36156740

RESUMO

INTRODUCTION: Selenium (Se) as well as selenoproteins are vital for osteochondral system development. Se deficiency (SeD) has a definite impact on the expression and activity of histone deacetylases (HDACs). Abnormal expression of some HDACs affects cartilage development. This current study aims to explore the relationship between differentially expressed HDACs and cartilage development, especially extracellular matrix (ECM) homeostasis maintenance, under SeD conditions. MATERIALS AND METHODS: Dark Agouti rats and C28/I2 cell line under SeD states were used to detect the differently expressed HDAC by RT-qPCR, western blotting and IHC staining. Meanwhile, the biological roles of the above HDAC in cartilage development and homeostasis maintenance were confirmed by siRNA transfection, western blotting, RNA sequence and inhibitor treatment experiments. RESULTS: HDAC2 exhibited lower expression at protein level in both animals and chondrocytes during SeD condition. The results of cell-level experiments indicated that forkhead box O3A (FOXO3A), which was required to maintain metabolic homeostasis of cartilage matrix, was reduced by HDAC2 knockdown. Meanwhile, induced HDAC2 was positively associated with FOXO3A in rat SeD model. Meanwhile, knockdown of HDAC2 and FOXO3A led to an increase of intracellular ROS level, which activated NF-κB pathway. Se supplementary significantly inhibited the activation of NF-κB pathway with IL-1ß treatment. CONCLUSION: Our results suggested that low expression of HDAC2 under SeD condition increased ROS content by decreasing FOXO3A in chondrocytes, which led to the activation of NF-κB pathway and ECM homeostasis imbalance.


Assuntos
Proteína Forkhead Box O3 , Histona Desacetilase 2 , Selênio , Animais , Ratos , Cartilagem , Matriz Extracelular , Histona Desacetilase 2/genética , NF-kappa B , Espécies Reativas de Oxigênio , Selênio/farmacologia , Proteína Forkhead Box O3/genética
4.
Ageing Res Rev ; 78: 101621, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35421606

RESUMO

Life expectancy has increased substantially over the last 150 years. Yet this means that now most people also spend a greater length of time suffering from various age-associated diseases. As such, delaying age-related functional decline and extending healthspan, the period of active older years free from disease and disability, is an overarching objective of current aging research. Geroprotectors, compounds that target pathways that causally influence aging, are increasingly recognized as a means to extend healthspan in the aging population. Meanwhile, FOXO3 has emerged as a geroprotective gene intricately involved in aging and healthspan. FOXO3 genetic variants are linked to human longevity, reduced disease risks, and even self-reported health. Therefore, identification of FOXO3-activating compounds represents one of the most direct candidate approaches to extending healthspan in aging humans. In this work, we review compounds that activate FOXO3, or influence healthspan or lifespan in a FOXO3-dependent manner. These compounds can be classified as pharmaceuticals, including PI3K/AKT inhibitors and AMPK activators, antidepressants and antipsychotics, muscle relaxants, and HDAC inhibitors, or as nutraceuticals, including primary metabolites involved in cell growth and sustenance, and secondary metabolites including extracts, polyphenols, terpenoids, and other purified natural compounds. The compounds documented here provide a basis and resource for further research and development, with the ultimate goal of promoting healthy longevity in humans.


Assuntos
Longevidade , Fosfatidilinositol 3-Quinases , Idoso , Envelhecimento/genética , Suplementos Nutricionais , Proteína Forkhead Box O3/genética , Humanos , Longevidade/fisiologia , Preparações Farmacêuticas
5.
Oxid Med Cell Longev ; 2021: 3830671, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925692

RESUMO

Polygonum cuspidatum (PC) has been reported to exert a potent antihyperlipidemic effect. However, its mechanisms of action and active ingredients remain elusive and require further research. In this study, we first conducted in vivo experiments to validate that Polygonum cuspidatum extract (PCE) could ameliorate the blood lipid level in hyperlipidemia model rats. Then, ultrahigh performance liquid chromatography coupled with Q-Exactive MS/MS (UPLC-QE-MS/MS) was applied to verify its 12 main active ingredients. The pharmacophore matching model was employed to predict the target point of the active ingredient, and 27 overlapping genes were identified via database and literature mining. String online database and Cytoscape software were utilized to construct a Protein-Protein Interaction (PPI) network, followed by function annotation analysis and pathway enrichment analysis. The results showed that the PI3K/AKT signaling pathway and its downstream FOXO3/ERα factors were significantly enriched. Furthermore, in vitro experiments were performed to determine the lipid content and oxidative stress (OS) indicators in OA-induced HepG2 cells, and immunofluorescence and western blotting analysis were carried out to analyze the effects of PCE on related proteins. Our experimental results show that the mechanism of antihyperlipidemic action of PCE is related to the activation of the PI3K/AKT signaling pathway and its downstream FOXO3/ERα factors, and polydatin and resveratrol are the main active ingredients in PCE that exert antihyperlipidemic effects.


Assuntos
Fallopia japonica/química , Proteína Forkhead Box O3/metabolismo , Hiperlipidemias/tratamento farmacológico , Hipolipemiantes/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Feminino , Proteína Forkhead Box O3/genética , Regulação da Expressão Gênica , Células Hep G2 , Humanos , Hiperlipidemias/etiologia , Hiperlipidemias/metabolismo , Hiperlipidemias/patologia , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/genética , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Ratos Wistar , Transdução de Sinais
6.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805714

RESUMO

Trifluoperazine (TFP), an antipsychotic drug approved by the Food and Drug Administration, has been show to exhibit anti-cancer effects. Pulmonary arterial hypertension (PAH) is a devastating disease characterized by a progressive obliteration of small pulmonary arteries (PAs) due to exaggerated proliferation and resistance to apoptosis of PA smooth muscle cells (PASMCs). However, the therapeutic potential of TFP for correcting the cancer-like phenotype of PAH-PASMCs and improving PAH in animal models remains unknown. PASMCs isolated from PAH patients were exposed to different concentrations of TFP before assessments of cell proliferation and apoptosis. The in vivo therapeutic potential of TFP was tested in two preclinical models with established PAH, namely the monocrotaline and sugen/hypoxia-induced rat models. Assessments of hemodynamics by right heart catheterization and histopathology were conducted. TFP showed strong anti-survival and anti-proliferative effects on cultured PAH-PASMCs. Exposure to TFP was associated with downregulation of AKT activity and nuclear translocation of forkhead box protein O3 (FOXO3). In both preclinical models, TFP significantly lowered the right ventricular systolic pressure and total pulmonary resistance and improved cardiac function. Consistently, TFP reduced the medial wall thickness of distal PAs. Overall, our data indicate that TFP could have beneficial effects in PAH and support the view that seeking new uses for old drugs may represent a fruitful approach.


Assuntos
Fármacos Cardiovasculares/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hipertensão Pulmonar/tratamento farmacológico , Hipóxia/prevenção & controle , Miócitos de Músculo Liso/efeitos dos fármacos , Trifluoperazina/farmacologia , Animais , Antipsicóticos/farmacologia , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Feminino , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Hemodinâmica/efeitos dos fármacos , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Hipóxia/induzido quimicamente , Hipóxia/genética , Hipóxia/fisiopatologia , Indóis/administração & dosagem , Monocrotalina/administração & dosagem , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Artéria Pulmonar/citologia , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Pirróis/administração & dosagem , Ratos , Ratos Sprague-Dawley , Survivina/genética , Survivina/metabolismo
7.
Life Sci ; 273: 119239, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33652033

RESUMO

Our previous work revealed the protective effect of Qiliqiangxin (QLQX) on cardiac microvascular endothelial cells (CMECs), but the underlying mechanisms remain unclear. We aimed to investigate whether QLQX exerts its protective effect against high-concentration angiotensin II (Ang II)-induced CMEC apoptosis through the autophagy machinery. CMECs were cultured in high-concentration Ang II (1 µM) medium in the presence or absence of QLQX for 48 h. We found that QLQX obviously inhibited Ang II-triggered autophagosome synthesis and apoptosis in cultured CMECs. QLQX-mediated protection against Ang II-induced CMEC apoptosis was reversed by the autophagy activator rapamycin. Specifically, deletion of ATG7 in cultured CMECs indicated a detrimental role of autophagy in Ang II-induced CMEC apoptosis. QLQX reversed Ang II-mediated ErbB2 phosphorylation impairment. Furthermore, inhibition of ErbB2 phosphorylation with lapatinib in CMECs revealed that QLQX-induced downregulation of Ang II-activated autophagy and apoptosis was ErbB2 phosphorylation-dependent via the AKT-FoxO3a axis. Activation of ErbB2 phosphorylation by Neuregulin-1ß achieved a similar CMEC-protective effect as QLQX in high-concentration Ang II medium, and this effect was also abolished by autophagy activation. These results show that the CMEC-protective effect of QLQX under high-concentration Ang II conditions could be partly attributable to QLQX-mediated ErbB2 phosphorylation-dependent downregulation of autophagy via the AKT-FoxO3a axis.


Assuntos
Angiotensina II/toxicidade , Autofagia , Medicamentos de Ervas Chinesas/farmacologia , Células Endoteliais/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/metabolismo , Animais , Apoptose , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Proteína Forkhead Box O3/genética , Masculino , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Ratos Sprague-Dawley , Receptor ErbB-2/genética , Transdução de Sinais , Vasoconstritores/toxicidade
8.
J Ethnopharmacol ; 270: 113557, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33161026

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Mountain ginseng (Panax ginseng C.A. Meyer) is a medicinal herb with immune effects, muscle damage protection and energy metabolism effects. However, the pharmacological role of mountain ginseng in dexamethasone (DEXA)-induced muscle atrophy through the forkhead box O (FOXO) family is not understood. Therefore, we hypothesized that mountain ginseng inhibits skeletal muscle atrophy by decreasing muscle RING finger protein-1 (MuRF1) and atrogin1 through FOXO3 in L6 myotubes. METHODS: Rat myoblast (L6) cells or Sprague-Dawley (SD) rats were exposed to DEXA and mountain ginseng. The expressions of muscle atrophy targets such as MuRF1, atrogin1, MyHC (myosin heavy chain), HSP90, p-Akt, Akt, p-ERK1/2, ERK, FOXO3a, FOXO1, myostatin, and follistatin were analyzed by using Western blot analysis or real-time PCR. The diameter of myotubes was measured. Recruitment of glucocorticoid receptor (GR) or FOXO3a was analyzed by performing a chromatin immunoprecipitation (ChIP) assay. RESULTS: Mountain ginseng treatment reduced muscle weight loss and collagen deposition in DEXA-induced rats. Mountain ginseng treatment led to decreases in MuRF1, atrogin1, p-ERK1/2, FOXO3a, FOXO1, and myostatin. Also, mountain ginseng treatment led to increases in the diameter of myotubes, MyHC, HSP90, p-Akt, and follistatin. Treatment with mountain ginseng reduced enrichment of GR, FOXO3a, and RNA polymerase II on the promoters. CONCLUSIONS: These results suggest that mountain ginseng inhibits skeletal muscle atrophy by decreasing MuRF1 and atrogin1 through FOXO3a in L6 myotubes.


Assuntos
Proteína Forkhead Box O3/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/tratamento farmacológico , Panax/química , Extratos Vegetais/farmacologia , Complexo Repressor Polycomb 1/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Dexametasona/toxicidade , Proteína Forkhead Box O3/genética , Fibras Musculares Esqueléticas/efeitos dos fármacos , Proteínas Musculares/genética , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Extratos Vegetais/uso terapêutico , RNA Polimerase II/metabolismo , Ratos Sprague-Dawley , Receptores de Glucocorticoides/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética
9.
J Tradit Chin Med ; 40(4): 571-583, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32744024

RESUMO

OBJECTIVE: To investigate the mechanism by which Daifan San (DFS) prevents and treats primary biliary cirrhosis (PBC) via the forkhead box P3 (FoxP3) and interleukin (IL)-23/IL-17A signaling pathways. METHODS: Ninety C57BL/6 mice were randomly divided into the control, model, DFS low-dose, DFS middle-dose, DFS high-dose and ursodeoxycholic acid (UDCA) groups (n = 15 per group). A mouse model of PBC was induced using polyinosinic polycytidylic acids (poly I:C). Lymphocyte subset expression in the peripheral blood was analyzed via flow cytometry. The inflammatory cytokines and antimitochondrial autoantibody (AMA) levels were detected via enzyme-linked immunosorbent assays. The expressions and location of type I collagen, type III collagen, cytokeratin 19 and FoxP3 in the liver tissue were evaluated via immunohistochemistry. FoxP3, IL-23 and IL-17 expressions in the peripheral blood and liver tissue were evaluated via real-time polymerase chain reaction and western blotting. RESULTS: IL-17, IL-23, IL-8, IL-33, TNF-a, and AMA expressions were significantly increased in the model group and decreased in the DFS and UDCA groups. Conversely, Treg cell and FoxP3 expressions were significantly decreased in the model group and increased in the DFS and UDCA groups. The IL-23/IL-17A signaling pathway was closely correlated with chronic inflammation of the bile duct in PBC and functional deletion of Treg cells, leading to reduced FoxP3 levels and mediating the loss of tolerance in PBC. CONCLUSION: DFS may delay the occurrence and relieve the symptoms of PBC by downregulating IL-23/IL-17A signaling pathway expression and upregulating FoxP3 expression.


Assuntos
Medicamentos de Ervas Chinesas/administração & dosagem , Proteína Forkhead Box O3/metabolismo , Interleucina-17/metabolismo , Interleucina-23/metabolismo , Cirrose Hepática Biliar/tratamento farmacológico , Animais , Feminino , Proteína Forkhead Box O3/genética , Humanos , Interleucina-17/genética , Interleucina-23/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Cirrose Hepática Biliar/genética , Cirrose Hepática Biliar/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos
10.
Life Sci ; 252: 117641, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32272182

RESUMO

AIMS: The aim of this study was investigate the effects of 8 weeks of high intensity interval training (HIIT, up & downward running) with BCAA/nano chitosan on Foxo3 and SMAD soleus muscles of aging rats. MAIN METHODS: In this experimental study thirty male rats were randomly divided into six groups of control, BCAA with Nano chitosan (Supplement, (Sup)), upslope running, downslope running, upslope running+Sup, and downslope running+Sup that each groups consist of 6 rats. The exercise training was performed HIIT 8 weeks 3 session per weeks with incrementally intensity 12 to 52 m/m in 7sets (Slop 0 to 15o) during 8 weeks. BCAA coated with chitosan nanoparticles (84 mg/kg) and gavage to supplementation groups, 3 days per weeks for eight weeks. The animals were feed with standard rat chow (Normal diet, 2.87 kcal/g, 15% of energy from fat). At the end of protocol the rat was sacrifice and soleus muscle was fix and frieze for IHC with H&E and gene expression analysis. KEY FINDINGS: The results of this study showed that Foxo3 gene expression in the Upslope running + Sup and Downslope running + Sup groups showed a significant decrease (p ≤ 0.05) compared to the control group. The mRNA of Smad also showed that only the Upslope running + Sup group had a significant decrease compared to the control group (p ≤ 0.05). SIGNIFICANCE: It seems that, BCAA/nano chitosan supplementation along with exercise training in a variety of ways (Up & down slope running) can control the damage caused by Foxo3 and Smad transcription factors. That, control of these factors can minimize age-related atrophy.


Assuntos
Aminoácidos de Cadeia Ramificada/administração & dosagem , Quitosana/química , Nanopartículas , Condicionamento Físico Animal/fisiologia , Corrida/fisiologia , Envelhecimento/fisiologia , Animais , Suplementos Nutricionais , Proteína Forkhead Box O3/genética , Regulação da Expressão Gênica , Masculino , Músculo Esquelético/fisiologia , Ratos , Ratos Wistar , Proteínas Smad/genética
11.
Life Sci Alliance ; 3(2)2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31992650

RESUMO

Obesity-induced inflammation, or meta-inflammation, plays key roles in metabolic syndrome and is a significant risk factor in diabetes and cardiovascular disease. To investigate causal links between obesity, meta-inflammation, and insulin signaling we established a Drosophila model to determine how elevated dietary fat and changes in the levels and balance of saturated fatty acids (SFAs) and polyunsaturated fatty acids (PUFAs) influence inflammation. We observe negligible effect of saturated fatty acid on inflammation but marked enhancement or suppression by omega-6 and omega-3 PUFAs, respectively. Using combined lipidomic and genetic analysis, we show omega-6 PUFA enhances meta-inflammation by producing linoleic acid-derived lipid mediator 9-hydroxy-octadecadienoic acid (9-HODE). Transcriptome analysis reveals 9-HODE functions by regulating FOXO family transcription factors. We show 9-HODE activates JNK, triggering FOXO nuclear localisation and chromatin binding. FOXO TFs are important transducers of the insulin signaling pathway that are normally down-regulated by insulin. By activating FOXO, 9-HODE could antagonise insulin signaling providing a molecular conduit linking changes in dietary fatty acid balance, meta-inflammation, and insulin resistance.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteína Forkhead Box O3/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Ácido Linoleico/metabolismo , Obesidade/metabolismo , Animais , Animais Geneticamente Modificados , Núcleo Celular/metabolismo , Cromatina/metabolismo , Gorduras na Dieta/efeitos adversos , Modelos Animais de Doenças , Drosophila/genética , Proteínas de Drosophila/genética , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Proteína Forkhead Box O3/genética , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Insulina/metabolismo , Ácido Linoleico/farmacologia , Ácidos Linoleicos Conjugados/genética , Ácidos Linoleicos Conjugados/metabolismo , Ácidos Linoleicos Conjugados/farmacologia , Obesidade/induzido quimicamente , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcriptoma , Transfecção
12.
Carcinogenesis ; 41(5): 600-610, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31504249

RESUMO

Osimertinib is a third-generation epidermal growth factor receptor tyrosine kinase inhibitor against T790M-mutant non-small cell lung cancer (NSCLC). Acquired resistance to osimertinib is a growing clinical challenge that is not fully understood. Endogenous electric fields (EFs), components of the tumor microenvironment, are associated with cancer cell migration and proliferation. However, the impact of EFs on drug efficiency has not been studied. In this study, we observed that EFs counteracted the effects of osimertinib. EFs of 100 mV/mm suppressed osimertinib-induced cell death and promoted cell proliferation. Transcriptional analysis revealed that the expression pattern induced by osimertinib was altered by EFs stimulation. KEGG analysis showed that differential expression genes were mostly enriched in PI3K-AKT pathway. Then, we found that osimertinib inhibited AKT phosphorylation, while EFs stimulation resulted in significant activation of AKT, which could override the effects generated by osimertinib. Importantly, pharmacological inhibition of PI3K/AKT by LY294002 diminished EF-induced activation of AKT and restored the cytotoxicity of osimertinib suppressed by EFs, which proved that AKT activation was essential for EFs to attenuate the efficacy of osimertinib. Furthermore, activation of AKT by EFs led to phosphorylation of forkhead box O3a (FOXO3a), and reduction in nuclear translocation of FOXO3a induced by osimertinib, resulting in decreased expression of Bim and attenuated cytotoxicity of osimertinib. Taken together, we demonstrated that EFs suppressed the antitumor activity of osimertinib through AKT/FOXO3a/Bim pathway, and combination of PI3K/AKT inhibitor with osimertinib counteracted the effects of EFs. Our findings provided preliminary data for therapeutic strategies to enhance osimertinib efficacy in NSCLC patients.


Assuntos
Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Núcleo Celular/metabolismo , Terapia por Estimulação Elétrica/métodos , Proteína Forkhead Box O3/metabolismo , Neoplasias Pulmonares/terapia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/induzido quimicamente , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células , Proteína Forkhead Box O3/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/genética , Células Tumorais Cultivadas
13.
J Agric Food Chem ; 67(28): 7832-7843, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31242723

RESUMO

Oxidative-stress-induced senescence constitutes a great risk factor for chronic diseases. Therefore, ameliorating oxidative-stress-induced senescence is expected to prevent chronic diseases. The beneficial effects of bilberry anthocyanin (BA) on healthy aging were evaluated using 12 month old, aging female SD rats in this study. The experimental results suggested that consumption of a middle-dose of BA (MBA) appreciably increased the relative liver mass by 7.34% when compared with that of the AC group. Furthermore, BA significantly increased the total antioxidant capacity, total superoxide dismutase activity, and catalase activities; decreased malondialdehyde, serum low-density lipoprotein cholesterol (LDL-C), serum total cholesterol (TC), serum triglyceride (TG), and glycated serum protein (GSP) levels; and reduced TC/high-density lipoprotein cholesterol (HDL-C) and LDL-C/HDL-C ratios. In addition, MBA decreased the activity of fecal bacterial enzymes and increased the content of fecal short-chain fatty acids. The Western blot results showed that MBA significantly upregulated the expression of OCLN, ZO-1, and autophagy-related proteins (ATP6 V0C, ATG4D, and CTSB) in aging rats. Moreover, it also showed that MBA induced the phosphorylation of AMPK and FOXO3a and inhibited the phosphorylation of mTOR, which indicated that bilberry anthocyanin induced autophagy via the AMPK-mTOR signaling pathways. This induction of autophagy further promoted oxidative stress resistance effects and intestinal epithelial barrier function of bilberry anthocyanin in aging female rats.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Envelhecimento/fisiologia , Antocianinas/administração & dosagem , Autofagia/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Vaccinium myrtillus/química , Proteínas Quinases Ativadas por AMP/genética , Envelhecimento/sangue , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Animais , Suplementos Nutricionais/análise , Feminino , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Humanos , Lipoproteínas LDL/sangue , Malondialdeído/sangue , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética , Triglicerídeos/sangue
14.
Chin J Integr Med ; 25(4): 252-258, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31236889

RESUMO

OBJECTIVE: To observe the effects of electroacupuncture (EA) on reproductive outcomes in women with Shen (Kidndy) deficiency syndrome after in vitro fertilization-embryo transfer (IVF-ET), and explore the underlying molecular mechanism. METHODS: Sixty-six infertile patients with Shen deficiency syndrome undergoing IVF-ET were divided into EA or control groups according to a random table, 33 cases in each group. Before undergoing IVF, patients in the EA and control groups received EA therapy and placebo needle puncture, respectively, for 3 menstrual cycles. Shen deficiency syndrome scores were assessed. Other outcome measures included the number of retrieved oocytes and fertilization, high-quality embryo and clinical pregnancy rates. Follicular fluid was collected on the day of oocyte retrieval, and granulosa cell expression of phosphatidylinositide 3-kinases (PI3K), serine-threonine kinase (Akt) and forkhead box O3 (Foxo3a) mRNA were measured by reverse transcribed and quantitative real-time polymerase chain reaction. RESULTS: Syndrome scores for pre- versus post-treatments decreased significantly (16.53±1.75 to 8.67±1.61) in the EA group (P<0.05), but showed no significant change in the control group (17.18±1.58 to 14.74±1.58). A significant difference in score change was found between the EA and control groups (P<0.05). High-quality embryo and clinical pregnancy rates were both increased in the EA group compared with the control group [69.15% (195/282) vs. 60.27% (176/292) and 66.67% (22/33) vs. 42.42% (14/33), respectively, P<0.05]. The fertilization rate was equivalent in EA and control groups. No difference was found in the number of retrieved oocytes between the two groups. Granulosa cell expression levels of PI3K and Akt mRNA were significantly increased in the EA group compared with the control group, while the expression of Foxo3a was reduced (all P<0.05). CONCLUSIONS: For infertile patients with Shen deficiency syndrome undergoing IVF, EA for tonifying Shen as an adjunct treatment may alleviate clinical symptoms and improve the high-quality embryo rate. The EA-induced mechanism may involve regulation of PI3K/Akt/Foxo3a expression in granulosa cells to improve the developmental microenvironment of oocytes and inhibit granulosa cell apoptosis, possibly contributing to the improved clinical pregnancy rate (Registration No. ChiCTR 1800016217).


Assuntos
Eletroacupuntura , Transferência Embrionária , Fertilização in vitro , Proteína Forkhead Box O3/metabolismo , Células da Granulosa/metabolismo , Rim/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Adulto , Feminino , Proteína Forkhead Box O3/genética , Humanos , Fosfatidilinositol 3-Quinases/genética , Gravidez , Taxa de Gravidez , Proteínas Proto-Oncogênicas c-akt/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Síndrome
15.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 35(2): 115-120, 2019 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-30975275

RESUMO

Objective To explore the effect of Qibai Pingfei capsule (QPC) on the inflammation and oxidative stress in a chronic obstructive pulmonary disease (COPD) rat models with the syndromes of qi deficiency and phlegm and blood stasis by regulating the SIRT1/FoxO3a pathway. Methods A total of 80 male SD rats were randomly divided into 4 groups with 20 animals in each group: a non-diseased group, a non-treated diseased group, a diseased group treated with QPC, and a diseased group treated with placebo. The COPD rat models with the syndromes of qi deficiency and phlegm and blood stasis were then developed with established protocols. After the corresponding treatments, the serum levels of superoxide dismutase (SOD), malondialdehyde (MDA), interleukine 1ß (IL-1ß), and IL-2 were determined by ELISA; the protein levels of SIRT1 and FoxO3a were quantified by Western blot analysis; the mRNA levels of the SIRT1 and FoxO3a genes were also measured by real-time quantitative PCR. Results First of all, compared with the non-diseased group, the serum levels of MDA, IL-1ß, and IL-2 were elevated in the diseased group, while the level of SOD was reduced. Both mRNA and protein levels of SIRT1 decreased, while the levels of FoxO3a increased in the lung tissues of the diseased group. Compared with the diseased group treated with placebo, the diseased group treated with QPC had reduced serum levels of MDA, IL-1ß and IL-2, elevated SOD, increased mRNA and protein levels of SIRT1 and decreased levels of FoxO3a, thereby restoring their levels partially under the disease state. Conclusion QPC can alleviate inflammation and oxidative stress of COPD rats with syndrome of qi deficiency and phlegm and blood stasis effectively, potentially through regulating the expression level of the SIRT1/FoxO3a pathway.


Assuntos
Medicamentos de Ervas Chinesas , Regulação da Expressão Gênica , Inflamação , Estresse Oxidativo , Doença Pulmonar Obstrutiva Crônica , Qi , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Proteína Forkhead Box O3/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/tratamento farmacológico , Masculino , Estresse Oxidativo/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Sirtuína 1/genética , Síndrome
16.
Int J Food Sci Nutr ; 70(7): 834-844, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30764676

RESUMO

The aim of this study was to examine the effects of α-lipoic acid (α-LA) on liver mitochondrial bioenergetics and oxidative status for 8 weeks in normal-healthy animals. A pair-fed group was included to differentiate between α-LA direct effects and those changes due to reduced food intake. α-LA decreased body weight gain, liver weight and insulin levels with no differences compared to its pair-fed group. α-LA significantly reduced energy efficiency, the activity of the electron transport chain complexes and induced a lower efficiency of oxidative phosphorylation with reduced ATP production. α-LA supplementation directly decreased plasma triglycerides (TGs), free fatty acids and ketone bodies levels. A significant reduction in hepatic TG content was also observed. A significant up-regulation of Cpt1a, Acadl and Sirt3, all ß-oxidation genes, along with a significant deacetylation of the forkhead transcription factor 3a (FOXO3A) was found in α-LA-treated animals. Thus, α-LA along with a standard chow diet has direct actions on lipid metabolism and liver by modulating mitochondrial function in normal-weight rats. These results should be taken into account when α-LA is administered or recommended to a healthy population.


Assuntos
Carnitina O-Palmitoiltransferase/metabolismo , Metabolismo Energético , Proteína Forkhead Box O3/metabolismo , Fígado/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Sirtuínas/metabolismo , Ácido Tióctico/farmacologia , Animais , Glicemia , Carnitina O-Palmitoiltransferase/genética , Ácidos Graxos não Esterificados/sangue , Proteína Forkhead Box O3/genética , Corpos Cetônicos/sangue , Metabolismo dos Lipídeos , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Masculino , Mitocôndrias/metabolismo , Fosforilação , Ratos , Ratos Wistar , Sirtuínas/genética , Triglicerídeos/sangue , Regulação para Cima
17.
Autophagy ; 15(6): 1069-1081, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30653406

RESUMO

Protein arginine methyltransferases (PRMTs) have emerged as important regulators of skeletal muscle metabolism and regeneration. However, the direct roles of the various PRMTs during skeletal muscle remodeling remain unclear. Using skeletal muscle-specific prmt1 knockout mice, we examined the function and downstream targets of PRMT1 in muscle homeostasis. We found that muscle-specific PRMT1 deficiency led to muscle atrophy. PRMT1-deficient muscles exhibited enhanced expression of a macroautophagic/autophagic marker LC3-II, FOXO3 and muscle-specific ubiquitin ligases, TRIM63/MURF-1 and FBXO32, likely contributing to muscle atrophy. The mechanistic study reveals that PRMT1 regulates FOXO3 through PRMT6 modulation. In the absence of PRMT1, increased PRMT6 specifically methylates FOXO3 at arginine 188 and 249, leading to its activation. Finally, we demonstrate that PRMT1 deficiency triggers FOXO3 hyperactivation, which is abrogated by PRMT6 depletion. Taken together, PRMT1 is a key regulator for the PRMT6-FOXO3 axis in the control of autophagy and protein degradation underlying muscle maintenance. Abbreviations: Ad-RNAi: adenovirus-delivered small interfering RNA; AKT: thymoma viral proto-oncogene; AMPK: AMP-activated protein kinase; Baf A1: bafilomycin A1; CSA: cross-sectional area; EDL: extensor digitorum longus; FBXO32: F-box protein 32; FOXO: forkhead box O; GAS: gatrocnemieus; HDAC: histone deacetylase; IGF: insulin-like growth factor; LAMP: lysosomal-associated membrane protein; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; mKO: Mice with skeletal muscle-specific deletion of Prmt1; MTOR: mechanistic target of rapamycin kinase; MYH: myosin heavy chain; MYL1/MLC1f: myosin, light polypeptide 1; PRMT: protein arginine N-methyltransferase; sgRNA: single guide RNA; SQSTM1: sequestosome 1; SOL: soleus; TA: tibialis anterior; TRIM63/MURF-1: tripartite motif-containing 63; YY1: YY1 transcription factor.


Assuntos
Autofagia/genética , Proteína Forkhead Box O3/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Animais , Proteína Forkhead Box O3/química , Proteína Forkhead Box O3/genética , Células HEK293 , Histona Desacetilase 2/metabolismo , Histona Desacetilases/metabolismo , Humanos , Metilação , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/patologia , Fosforilação , Proto-Oncogene Mas , Transdução de Sinais/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Fator de Transcrição YY1/metabolismo
18.
Diabetes ; 68(3): 556-570, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30523026

RESUMO

Insulin deficiency and uncontrolled diabetes lead to a catabolic state with decreased muscle strength, contributing to disease-related morbidity. FoxO transcription factors are suppressed by insulin and thus are key mediators of insulin action. To study their role in diabetic muscle wasting, we created mice with muscle-specific triple knockout of FoxO1/3/4 and induced diabetes in these M-FoxO-TKO mice with streptozotocin (STZ). Muscle mass and myofiber area were decreased 20-30% in STZ-Diabetes mice due to increased ubiquitin-proteasome degradation and autophagy alterations, characterized by increased LC3-containing vesicles, and elevated levels of phosphorylated ULK1 and LC3-II. Both the muscle loss and markers of increased degradation/autophagy were completely prevented in STZ FoxO-TKO mice. Transcriptomic analyses revealed FoxO-dependent increases in ubiquitin-mediated proteolysis pathways in STZ-Diabetes, including regulation of Fbxo32 (Atrogin1), Trim63 (MuRF1), Bnip3L, and Gabarapl. These same genes were increased 1.4- to 3.3-fold in muscle from humans with type 1 diabetes after short-term insulin deprivation. Thus, FoxO-regulated genes play a rate-limiting role in increased protein degradation and muscle atrophy in insulin-deficient diabetes.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Atrofia Muscular/metabolismo , Aminoácidos/sangue , Animais , Autofagia/fisiologia , Proteínas de Ciclo Celular , DNA Complementar/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/genética , Feminino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O3/genética , Fatores de Transcrição Forkhead/genética , Humanos , Insulina/sangue , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/sangue , Atrofia Muscular/genética , Fosforilação , Proteólise , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
J Cell Mol Med ; 22(9): 4354-4365, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29971947

RESUMO

Epithelial-mesenchymal transition (EMT) plays an important role in idiopathic pulmonary fibrosis (IPF). Astragaloside IV (ASV), a natural saponin from astragalus membranaceus, has shown anti-fibrotic property in bleomycin (BLM)-induced pulmonary fibrosis. The current study was undertaken to determine whether EMT was involved in the beneficial of ASV against BLM-induced pulmonary fibrosis and to elucidate its potential mechanism. As expected, in BLM-induced IPF, ASV exerted protective effects on pulmonary fibrosis and ASV significantly reversed BLM-induced EMT. Intriguing, transforming growth factor-ß1 (TGF-ß1) was found to be up-regulated, whereas Forkhead box O3a (FOXO3a) was hyperphosphorylated and less expressed. However, ASV treatment inhibited increased TGF-ß1 and activated FOXO3a in lung tissues. TGF-ß1 was administered to alveolar epithelial cells A549 to induce EMT in vitro. Meanwhile, stimulation with TGF-ß1-activated phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) pathway and induced FOXO3a hyperphosphorylated and down-regulated. It was found that overexpression of FOXO3a leading to the suppression of TGF-ß1-induced EMT. Moreover, ASV treatment, similar with the TGF-ß1 or PI3K/Akt inhibitor, reverted these cellular changes and inhibited EMT in A549 cells. Collectively, the results suggested that ASV significantly inhibited TGF-ß1/PI3K/Akt-induced FOXO3a hyperphosphorylation and down-regulation to reverse EMT during the progression of fibrosis.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Fibrose Pulmonar/prevenção & controle , Saponinas/farmacologia , Fator de Crescimento Transformador beta1/genética , Triterpenos/farmacologia , Células A549 , Animais , Bleomicina/administração & dosagem , Bleomicina/antagonistas & inibidores , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/genética , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Regulação da Expressão Gênica , Humanos , Pulmão/metabolismo , Pulmão/patologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Ratos , Transdução de Sinais , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Resultado do Tratamento
20.
Life Sci ; 205: 91-96, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29753766

RESUMO

AIMS: Muscle mass is regulated by the balance between the synthesis and degradation of muscle proteins. Loss of skeletal muscle mass is associated with an increased risk of developing metabolic diseases such as obesity and type 2 diabetes mellitus. The aim of this study was to clarify the effects of licorice flavonoid oil on muscle mass in KK-Ay/Ta mice. MAIN METHODS: Male genetically type II diabetic KK-Ay/Ta mice received 0, 1, or 1.5 g/kg BW of licorice flavonoid oil by mouth once daily for 4 weeks. After 4 weeks, the femoral and soleus muscles were collected for western blotting for evaluation of the mTOR/p70 S6K, p38/FoxO3a, and Akt/FoxO3a signaling pathways. KEY FINDINGS: Ingestion of licorice flavonoid oil significantly enhanced femoral muscle mass without affecting body weight in KK-Ay/Ta mice. Licorice flavonoid oil also decreased expression of MuRF1 and atrogin-1, which are both markers of muscle atrophy. The mechanisms by which licorice flavonoid oil enhances muscle mass include activation of mTOR and p70 S6K, and regulation of phosphorylation of FoxO3a. SIGNIFICANCE: Ingestion of licorice flavonoids may help to prevent muscle atrophy.


Assuntos
Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Flavonoides/farmacologia , Glycyrrhiza/química , Músculo Esquelético/efeitos dos fármacos , Óleos de Plantas/farmacologia , Animais , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/biossíntese , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Proteína Forkhead Box O3/biossíntese , Proteína Forkhead Box O3/genética , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/biossíntese , Proteínas Musculares/genética , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/patologia , Tamanho do Órgão/efeitos dos fármacos , Proteínas Ligases SKP Culina F-Box/antagonistas & inibidores , Proteínas Ligases SKP Culina F-Box/biossíntese , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/biossíntese , Proteínas com Motivo Tripartido , Proteínas Quinases p38 Ativadas por Mitógeno/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA