Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Zhen Ci Yan Jiu ; 49(4): 376-383, 2024 Apr 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38649205

RESUMO

OBJECTIVES: To observe the effects of moxibustion on blood lipid metabolism, pathological morphology of thoracic aorta, and the expression of silent information regulator 1 (SIRT1) and forkhead box transcription factor O3a (FOXO3a) in ApoE-/- atherosclerosis (AS) mice, so as to explore the potential mechanism of moxibustion in preventing and treating AS. METHODS: Ten C57BL/6J mice were fed a normal diet as the control group, and 30 ApoE-/- mice were fed a high-fat diet to establish the AS model, which were randomly divided into the model group, simvastatin group, and moxibustion group, with 10 mice in each group. From the first day of modeling, mice in the moxibustion group received mild moxibustion treatment at "Shenque"(CV8), "Yinlingquan"(SP9), bilateral "Neiguan"(PC6) and "Xuehai"(SP10) for 30 min per time;the mice in the simvastatin group were given simvastatin orally (2.5 mg·kg-1·d-1), with both treatments given once daily, 5 times a week, with a total intervention period of 12 weeks. The body weight and general condition of the mice were observed and recorded during the intervention period. After the intervention, the contents of serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were measured using an automated biochemistry analyzer. Hematoxylin eosin (HE) staining was used to observe the pathological morphology of the thoracic aorta. ELISA was used to measure the contents of serum oxidized low-density lipoprotein (ox-LDL) and superoxide dismutase (SOD) activity. Western blot and real-time fluorescent quantitative PCR analysis were used to detect the expression levels of SIRT1 and FOXO3a protein and mRNA in the thoracic aorta. RESULTS: Compared with the control group, body weight at the 8th and 12th week, serum TC, TG, LDL-C, and ox-LDL contents of the model group mice were significantly increased(P<0.05, P<0.01), while the HDL-C contents, SOD activity, and the expression levels of SIRT1 protein and mRNA in the thoracic aorta were significantly decreased(P<0.05, P<0.01). HE staining showed thickening of the aortic intima, endothelial cell degeneration, swelling, and shedding. Compared with the model group, body weight at the 8th and 12th week, serum TC, TG, LDL-C, and ox-LDL contents of mice in the simvastatin group and moxibustion group were significantly decreased(P<0.01), while the serum SOD activity, expression levels of SIRT1 protein and mRNA in the thoracic aorta were significantly increased(P<0.01). The HDL-C contents were significantly increased in the simvastatin group(P<0.05). The thoracic aortic structure was more intact in both groups, with a more regular lumen and orderly arrangement of the elastic membrane in the media, and a slight amount of endothelial cell degeneration and swelling in the intima. There was no significant difference in the evaluated indexes between the moxibustion group and the simvastatin group and the pathological changes in the thoracic aorta were similar between the two groups. CONCLUSIONS: Moxibustion can reduce the body weight of AS model mice, regulate lipid levels, repair vascular intima, and alleviate endothelial damage. Its mechanism of action may be related to the regulation of the SIRT1/FOXO3a signaling pathway to improve oxidative damage.


Assuntos
Apolipoproteínas E , Aterosclerose , Proteína Forkhead Box O3 , Moxibustão , Sirtuína 1 , Animais , Humanos , Masculino , Camundongos , Pontos de Acupuntura , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/terapia , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Sirtuína 1/metabolismo , Sirtuína 1/genética , Triglicerídeos/sangue , Triglicerídeos/metabolismo
2.
J Med Food ; 27(5): 385-395, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574296

RESUMO

This study aimed to investigate the effects and mechanism of Lactobacillus gasseri BNR17, a probiotic strain isolated from human breast milk, on dexamethasone-induced muscle loss in mice and cultured myotubes. BALB/c mice were intraperitoneally injected with dexamethasone, and orally administered L. gasseri BNR17 for 21 days. L. gasseri BNR17 treatment ameliorated dexamethasone-induced decline in muscle function, as evidenced by an increase in forelimb grip strength, treadmill running time, and rotarod retention time in both female and male mice. In addition, L. gasseri BNR17 treatment significantly increased the mass of the gastrocnemius and quadriceps muscles. Dual-energy X-ray absorptiometry showed a significant increase in lean body mass and a decrease in fat mass in both whole body and hind limb after treatment with L. gasseri BNR17. It was found that L. gasseri BNR17 treatment downregulated serum myostatin level and the protein degradation pathway composed of muscle-specific ubiquitin E3 ligases, MuRF1 and MAFbx, and their transcription factor FoxO3. In contrast, L. gasseri BNR17 treatment upregulated serum insulin-like growth factor-1 level and Akt-mTOR-p70S6K signaling pathway involved in protein synthesis in muscle. As a result, L. gasseri BNR17 treatment significantly increased the levels of major muscular proteins such as myosin heavy chain and myoblast determination protein 1. Consistent with in vivo results, L. gasseri BNR17 culture supernatant significantly ameliorated dexamethasone-induced C2C12 myotube atrophy in vitro. In conclusion, L. gasseri BNR17 ameliorates muscle loss by downregulating the protein degradation pathway and upregulating the protein synthesis pathway.


Assuntos
Dexametasona , Lactobacillus gasseri , Camundongos Endogâmicos BALB C , Fibras Musculares Esqueléticas , Proteínas Musculares , Músculo Esquelético , Atrofia Muscular , Probióticos , Ubiquitina-Proteína Ligases , Animais , Dexametasona/efeitos adversos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Camundongos , Feminino , Masculino , Proteínas Musculares/metabolismo , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/metabolismo , Atrofia Muscular/tratamento farmacológico , Lactobacillus gasseri/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Serina-Treonina Quinases TOR/metabolismo
3.
Fitoterapia ; 173: 105807, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38168566

RESUMO

Forkhead box protein 3a (FOXO3a) is a transcription factor that regulates various downstream targets upon its activation, leading to the upregulation of tumor suppressor and apoptotic pathways. Hence, targeting FOXO3a is an emerging strategy for cancer prevention and treatment. Recently, Natural Bioactive Compounds (NBCs) have been used in drug discovery for treating various disorders including cancer. Notably, several NBCs have been shown as potent FOXO3a activators. NBCs upregulate FOXO3a expressions through PI3K/Akt, MEK/ERK, AMPK, and IκB signaling pathways. FOXO3a promotes its anticancer effects by upregulating the levels of its downstream targets, including Bim, FasL, and Bax, leading to apoptosis. This review focuses on the dysregulation of FOXO3a in carcinogenesis and explores the potent FOXO3a activating NBCs for cancer prevention and treatment. Additionally, the review evaluates the safety and efficacy of NBCs. Looking ahead, NBCs are anticipated to become a cost-effective, potent, and safer therapeutic option for cancer, making them a focal point of research in the field of cancer prevention and treatment.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Forkhead Box O3/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Estrutura Molecular , Neoplasias/tratamento farmacológico , Apoptose , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/farmacologia , Linhagem Celular Tumoral
4.
Nutrition ; 118: 112273, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096603

RESUMO

BACKGROUND: Skeletal muscle synthesizes, stores, and releases body L-glutamine (GLN). Muscle atrophy due to disabling diseases triggers the activation of proteolytic and pro-apoptotic cell signaling, thus impairing the body's capacity to manage GLN content. This situation has a poor therapeutic prognosis. OBJECTIVE: Evaluating if oral GLN supplementation can attenuate muscle wasting mediated by elevated plasma cortisol and activation of caspase-3, p38MAPK, and FOXO3a signaling pathways in soleus and gastrocnemius muscles of rats submitted to 14-day bilateral hindlimbs immobilization. METHODS: Animals were randomly distributed into six groups: non-immobilized rats (Control), control orally supplemented with GLN (1 g kg-1) in solution with L-alanine (ALA: 0.61 g kg-1; GLN+ALA), control orally supplemented with dipeptide L-alanyl-L-glutamine (DIP; 1.49 g kg-1), hindlimbs immobilized rats (IMOB), IMOB orally GLN+ALA supplemented (GLN+ALA-IMOB), and IMOB orally DIP supplemented (DIP-IMOB). Plasma and muscle GLN concentration, plasma cortisol level, muscle caspase-3 activity, muscle p38MAPK and FOXO3a protein content (total and phosphorylated forms), and muscle cross-sectional area (CSA) were measured. RESULTS: Compared to controls, IMOB rats presented: a) increased plasma cortisol levels; b) decreased plasma and muscle GLN concentration; c) increased muscle caspase-3 activity; d) increased total and phosphorylated p38MAPK protein content; e) increased FOXO3a and decreased phosphorylated FOXO3a protein content; f) reduced muscle weight and CSA befitting to atrophy. Oral supplementation with GLN+ALA and DIP was able to significantly attenuate these effects. CONCLUSIONS: These findings attest that oral GLN supplementation in GLN+ALA solution or DIP forms attenuates rats' skeletal muscle mass wasting caused by disuse-mediated muscle atrophy.


Assuntos
Glutamina , Hidrocortisona , Atrofia Muscular , Animais , Ratos , Caspase 3/metabolismo , Suplementos Nutricionais , Dipeptídeos/metabolismo , Dipeptídeos/farmacologia , Dipeptídeos/uso terapêutico , Glutamina/farmacologia , Músculo Esquelético , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Transdução de Sinais , Proteína Forkhead Box O3/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
In Vitro Cell Dev Biol Anim ; 59(10): 739-746, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38038884

RESUMO

Epigallocatechin gallate (EGCG), a bioactive component in tea, displays broad anti-cancer effects. Our study was designed to evaluate the anti-cancer effects of EGCG on ovarian cancer and explored the underlying molecular mechanisms. To evaluate the in vitro inhibitory effects of EGCG against ovarian cancer, MTT assay, colony formation assay, apoptosis assay, and wound healing assay, were performed. Besides, the inhibitory effects of EGCG on tumor growth in the xenograft animal model were evaluated by measuring tumor volume and tumor weight. Moreover, Western blotting and qPCR were used to evaluate the levels of target genes and proteins. Treatment with EGCG inhibited cell migration and cell survival, and promoted cell apoptosis in A2780 and SKOV3 cells. Interestingly, treatment with EGCG inhibited the tumor growth in the xenograft animal model. The mechanistic study revealed that treatment with EGCG induced the activation of FOXO3A and suppressed the expression of c-Myc both in vitro and in vivo. Our findings demonstrate that EGCG suppress ovarian cancer cell growth, which may be due to its regulation on FOXO3A and c-Myc.


Assuntos
Proteína Forkhead Box O3 , Ácido Gálico , Neoplasias Ovarianas , Chá , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Apoptose/efeitos dos fármacos , Humanos , Linhagem Celular Tumoral , Feminino , Animais , Camundongos , Camundongos Nus , Camundongos Endogâmicos BALB C , Movimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sobrevivência Celular , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacologia , Proteína Forkhead Box O3/metabolismo , Xenoenxertos , Chá/química
6.
Rev Assoc Med Bras (1992) ; 69(8): e20230381, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37585996

RESUMO

OBJECTIVE: Folliculogenesis is a complex process involving various ovarian paracrine factors. During folliculogenesis, vitamin D3 and progesterone are significant for the proper development of follicles. This study aimed to investigate the effects of vitamin D3 and selective progesterone receptor modulator ulipristal acetate on ovarian paracrine factors. METHODS: In the study, 18 female Wistar-albino rats were randomly divided into three groups: control group (saline administration, n=6), vitamin D3 group (300 ng/day vitamin D3 oral administration, n=6), and UPA group (3 mg/kg/day ulipristal acetate oral administration, n=6). Ovarian tissue was analyzed by histochemistry and immunohistochemistry. For quantification of immunohistochemistry, the mean intensities of growth differentiation factor 9, bone morphogenetic protein 15, and forkhead box O3a expressions were measured by Image J and MATLAB. Blood samples were collected for the analysis of serum anti-Müllerian hormone levels by ELISA. RESULTS: Atretic follicles and hemorrhagic cystic structures were observed in the UPA group. After immunohistochemistry via folliculogenesis assessment markers, growth differentiation factor 9, bone morphogenetic protein 15, and cytoplasmic forkhead box O3a expressions decreased in the UPA group (p<0.05). Anti-Müllerian hormone level did not differ significantly between the experimental groups (p>0.05). CONCLUSION: Ulipristal acetate negatively affects folliculogenesis via ovarian paracrine factors. The recommended dietary vitamin D3 supplementation in healthy cases did not cause a significant change.


Assuntos
Hormônio Antimülleriano , Proteína Morfogenética Óssea 15 , Proteína Forkhead Box O3 , Fator 9 de Diferenciação de Crescimento , Ovário , Animais , Feminino , Ratos , Hormônio Antimülleriano/metabolismo , Proteína Morfogenética Óssea 15/metabolismo , Colecalciferol/farmacologia , Fator 9 de Diferenciação de Crescimento/metabolismo , Ratos Wistar , Proteína Forkhead Box O3/metabolismo
7.
Dis Markers ; 2022: 3229888, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222742

RESUMO

Pulmonary hypertension (PH) is a chronic and progressive disease caused by obstructions and functional changes of small pulmonary arteries. Current treatment options of PH are costly with patients needing long-term taking medicine. The traditional Chinese medicine (TCM) compound "Shufeiya Recipe" was used to intervene in monocrotaline- (MCT-) induced pulmonary hypertension in rats. The rats were randomly divided into the control group, model group, positive drug (Sildenafil) group, and Shufeiya Recipe low-, moderate-, and high-dose groups. The improvement effect of the Shufeiya Recipe on the mean pulmonary artery pressure (mPAP) was assessed in PH rats, and pathological staining was used to observe the pathological changes of lung tissue. The impact of the Shufeiya Recipe on oxidative stress damage in rats with pulmonary hypertension and the regulation of SIRT3/FOXO3a and its downstream signaling pathways were determined. The results showed that Shufeiya Recipe could significantly downregulate mPAP and improve lung histopathological changes; downregulate serum levels of reactive oxygen species (ROS); upregulate the concentrations of COX-1 and COX-2 and the activity of Mn-SOD; inhibit oxidative response damage; promote the protein expression of SIRT3, FOXO3a, p-PI3K, p-AKT, and p-eNOS; increase the level of expression of NO, sGC, cGMP, and PKG; and downregulate the level of protein expression of Ras, p-MEK1/2, p-ERK1/2 and c-fos. These results indicate that Shufeiya Recipe can improve MCT-induced pulmonary hypertension in rats by regulating SIRT3/FOXO3a and its downstream PI3K/AKT/eNOS and Ras/ERK signaling pathways.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Proteína Forkhead Box O3/metabolismo , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/metabolismo , Sirtuína 3/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/patologia , Masculino , Proteínas de Membrana/metabolismo , Monocrotalina , Óxido Nítrico Sintase/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/sangue , Transdução de Sinais , Superóxido Dismutase/metabolismo
8.
Biomed Res Int ; 2022: 8644356, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35036441

RESUMO

The aim of the present study was to investigate the effects and mechanism of oxymatrine (OMT) combined with compound yinchen granules (CYG) on the apoptosis of hepatocytes through the Akt/FoxO3a/Bim pathway in rats with acute liver failure. The rat model of acute liver failure was established using lipopolysaccharide/D-galactosamine (LPS/D-GalN). The expression of proteins in rat liver tissues was detected by western blot analysis. The mRNA expression of FoxO3a, Bim, Bax, Bcl-2, and caspase-3 in rat liver tissues was detected by RT-qPCR. The apoptosis rate of rat hepatocytes was determined by flow cytometry. Western blots showed that when compared with the normal group, the expression of p-Akt and p-FoxO3a in the model group was decreased (P < 0.05), while the expression of Bim was increased (P < 0.01). Compared with the model group, the expression of p-Akt and p-FoxO3a in the OMT group and the OMT combined with CYG groups was increased (P < 0.05 or P < 0.01), while the expression of Bim was decreased (P < 0.05). The Bax/Bcl-2 ratio and caspase-3 protein expression in the model group were significantly higher than those in the normal group (P < 0.01). The Bax/Bcl-2 ratio and the expression of caspase-3 protein in the OMT group and the OMT combined with CYG groups were significantly lower than those in the model group (P < 0.01). The results of RT-qPCR were consistent with those of western blot. The results of flow cytometry showed that the apoptosis rate of hepatocytes in the OMT group and the OMT combined with CYG groups was significantly lower than that in the model group (P < 0.05 or P < 0.01). We concluded that LPS/D-GalN can induce apoptosis of hepatocytes in rats with acute liver failure through the Akt/FoxO3a/Bim pathway. OMT combined with CYG inhibits apoptosis of hepatocytes in rats with acute liver failure via the Akt/FoxO3a/Bim pathway.


Assuntos
Alcaloides/farmacologia , Apoptose/efeitos dos fármacos , Proteína 11 Semelhante a Bcl-2/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Proteína Forkhead Box O3/metabolismo , Hepatócitos/metabolismo , Falência Hepática Aguda/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinolizinas/farmacologia , Transdução de Sinais , Animais , Artemisia , Hepatócitos/patologia , Falência Hepática Aguda/tratamento farmacológico , Masculino , Ratos , Ratos Sprague-Dawley
9.
Oxid Med Cell Longev ; 2021: 3830671, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925692

RESUMO

Polygonum cuspidatum (PC) has been reported to exert a potent antihyperlipidemic effect. However, its mechanisms of action and active ingredients remain elusive and require further research. In this study, we first conducted in vivo experiments to validate that Polygonum cuspidatum extract (PCE) could ameliorate the blood lipid level in hyperlipidemia model rats. Then, ultrahigh performance liquid chromatography coupled with Q-Exactive MS/MS (UPLC-QE-MS/MS) was applied to verify its 12 main active ingredients. The pharmacophore matching model was employed to predict the target point of the active ingredient, and 27 overlapping genes were identified via database and literature mining. String online database and Cytoscape software were utilized to construct a Protein-Protein Interaction (PPI) network, followed by function annotation analysis and pathway enrichment analysis. The results showed that the PI3K/AKT signaling pathway and its downstream FOXO3/ERα factors were significantly enriched. Furthermore, in vitro experiments were performed to determine the lipid content and oxidative stress (OS) indicators in OA-induced HepG2 cells, and immunofluorescence and western blotting analysis were carried out to analyze the effects of PCE on related proteins. Our experimental results show that the mechanism of antihyperlipidemic action of PCE is related to the activation of the PI3K/AKT signaling pathway and its downstream FOXO3/ERα factors, and polydatin and resveratrol are the main active ingredients in PCE that exert antihyperlipidemic effects.


Assuntos
Fallopia japonica/química , Proteína Forkhead Box O3/metabolismo , Hiperlipidemias/tratamento farmacológico , Hipolipemiantes/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Feminino , Proteína Forkhead Box O3/genética , Regulação da Expressão Gênica , Células Hep G2 , Humanos , Hiperlipidemias/etiologia , Hiperlipidemias/metabolismo , Hiperlipidemias/patologia , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/genética , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Ratos Wistar , Transdução de Sinais
10.
J Cardiovasc Pharmacol ; 78(5): e681-e689, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354001

RESUMO

ABSTRACT: Panax notoginseng saponins (PNS) are commonly used in the treatment of cardiovascular diseases. Whether PNS can protect myocardial ischemia-reperfusion injury by regulating the forkhead box O3a hypoxia-inducible factor-1 alpha (FOXO3a/HIF-1α) cell signaling pathway remains unclear. The purpose of this study was to investigate the protective effect of PNS on H9c2 cardiomyocytes through the FOXO3a/HIF-1α cell signaling pathway. Hypoxia and reoxygenation of H9C2 cells were used to mimic MIRI in vitro, and the cells were treated with PNS, 2-methoxyestradiol (2ME2), and LY294002." Cell proliferation, lactate dehydrogenase, and malonaldehyde were used to evaluate the degree of cell injury. The level of reactive oxygen species was detected with a fluorescence microscope. The apoptosis rate was detected by flow cytometry. The expression of autophagy-related proteins and apoptosis-related proteins was detected by western blot assay. PNS could reduce H9c2 hypoxia-reoxygenation injury by promoting autophagy and inhibiting apoptosis through the HIF-1α/FOXO3a cell signaling pathway. Furthermore, the protective effects of PNS were abolished by HIF-1α inhibitor 2ME2 and PI3K/Akt inhibitor LY294002. PNS could reduce H9c2 hypoxia-reoxygenation injury by promoting autophagy and inhibiting apoptosis through the HIF-1α/FOXO3a cell signaling pathway.


Assuntos
Fármacos Cardiovasculares/farmacologia , Proteína Forkhead Box O3/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Panax notoginseng , Extratos Vegetais/farmacologia , Saponinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Fármacos Cardiovasculares/isolamento & purificação , Linhagem Celular , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Panax notoginseng/química , Fosfatidilinositol 3-Quinase/metabolismo , Extratos Vegetais/isolamento & purificação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Saponinas/isolamento & purificação , Transdução de Sinais
11.
Oxid Med Cell Longev ; 2021: 6647107, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33953834

RESUMO

Acetylshikonin, a naphthoquinone, is a pigment compound derived from Arnebia sp., which is known for its anti-inflammatory potential. However, its anticarcinogenic effect has not been well investigated. Thus, in this study, we focused on investigating its apoptotic effects against HCT-15 and LoVo cells, which are human colorectal cancer cells. MTT assay, cell counting assay, and colony formation assay have shown acetylshikonin treatment induced cytotoxic and antiproliferative effects against colorectal cancer cells in a dose- and time-dependent manner. DNA fragmentation was observed via terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Also, the increase of subG1 phase in cell cycle arrest assay and early/late apoptotic rates in annexin V/propidium iodide (PI) double staining assay was observed, which indicates an apoptotic potential of acetylshikonin against colorectal cancer cells. 2',7'-Dichlorofluorescin diacetate (DCF-DA) staining was used to evaluate reactive oxygen species (ROS) generation in acetylshikonin-treated colorectal cancer cells. Fluorescence-activated cell sorting (FACS) analysis showed that acetylshikonin induced an increase in reactive oxygen species (ROS) levels and apoptotic rate in a dose- and time-dependent manner in HCT-15 and LoVo cells. In contrast, cotreatment with N-acetyl cysteine (NAC) has reduced ROS generation and antiproliferative effects in colorectal cancer cells. Western blotting analysis showed that acetylshikonin treatment induced increase of cleaved PARP, γH2AX, FOXO3, Bax, Bim, Bad, p21, p27, and active forms of caspase-3, caspase-7, caspase-9, caspase-6, and caspase-8 protein levels, while those of inactive forms were decreased. Also, the expressions of pAkt, Bcl-2, Bcl-xL, peroxiredoxin, and thioredoxin 1 were decreased. Furthermore, western blotting analysis of cytoplasmic and nuclear fractionated proteins showed that acetylshikonin treatment induced the nuclear translocation of FOXO3, which might result from DNA damage by the increased intracellular ROS level. This study represents apoptotic potential of acetylshikonin against colorectal cancer cells via translocation of FOXO3 to the nucleus and upregulation of ROS generation.


Assuntos
Antraquinonas/uso terapêutico , Pontos de Checagem do Ciclo Celular/genética , Neoplasias Colorretais/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Proteína Forkhead Box O3/metabolismo , Antraquinonas/farmacologia , Apoptose , Proliferação de Células , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Espécies Reativas de Oxigênio
12.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805714

RESUMO

Trifluoperazine (TFP), an antipsychotic drug approved by the Food and Drug Administration, has been show to exhibit anti-cancer effects. Pulmonary arterial hypertension (PAH) is a devastating disease characterized by a progressive obliteration of small pulmonary arteries (PAs) due to exaggerated proliferation and resistance to apoptosis of PA smooth muscle cells (PASMCs). However, the therapeutic potential of TFP for correcting the cancer-like phenotype of PAH-PASMCs and improving PAH in animal models remains unknown. PASMCs isolated from PAH patients were exposed to different concentrations of TFP before assessments of cell proliferation and apoptosis. The in vivo therapeutic potential of TFP was tested in two preclinical models with established PAH, namely the monocrotaline and sugen/hypoxia-induced rat models. Assessments of hemodynamics by right heart catheterization and histopathology were conducted. TFP showed strong anti-survival and anti-proliferative effects on cultured PAH-PASMCs. Exposure to TFP was associated with downregulation of AKT activity and nuclear translocation of forkhead box protein O3 (FOXO3). In both preclinical models, TFP significantly lowered the right ventricular systolic pressure and total pulmonary resistance and improved cardiac function. Consistently, TFP reduced the medial wall thickness of distal PAs. Overall, our data indicate that TFP could have beneficial effects in PAH and support the view that seeking new uses for old drugs may represent a fruitful approach.


Assuntos
Fármacos Cardiovasculares/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hipertensão Pulmonar/tratamento farmacológico , Hipóxia/prevenção & controle , Miócitos de Músculo Liso/efeitos dos fármacos , Trifluoperazina/farmacologia , Animais , Antipsicóticos/farmacologia , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Feminino , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Hemodinâmica/efeitos dos fármacos , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Hipóxia/induzido quimicamente , Hipóxia/genética , Hipóxia/fisiopatologia , Indóis/administração & dosagem , Monocrotalina/administração & dosagem , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Artéria Pulmonar/citologia , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Pirróis/administração & dosagem , Ratos , Ratos Sprague-Dawley , Survivina/genética , Survivina/metabolismo
13.
Biomed Pharmacother ; 139: 111590, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33865017

RESUMO

Muscle atrophy and weakness are the adverse effects of long-term or high dose usage of glucocorticoids. In the present study, we explored the effects of fucoxanthin (10 µM) on dexamethasone (10 µM)-induced atrophy in C2C12 myotubes and investigated its underlying mechanisms. The diameter of myotubes was observed under a light microscope, and the expression of myosin heavy chain (MyHC), proteolysis-related, autophagy-related, apoptosis-related, and mitochondria-related proteins was analyzed by western blots or immunoprecipitation. Fucoxanthin alleviates dexamethasone-induced muscle atrophy in C2C12 myotubes, indicated by increased myotubes diameter and expression of MyHC, decreased expression of muscle atrophy F-box (Atrogin-1) and muscle ring finger 1 (MuRF1). Through activating SIRT1, fucoxanthin inhibits forkhead box O (FoxO) transcriptional activity to reduce protein degradation, induces autophagy to enhance degraded protein clearance, promotes mitochondrial function and diminishes apoptosis. In conclusion, we identified fucoxanthin ameliorates dexamethasone induced C2C12 myotubes atrophy through SIRT1 activation.


Assuntos
Atrofia/induzido quimicamente , Atrofia/tratamento farmacológico , Dexametasona , Fibras Musculares Esqueléticas/efeitos dos fármacos , Xantofilas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Atrofia/genética , Atrofia/metabolismo , Autofagia/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Camundongos , Fibras Musculares Esqueléticas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo
14.
Life Sci ; 273: 119239, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33652033

RESUMO

Our previous work revealed the protective effect of Qiliqiangxin (QLQX) on cardiac microvascular endothelial cells (CMECs), but the underlying mechanisms remain unclear. We aimed to investigate whether QLQX exerts its protective effect against high-concentration angiotensin II (Ang II)-induced CMEC apoptosis through the autophagy machinery. CMECs were cultured in high-concentration Ang II (1 µM) medium in the presence or absence of QLQX for 48 h. We found that QLQX obviously inhibited Ang II-triggered autophagosome synthesis and apoptosis in cultured CMECs. QLQX-mediated protection against Ang II-induced CMEC apoptosis was reversed by the autophagy activator rapamycin. Specifically, deletion of ATG7 in cultured CMECs indicated a detrimental role of autophagy in Ang II-induced CMEC apoptosis. QLQX reversed Ang II-mediated ErbB2 phosphorylation impairment. Furthermore, inhibition of ErbB2 phosphorylation with lapatinib in CMECs revealed that QLQX-induced downregulation of Ang II-activated autophagy and apoptosis was ErbB2 phosphorylation-dependent via the AKT-FoxO3a axis. Activation of ErbB2 phosphorylation by Neuregulin-1ß achieved a similar CMEC-protective effect as QLQX in high-concentration Ang II medium, and this effect was also abolished by autophagy activation. These results show that the CMEC-protective effect of QLQX under high-concentration Ang II conditions could be partly attributable to QLQX-mediated ErbB2 phosphorylation-dependent downregulation of autophagy via the AKT-FoxO3a axis.


Assuntos
Angiotensina II/toxicidade , Autofagia , Medicamentos de Ervas Chinesas/farmacologia , Células Endoteliais/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/metabolismo , Animais , Apoptose , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Proteína Forkhead Box O3/genética , Masculino , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Ratos Sprague-Dawley , Receptor ErbB-2/genética , Transdução de Sinais , Vasoconstritores/toxicidade
15.
J Cell Mol Med ; 25(1): 203-216, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33314649

RESUMO

Myocardial remodelling is important pathological basis of HF, mitochondrial oxidative stress is a promoter to myocardial hypertrophy, fibrosis and apoptosis. ECH is the major active component of a traditional Chinese medicine Cistanches Herba, plenty of studies indicate it possesses a strong antioxidant capacity in nerve cells and tumour, it inhibits mitochondrial oxidative stress, protects mitochondrial function, but the specific mechanism is unclear. SIRT1/FOXO3a/MnSOD is an important antioxidant axis, study finds that ECH binds covalently to SIRT1 as a ligand and up-regulates the expression of SIRT1 in brain cells. We hypothesizes that ECH may reverse myocardial remodelling and improve heart function of HF via regulating SIRT1/FOXO3a/MnSOD signalling axis and inhibit mitochondrial oxidative stress in cardiomyocytes. Here, we firstly induce cellular model of oxidative stress by ISO with AC-16 cells and pre-treat with ECH, the level of mitochondrial ROS, mtDNA oxidative injury, MMP, carbonylated protein, lipid peroxidation, intracellular ROS and apoptosis are detected, confirm the effect of ECH in mitochondrial oxidative stress and function in vitro. Then, we establish a HF rat model induced by ISO and pre-treat with ECH. Indexes of heart function, myocardial remodelling, mitochondrial oxidative stress and function, expression of SIRT1/FOXO3a/MnSOD signalling axis are measured, the data indicate that ECH improves heart function, inhibits myocardial hypertrophy, fibrosis and apoptosis, increases the expression of SIRT1/FOXO3a/MnSOD signalling axis, reduces the mitochondrial oxidative damages, protects mitochondrial function. We conclude that ECH reverses myocardial remodelling and improves cardiac function via up-regulating SIRT1/FOXO3a/MnSOD axis and inhibiting mitochondrial oxidative stress in HF rats.


Assuntos
Proteína Forkhead Box O3/metabolismo , Glicosídeos/farmacologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Miocárdio/patologia , Sirtuína 1/metabolismo , Superóxido Dismutase/metabolismo , Remodelação Ventricular/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Cardiomegalia/complicações , Cardiomegalia/diagnóstico por imagem , Cardiomegalia/fisiopatologia , Linhagem Celular , Glicogênio/metabolismo , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/diagnóstico por imagem , Isoproterenol , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Miocárdio/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Regulação para Cima/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
J Ethnopharmacol ; 264: 113021, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32479885

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Liver fibrosis is an outcome of many chronic liver diseases and often results in cirrhosis, liver failure, and even hepatocarcinoma. Xiaoyaosan decoction (XYS) as a classical Traditional Chinese Medicine (TCM) formula is used to liver fibrosis in clinical practice while its mechanism is unclear. AIM OF THE STUDY: The aim of this study was to investigate the anti-fibrosis effect of XYS and to explore the molecular mechanisms by combining network pharmacology and transcriptomic technologies. MATERIALS AND METHODS: The carbon tetrachloride (CCl4)-induced liver fibrosis rat were treated with three doses of XYS. The liver fibrosis and function were evaluated by histopathological examination and serum biochemical detection. The fibrosis related protein a-SMA and collagen I were assessed by Western blot. Different expressed genes (DEGs) between XYS-treated group and model group were analyzed. The herb-component-target network was constructed combined the network pharmacology. The predict targets and pathways were validated by in vitro and in vivo experiments. RESULTS: With XYS treatment, the liver function was significantly improved, and fibrotic changes were alleviated. The a-SMA and collagen I expression levels in the liver were also decreased in XYS-treated rats compared with CCl4 model rats. 108 active components and 42 targets from 8 herbs constituted herb-compound-target network by transcriptomics and network pharmacology analysis. The KEGG pathway and GO enrichment analyses showed that the FoxO, TGFß, AMPK, MAPK, PPAR, and hepatitis B and C pathways were involved in the anti-fibrosis effects of XYS. In the liver tissues, p-FoxO3a and p-Akt expression levels were significantly increased in the CCl4 model group but decreased in the XYS-treated group. The TGFß1/Smad pathway and Akt/FoxO3 pathway were verified in LX2 cells by inhibiting phosphorylation of Smad3 and Akt activity, respectively. CONCLUSIONS: Our findings suggested that XYS markedly alleviated CCl4-induced liver fibrosis in histopathological and serum liver function analyses, and this effect may occur via the TGFß1/Smad and Akt/FoxO signaling pathways.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Proteína Forkhead Box O3/antagonistas & inibidores , Cirrose Hepática/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteína Smad3/antagonistas & inibidores , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Medicamentos de Ervas Chinesas/farmacologia , Proteína Forkhead Box O3/metabolismo , Cirrose Hepática/metabolismo , Masculino , Mapas de Interação de Proteínas/efeitos dos fármacos , Mapas de Interação de Proteínas/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo
17.
J Nutr Biochem ; 87: 108515, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33017608

RESUMO

This study investigated if the nephroprotective effect of Curcumin in streptozotocin-induced type 1 diabetes mellitus (DM) in rats involves downregulation/inhibition of p66Shc and examined the underlying mechanisms. Rats were divided into 4 groups (n = 12/group) as control, control + Curcumin (100 mg/kg), T1DM, and T1DM + Curcumin. Curcumin was administered orally to control or diabetic rats for 12 weeks daily. As compared to diabetic rats, Curcumin didn't affect either plasma glucose or insulin levels but significantly reduced serum levels of urea, blood urea nitrogen, and creatinine, and concurrently reduced albumin/protein urea and increased creatinine clearance. It also prevented the damage in renal tubules and mitochondria, mesangial cell expansion, the thickness of the basement membrane. Mechanistically, Curcumin reduced mRNA and protein levels of collagen I/III and transforming growth factor- ß-1 (TGF-ß1), reduced inflammatory cytokines levels, improved markers of mitochondrial function, and suppressed the release of cytochrome-c and the activation of caspase-3. In the kidneys of both control and diabetic rats, Curcumin reduced the levels of reactive oxygen species (ROS), increased mRNA levels of manganese superoxide dismutase (MnSOD) and gamma-glutamyl ligase, increased glutathione (GSH) and protein levels of Bcl-2 and MnSOD, and increased the nuclear levels of nuclear factor2 (Nrf2) and FOXO-3a. Besides, Curcumin reduced the nuclear activity of the nuclear factor-kappa B (NF-κB), downregulated protein kinase CßII (PKCßII), NADPH oxidase, and p66Shc, and decreased the activation of p66Shc. In conclusion, Curcumin prevents kidney damage in diabetic rats by activating Nrf2, inhibiting Nf-κB, suppressing NADPH oxidase, and downregulating/inhibiting PKCßII/p66Shc axis.


Assuntos
Antioxidantes/uso terapêutico , Curcumina/uso terapêutico , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Proteína Quinase C beta/antagonistas & inibidores , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Proteína Forkhead Box O3/metabolismo , Masculino , Proteína Quinase C beta/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/antagonistas & inibidores , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo
18.
J Ethnopharmacol ; 270: 113557, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33161026

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Mountain ginseng (Panax ginseng C.A. Meyer) is a medicinal herb with immune effects, muscle damage protection and energy metabolism effects. However, the pharmacological role of mountain ginseng in dexamethasone (DEXA)-induced muscle atrophy through the forkhead box O (FOXO) family is not understood. Therefore, we hypothesized that mountain ginseng inhibits skeletal muscle atrophy by decreasing muscle RING finger protein-1 (MuRF1) and atrogin1 through FOXO3 in L6 myotubes. METHODS: Rat myoblast (L6) cells or Sprague-Dawley (SD) rats were exposed to DEXA and mountain ginseng. The expressions of muscle atrophy targets such as MuRF1, atrogin1, MyHC (myosin heavy chain), HSP90, p-Akt, Akt, p-ERK1/2, ERK, FOXO3a, FOXO1, myostatin, and follistatin were analyzed by using Western blot analysis or real-time PCR. The diameter of myotubes was measured. Recruitment of glucocorticoid receptor (GR) or FOXO3a was analyzed by performing a chromatin immunoprecipitation (ChIP) assay. RESULTS: Mountain ginseng treatment reduced muscle weight loss and collagen deposition in DEXA-induced rats. Mountain ginseng treatment led to decreases in MuRF1, atrogin1, p-ERK1/2, FOXO3a, FOXO1, and myostatin. Also, mountain ginseng treatment led to increases in the diameter of myotubes, MyHC, HSP90, p-Akt, and follistatin. Treatment with mountain ginseng reduced enrichment of GR, FOXO3a, and RNA polymerase II on the promoters. CONCLUSIONS: These results suggest that mountain ginseng inhibits skeletal muscle atrophy by decreasing MuRF1 and atrogin1 through FOXO3a in L6 myotubes.


Assuntos
Proteína Forkhead Box O3/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/tratamento farmacológico , Panax/química , Extratos Vegetais/farmacologia , Complexo Repressor Polycomb 1/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Dexametasona/toxicidade , Proteína Forkhead Box O3/genética , Fibras Musculares Esqueléticas/efeitos dos fármacos , Proteínas Musculares/genética , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Extratos Vegetais/uso terapêutico , RNA Polimerase II/metabolismo , Ratos Sprague-Dawley , Receptores de Glucocorticoides/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética
19.
Acta Pharmacol Sin ; 42(5): 701-714, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32796955

RESUMO

Baicalein is a natural flavonoid extracted from the root of Scutellaria baicalensis that exhibits a variety of pharmacological activities. In this study, we investigated the molecular mechanisms underlying the protective effect of baicalein against cardiac hypertrophy in vivo and in vitro. Cardiac hypertrophy was induced in mice by injection of isoproterenol (ISO, 30 mg·kg-1·d-1) for 15 days. The mice received caudal vein injection of baicalein (25 mg/kg) on 3rd, 6th, 9th, 12th, and 15th days. We showed that baicalein administration significantly attenuated ISO-induced cardiac hypertrophy and restored cardiac function. The protective effect of baicalein against cardiac hypertrophy was also observed in neonatal rat cardiomyocytes treated with ISO (10 µM). In cardiomyocytes, ISO treatment markedly increased reactive oxygen species (ROS) and inhibited autophagy, which were greatly alleviated by pretreatment with baicalein (30 µM). We found that baicalein pretreatment increased the expression of catalase and the mitophagy receptor FUN14 domain containing 1 (FUNDC1) to clear ROS and promote autophagy, thus attenuated ISO-induced cardiac hypertrophy. Furthermore, we revealed that baicalein bound to the transcription factor FOXO3a directly, promoting its transcription activity, and transactivated catalase and FUNDC1. In summary, our data provide new evidence for baicalein and FOXO3a in the regulation of ISO-induced cardiac hypertrophy. Baicalein has great potential for the treatment of cardiac hypertrophy.


Assuntos
Autofagia/efeitos dos fármacos , Cardiomegalia/tratamento farmacológico , Cardiotônicos/uso terapêutico , Flavanonas/uso terapêutico , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Catalase/metabolismo , Proteína Forkhead Box O3/metabolismo , Isoproterenol , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Ratos , Espécies Reativas de Oxigênio/metabolismo
20.
Int J Oncol ; 57(6): 1307-1318, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33173975

RESUMO

Enhancing the radioresponsiveness of colorectal cancer (CRC) is essential for local control and prognosis. However, consequent damage to surrounding healthy cells can lead to treatment failure. We hypothesized that short­chain fatty acids (SCFAs) could act as radiosensitizers for cancer cells, allowing the administration of a lower and safer dose of radiation. To test this hypothesis, the responses of three­dimensional­cultured organoids, derived from CRC patients, to radiotherapy, as well as the effects of combined radiotherapy with the SCFAs butyrate, propionate and acetate as candidate radiosensitizers, were evaluated via reverse transcription­quantitative polymerase chain reaction, immunohistochemistry and organoid viability assay. Of the three SCFAs tested, only butyrate suppressed the proliferation of the organoids. Moreover, butyrate significantly enhanced radiation­induced cell death and enhanced treatment effects compared with administration of radiation alone. The radiation­butyrate combination reduced the proportion of Ki­67 (proliferation marker)­positive cells and decreased the number of S phase cells via FOXO3A. Meanwhile, 3/8 CRC organoids were found to be non­responsive to butyrate with lower expression levels of FOXO3A compared with the responsive cases. Notably, butyrate did not increase radiation­induced cell death and improved regeneration capacity after irradiation in normal organoids. These results suggest that butyrate could enhance the efficacy of radiotherapy while protecting the normal mucosa, thus highlighting a potential strategy for minimizing the associated toxicity of radiotherapy.


Assuntos
Ácido Butírico/administração & dosagem , Quimiorradioterapia Adjuvante/métodos , Neoplasias do Colo/terapia , Proteína Forkhead Box O3/metabolismo , Neoplasias Retais/terapia , Idoso , Idoso de 80 Anos ou mais , Técnicas de Cultura de Células , Colectomia , Colo/citologia , Colo/efeitos dos fármacos , Colo/patologia , Colo/efeitos da radiação , Neoplasias do Colo/patologia , Colonoscopia , Feminino , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Mucosa Intestinal/efeitos da radiação , Masculino , Pessoa de Meia-Idade , Organoides , Protectomia , Neoplasias Retais/patologia , Reto/citologia , Reto/efeitos dos fármacos , Reto/patologia , Reto/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA