Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 566
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Neurosci Lett ; 824: 137674, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38355005

RESUMO

Adult neural stem cells (NSCs) located in the two canonical neurogenic niches, the subventricular zone (SVZ) and the subgranular zone (SGZ), express the glial fibrillary acidic protein (GFAP). Recently, proliferative activity has been described in the hypothalamus although the characterization of hypothalamic neural stem/progenitor cells (NSPCs) is still uncertain. We therefore investigated whether hypothalamic GFAP-positive cells, as in the SVZ and SGZ, also have neurogenic potential. We used a transgenic mouse line expressing green fluorescent protein (GFP) under the control of the GFAP promoter. GFAP-GFP expressing cells are localized in the ependymal layer as well as in the parenchyma of the mediobasal hypothalamus (MBH) and express Sox2, a marker for NSCs. Interestingly, no sexual dimorphism was observed in the numbers of GFP + and GFP-Sox2 + cells. After cells sorting, these cells were able to generate neurospheres in vitro and give rise to neurons, astrocytes and oligodendrocytes. Taken together, these results show that hypothalamic GFAP-expressing cells form a population of NSPCs.


Assuntos
Células-Tronco Neurais , Camundongos , Animais , Linhagem da Célula , Proteína Glial Fibrilar Ácida/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Neurais/metabolismo , Camundongos Transgênicos , Hipotálamo/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
2.
J Neuroendocrinol ; 35(1): e13228, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36690381

RESUMO

Hippocampal neuropathology is a recognized feature of the spontaneously hypertensive rat (SHR). The hippocampal alterations associate with cognitive impairment. We have shown that hippocampal abnormalities are reversed by 17ß-estradiol, a steroid binding to intracellular receptors (estrogen receptor α and ß subtypes) or the membrane-located G-protein coupled estradiol receptor. Genistein (GEN) is a neuroprotective phytoestrogen which binds to estrogen receptor ß and G-protein coupled estradiol receptor. Here, we investigated whether GEN neuroprotection extends to SHR. For this purpose, we treated 5-month-old SHR for 2 weeks with 10 mg kg-1 daily s.c injections of GEN. We analyzed the expression of doublecortin+ neuronal progenitors, glial fibrillary acidic protein+ astrocytes and ionized calcium-binding adapter molecule 1+ microglia in the CA1 region and dentate gyrus of the hippocampus using immunocytochemistry, whereas a quantitative real-time polymerase chain reaction was used to measure the expression of pro- and anti-inflammatory factors tumor necrosis factor α, cyclooxygenase-2 and transforming growth factor ß. We also evaluated hippocampal dependent memory using the novel object recognition test. The results showed a decreased number of doublecortin+ neural progenitors in the dentate gyrus of SHR that was reversed with GEN. The number of glial fibrillary acidic protein+ astrocytes in the dentate gyrus and CA1 was increased in SHR but significantly decreased by GEN treatment. Additionally, GEN shifted microglial morphology from the predominantly activated phenotype present in SHR, to the more surveillance phenotype found in normotensive rats. Furthermore, treatment with GEN decreased the mRNA of the pro-inflammatory factors tumor necrosis factor α and cyclooxygenase-2 and increased the mRNA of the anti-inflammatory factor transforming growth factor ß. Discrimination index in the novel object recognition test was decreased in SHR and treatment with GEN increased this parameter. Our results indicate important neuroprotective effects of GEN at the neurochemical and behavioral level in SHR. Our data open an interesting possibility for proposing this phytoestrogen as an alternative therapy in hypertensive encephalopathy.


Assuntos
Genisteína , Fitoestrógenos , Ratos , Animais , Ratos Endogâmicos SHR , Genisteína/farmacologia , Fitoestrógenos/farmacologia , Fitoestrógenos/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Receptores de Estradiol/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ciclo-Oxigenase 2/metabolismo , Ratos Endogâmicos WKY , Hipocampo/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas do Domínio Duplacortina , RNA Mensageiro/metabolismo
3.
Behav Brain Res ; 438: 114156, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36243244

RESUMO

There are growing evidence indicating that the adolescent brain is persistently affected by the use of psychostimulant agents. In this regard, alcohol drinking has become rather common among the adolescents in many societies during the last decade. It is currently well known that long-term ethanol exposure deteriorates various cognitive functions such as learning and memory. Mechanistically, these adverse effects have been shown to be mediated by oxidative damage to central nervous system. On the other hand, Vit-B12 is known to improve cognitive performance by suppression of oxidative parameters. Thus, in the present study we aimed to test whether treatment by Vit-B12 could prevent ethanol-induced complications in mice using behavioral and biochemical methods. Different groups of male Syrian mice received ethanol, ethanol+Vit-B12, Vit-B12 alone, or saline during adolescence and then learning and memory functions were assessed by Morris water maze (MWM) and Passive Avoidance (PA) tests. Finally, mice were sacrificed for measurement of biochemical factors. Results indicated that, adolescent ethanol intake impairs learning and memory function through exacerbation of oxidative stress and Vit-B12 treatment improves these complications by re-establishment of oxidant/anti-oxidant balance in CNS. Moreover, we found that Vit-B12 prevents ethanol-induced reduction of BDNF and enhancement of GFAP and acetylcholinesterase (AChE) activity. In conclusion, it seems that Vit-B12 supplementation could be used as an effective therapeutic strategy to prevent learning and memory defects induced by chronic alcohol intake during adolescence.


Assuntos
Antioxidantes , Fator Neurotrófico Derivado do Encéfalo , Proteína Glial Fibrilar Ácida , Transtornos da Memória , Animais , Masculino , Camundongos , Acetilcolinesterase , Encéfalo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Etanol/efeitos adversos , Aprendizagem em Labirinto , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/prevenção & controle , Oxidantes , Estresse Oxidativo , Vitamina B 12/farmacologia , Vitamina B 12/uso terapêutico , Proteína Glial Fibrilar Ácida/metabolismo
4.
Sci Rep ; 12(1): 17717, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271117

RESUMO

Feeding behavior is a complex process that depends on the ability of the brain to integrate hormonal and nutritional signals, such as glucose. One glucosensing mechanism relies on the glucose transporter 2 (GLUT2) in the hypothalamus, especially in radial glia-like cells called tanycytes. Here, we analyzed whether a GLUT2-dependent glucosensing mechanism is required for the normal regulation of feeding behavior in GFAP-positive tanycytes. Genetic inactivation of Glut2 in GFAP-expressing tanycytes was performed using Cre/Lox technology. The efficiency of GFAP-tanycyte targeting was analyzed in the anteroposterior and dorsoventral axes by evaluating GFP fluorescence. Feeding behavior, hormonal levels, neuronal activity using c-Fos, and neuropeptide expression were also analyzed in the fasting-to-refeeding transition. In basal conditions, Glut2-inactivated mice had normal food intake and meal patterns. Implementation of a preceeding fasting period led to decreased total food intake and a delay in meal initiation during refeeding. Additionally, Glut2 inactivation increased the number of c-Fos-positive cells in the ventromedial nucleus in response to fasting and a deregulation of Pomc expression in the fasting-to-refeeding transition. Thus, a GLUT2-dependent glucose-sensing mechanism in GFAP-tanycytes is required to control food consumption and promote meal initiation after a fasting period.


Assuntos
Células Ependimogliais , Comportamento Alimentar , Transportador de Glucose Tipo 2 , Animais , Camundongos , Células Ependimogliais/metabolismo , Jejum , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Glucose/metabolismo , Hipotálamo/metabolismo , Neuropeptídeos/metabolismo , Pró-Opiomelanocortina/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transportador de Glucose Tipo 2/metabolismo
5.
J Ethnopharmacol ; 299: 115684, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36058480

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The classic traditional Chinese compound Naoluoxintong (NLXT) has been proven an effective remedy for ischemic stroke (IS). The protective effect of NLXT on neural stem cells (NSCs), however, remains unclear. AIM OF THE STUDY: To investigate the protective effect of NLXT on NSCs in rats with middle cerebral artery occlusion (MCAO) and the effect of Nestin expression in vivo. MATERIALS AND METHODS: Sprague-Dawley (SD) rats were randomly divided into three groups: the sham-operated group, the MCAO model group and the NLXT group. The MCAO model in rats was established by modified Longa wire embolization method. The sham-operated group, the model group and the NLXT groups were divided into three subgroups according to the sampling time points of 1 d, 3 d and 7 d after successful model-making. Immunofluorescence staining, including bromodeoxyuridine (BrdU)/glial fibrillary acidic protein (GFAP), ß-tubulinIII/GFAP, BrdU/doublecortin (DCX) and BrdU/neuronal nuclei (NeuN), was used to detect the proliferation and survival of NSCs in the hippocampal after drug administration. Protein expression of Nestin, DCX, GFAP and NeuN in the hippocampal was detected by Western blot (WB). RESULTS: Immunofluorescence experiment of Nestin labeled: on the first day, a few Nestin-positive cells were found in the hippocampal DG area. Afterwards, the number of Nestin-labeled positive cells in the model group increased, while the number of cells in the sham group did not fluctuate significantly. The number of positive cells in each administration group increased more than that in the model and normal group. ß-tubulin III/GFAP double-labeled: a small amount of double labeled cells was expressed in the normal group, and the number subsequently fluctuated little. In the model group, ß-tubulin III/GFAP positive cells increased initially after acute ischemia, and gradually decreased afterwards. In the NLXT-treated group, ß-Tubulin III positive cells were significantly increased on day 1, 3 and 7, while GFAP positive cells had little change. BrdU/DCX double-labeled: initially, a small number of BrdU/DCX-labeled positive cells were observed in the normal group and the model group, but there was no increasing trend over time. The positive cells in the NLXT group increased over time, and those in the seven-day group were significantly higher than those in the one-day and three-day groups. BrdU/NEUN double-labeled: in the normal group, BrdU/NEUN positive cells were enriched and distributed regularly. The number of positive cells in the model group was small and decreased gradually with time, and the decrease was most obvious on the third day. The number of positive cells in the NLXT group was significantly higher than that in the model group, and the number of positive cells in the seven-day group was significantly higher than that in the one-day and three-day groups. WB results reflected those three proteins, Nestin, NeuN and DCX, showed an increase in expression, except GFAP, which showed a decreasing trend. CONCLUSIONS: Preliminarily, NLXT can promote the migration and differentiation of NSCs. It may have a protective effect on the brain by promoting repair of brain tissue damage through upregulation of Nestin after IS.


Assuntos
Medicamentos de Ervas Chinesas , Nestina , Células-Tronco Neurais , Animais , Bromodesoxiuridina/metabolismo , Bromodesoxiuridina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas do Domínio Duplacortina , Medicamentos de Ervas Chinesas/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Nestina/efeitos dos fármacos , Nestina/genética , Nestina/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Tubulina (Proteína)/metabolismo
6.
Glia ; 70(11): 2062-2078, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35802021

RESUMO

Hypothalamic astrocytes are particularly affected by energy-dense food consumption. How the anatomical location of these glial cells and their spatial molecular distribution in the arcuate nucleus of the hypothalamus (ARC) determine the cellular response to a high caloric diet remains unclear. In this study, we investigated their distinctive molecular responses following exposure to a high-fat high-sugar (HFHS) diet, specifically in the ARC. Using RNA sequencing and proteomics, we showed that astrocytes have a distinct transcriptomic and proteomic profile dependent on their anatomical location, with a major proteomic reprogramming in hypothalamic astrocytes. By ARC single-cell sequencing, we observed that a HFHS diet dictates time- and cell- specific transcriptomic responses, revealing that astrocytes have the most distinct regulatory pattern compared to other cell types. Lastly, we topographically and molecularly characterized astrocytes expressing glial fibrillary acidic protein and/or aldehyde dehydrogenase 1 family member L1 in the ARC, of which the abundance was significantly increased, as well as the alteration in their spatial and molecular profiles, with a HFHS diet. Together, our results provide a detailed multi-omics view on the spatial and temporal changes of astrocytes particularly in the ARC during different time points of adaptation to a high calorie diet.


Assuntos
Astrócitos , Proteômica , Núcleo Arqueado do Hipotálamo/metabolismo , Astrócitos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Hipotálamo/metabolismo
7.
J Med Food ; 25(7): 695-709, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35834631

RESUMO

Spirulina platensis is a cyanobacterium with high protein content and presenting neuroprotective effects. Now, we studied a protein-enriched fraction (SPF), on behavior, neurochemical and immunohistochemical (IHC) assays in hemiparkinsonian rats, distributed into the groups: SO (sham-operated), 6-hydroxydopamine (6-OHDA), and 6-OHDA (treated with SPF, 5 and 10 mg/kg, p.o., 15 days). Afterward, animals were subjected to behavioral tests and euthanized, and brain areas used for neurochemical and IHC assays. SPF partly reversed the changes in the apomorphine-induced rotations, open field and forced swim tests, and also the decrease in striatal dopamine and 3,4-dihydroxyphenylacetic acid contents seen in hemiparkinsonian rats. Furthermore, SPF reduced brain oxidative stress and increased striatal expressions of tyrosine hydroxylase and dopamine transporter and significantly reduced hippocampal inducible nitric oxide synthase, cyclooxygenase-2 and glial fibrillary acidic protein expressions. The data suggest that the protein fraction from S. platensis, through its brain anti-inflammatory and antioxidative actions, exerts neuroprotective effects that could benefit patients affected by neurodegenerative diseases, like Parkinson's disease.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Spirulina , Extratos de Tecidos , Animais , Encéfalo/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Neuroproteção , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Oxidopamina , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Ratos , Spirulina/metabolismo , Extratos de Tecidos/metabolismo , Extratos de Tecidos/farmacologia , Extratos de Tecidos/uso terapêutico
8.
Planta Med ; 88(5): 367-379, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34116571

RESUMO

Alzheimer's disease is a growing general health concern with huge implications for individuals and society. Beta boswellic acid, a major compound of the Boswellia serrata plant, has long been used for the treatment of various inflammatory diseases. The exact mechanism of beta boswellic acid action in Alzheimer's disease pathogenesis remains unclear. In the current study, the protective effect of beta boswellic acid on streptozotocin-induced sporadic Alzheimer's disease was surveyed. Alzheimer's disease model was induced using streptozotocin followed by an assessment of the treatment effects of beta boswellic acid in the presence of streptozotocin. The prevention effect of beta boswellic acid on Alzheimer's disease induction by streptozotocin was evaluated. Behavioral activities in the treated rats were evaluated. Histological analysis was performed. Phosphorylation of tau protein at residues Ser396 and Ser404 and the expression of reelin protein were determined. Glial fibrillary acidic protein immunofluorescence staining was applied in the hippocampus regions. Our findings indicated that beta boswellic acid decreased traveled distance and escape latency in the prevention (beta boswellic acid + streptozotocin) and treatment (streptozotocin + beta boswellic acid) groups compared to control during the acquisition test. It increased "time spent" (%) in the target quadrant. Reelin level was enhanced in rats treated with beta boswellic acid. Tau hyperphosphorylation (p-tau404) and glial fibrillary acidic protein were decreased in the prevention group while the expression of reelin protein in both groups was increased. We could suggest that the anti-inflammatory property of beta boswellic acid is one of the main factors involving in the improvement of learning and memory in rats. Therefore the antineurodegenerative effect of beta boswellic acid may be due to its ability to reactivate reelin protein.


Assuntos
Doença de Alzheimer , Triterpenos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Animais , Proteína Glial Fibrilar Ácida/metabolismo , Fosforilação , Ratos , Estreptozocina , Triterpenos/farmacologia , Proteínas tau/metabolismo
9.
Acta Neurobiol Exp (Wars) ; 82(4): 448-461, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36748968

RESUMO

Brain benefits from physical exercise associated with antioxidant supplements such as flaxseed oil. This low cost and simple association may improve hippocampal plasticity, which may work as a preventive and effective therapy in neuroprotection and neuroplasticity processes. This work evaluated the effects of physical exercise with flaxseed oil supplementation (Linum usitatissimum L.) in the hippocampus of Wistar rats. We separated male Wistar rats into four experimental groups: control group (sedentary), a sedentary group with a supplemental diet of flaxseed oil, a group under exercise program with flaxseed oil supplementation, and a group exclusively under exercise program. The swimming exercise consisted of a progressive 28­day protocol followed by behavioral assessment, brain perfusion, microtomy, immunohistochemistry for glial fibrillary acidic protein (GFAP), cellular morphology, and optical density analysis. We used the ANOVA test with Tukey's post­test for behavioral analysis. The exercise program with flaxseed oil supplementation was able to alter the GFAP expression in astrocytes in the CA1, CA3 and dentate gyrus regions of the hippocampus and modulate the behavioral aspects of memory and anxiety.


Assuntos
Hipocampo , Óleo de Semente do Linho , Neuroglia , Condicionamento Físico Animal , Animais , Masculino , Ratos , Astrócitos/metabolismo , Suplementos Nutricionais , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Óleo de Semente do Linho/farmacologia , Neuroglia/metabolismo , Ratos Wistar
10.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203691

RESUMO

Frailty is a geriatric syndrome associated with both locomotor and cognitive decline, typically linked to chronic systemic inflammation, i.e., inflammaging. In the current study, we investigated the effect of a two-month oral supplementation with standardized extracts of H. erinaceus, containing a known amount of Erinacine A, Hericenone C, Hericenone D, and L-ergothioneine, on locomotor frailty and cerebellum of aged mice. Locomotor performances were monitored comparing healthy aging and frail mice. Cerebellar volume and cytoarchitecture, together with inflammatory and oxidative stress pathways, were assessed focusing on senescent frail animals. H. erinaceus partially recovered the aged-related decline of locomotor performances. Histopathological analyses paralleled by immunocytochemical evaluation of specific molecules strengthened the neuroprotective role of H. erinaceus able to ameliorate cerebellar alterations, i.e., milder volume reduction, slighter molecular layer thickness decrease and minor percentage of shrunken Purkinje neurons, also diminishing inflammation and oxidative stress in frail mice while increasing a key longevity regulator and a neuroprotective molecule. Thus, our present findings demonstrated the efficacy of a non-pharmacological approach, based on the dietary supplementation using H. erinaceus extract, which represent a promising adjuvant therapy to be associated with conventional geriatric treatments.


Assuntos
Envelhecimento Saudável/fisiologia , Hericium/metabolismo , Neuroproteção , Animais , Ciclo-Oxigenase 2/metabolismo , Fragilidade/metabolismo , Fragilidade/fisiopatologia , Proteína Glial Fibrilar Ácida/metabolismo , Envelhecimento Saudável/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/patologia , Interleucina-6/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Sirtuína 1/metabolismo , Superóxido Dismutase/metabolismo
11.
Brain Res ; 1768: 147586, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34289379

RESUMO

Cannabidiol is a natural herbal medicine known to protect the brain from traumatic brain injury (TBI). Here, a TBI rat model was established, with cannabidiol administered intraperitoneally at doses of 5, 10, or 20 mg/kg, 30 min before surgery and 6 h after surgery until sacrifice. Brain water content, body weight, and modified neurological severity scores were determined, and enzyme-linked immunosorbent assay, immunofluorescence staining, hematoxylin and eosin staining, Nissl staining, Evans-blue dye extravasation, and western blotting were performed. Results showed that cannabidiol decreased the number of aquaporin-4-positive and glial fibrillary acidic protein-positive cells. Cannabidiol also significantly reduced the protein levels of proinflammatory cytokines (TNF-α and IL-1ß) and significantly increased the expression of tight junction proteins (claudin-5 and occludin). Moreover, cannabidiol administration significantly mitigated water content in the brain after TBI and blood-brain barrier disruption and ameliorated the neurological deficit score after TBI. Cannabidiol administration improved the integrity and permeability of the blood-brain barrier and reduced edema in the brain after TBI.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Canabinoides/farmacologia , Animais , Aquaporina 4/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Edema Encefálico/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Canabinoides/metabolismo , Claudina-5/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Interleucina-1beta/metabolismo , Masculino , Modelos Animais , Fármacos Neuroprotetores/farmacologia , Ocludina/metabolismo , Permeabilidade/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
12.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065959

RESUMO

Brain tissue may be especially sensitive to electromagnetic phenomena provoking signs of neural stress in cerebral activity. Fifty-four adult female Sprague-Dawley rats underwent ELISA and immunohistochemistry testing of four relevant anatomical areas of the cerebrum to measure biomarkers indicating induction of heat shock protein 70 (HSP-70), glucocorticoid receptors (GCR) or glial fibrillary acidic protein (GFAP) after single or repeated exposure to 2.45 GHz radiation in the experimental set-up. Neither radiation regime caused tissue heating, so thermal effects can be ruled out. A progressive decrease in GCR and HSP-70 was observed after acute or repeated irradiation in the somatosensory cortex, hypothalamus and hippocampus. In the limbic cortex; however, values for both biomarkers were significantly higher after repeated exposure to irradiation when compared to control animals. GFAP values in brain tissue after irradiation were not significantly different or were even lower than those of nonirradiated animals in all brain regions studied. Our results suggest that repeated exposure to 2.45 GHz elicited GCR/HSP-70 dysregulation in the brain, triggering a state of stress that could decrease tissue anti-inflammatory action without favoring glial proliferation and make the nervous system more vulnerable.


Assuntos
Cérebro/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Biomarcadores/metabolismo , Cérebro/efeitos da radiação , Feminino , Regulação da Expressão Gênica/efeitos da radiação , Hipocampo/metabolismo , Hipocampo/efeitos da radiação , Hipotálamo/metabolismo , Hipotálamo/efeitos da radiação , Ratos , Ratos Sprague-Dawley , Córtex Somatossensorial/metabolismo , Córtex Somatossensorial/efeitos da radiação
13.
Biomolecules ; 11(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063630

RESUMO

The 3-O-acetyl-11-keto-ß-boswellic acid (AKBA) is the most active compound of Boswellia serrata proposed for treating neurodegenerative disorders, including Alzheimer's disease (AD), characterized in its early phase by alteration in mood. Accordingly, we have previously demonstrated that an intracerebroventricular injection of soluble amyloid beta 1-42 (Aß) peptide evokes a depressive-like phenotype in rats. We tested the protective effects of AKBA in the mouse model of an Aß-induced depressive-like phenotype. We evaluated the depressive-like behavior by using the tail suspension test (TST) and the splash test (ST). Behavioral analyses were accompanied by neurochemical quantifications, such as glutamate (GLU), kynurenine (KYN) and monoamines, and by biochemical measurements, such as glial fibrillary acid protein (GFAP), CD11b and nuclear factor kappa B (NF-kB), in mice prefrontal cortex (PFC) and hippocampus (HIPP). AKBA prevented the depressive-like behaviors induced by Aß administration, since we recorded a reduction in latency to initiate self-care and total time spent to perform self-care in the ST and reduced time of immobility in the TST. Likewise, the increase in GLU and KYN levels in PFC and HIPP induced by the peptide injection were reverted by AKBA administration, as well as the displayed increase in levels of GFAP and NF-kB in both PFC and HIPP, but not in CD11b. Therefore, AKBA might represent a food supplement suitable as an adjuvant for therapy of depression in early-stage AD.


Assuntos
Peptídeos beta-Amiloides/efeitos adversos , Antidepressivos/administração & dosagem , Depressão/tratamento farmacológico , Triterpenos/administração & dosagem , Animais , Antidepressivos/farmacologia , Biomarcadores/metabolismo , Depressão/induzido quimicamente , Depressão/metabolismo , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Ácido Glutâmico/metabolismo , Cinurenina/metabolismo , Masculino , Camundongos , Resultado do Tratamento , Triterpenos/farmacologia
14.
Theranostics ; 11(14): 6983-7004, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093866

RESUMO

Rationale: We recently demonstrated that the 'Metabesity' factor HMG20A regulates islet beta-cell functional maturity and adaptation to physiological stress such as pregnancy and pre-diabetes. HMG20A also dictates central nervous system (CNS) development via inhibition of the LSD1-CoREST complex but its expression pattern and function in adult brain remains unknown. Herein we sought to determine whether HMG20A is expressed in the adult CNS, specifically in hypothalamic astrocytes that are key in glucose homeostasis and whether similar to islets, HMG20A potentiates astrocyte function in response to environmental cues. Methods: HMG20A expression profile was assessed by quantitative PCR (QT-PCR), Western blotting and/or immunofluorescence in: 1) the hypothalamus of mice exposed or not to either a high-fat diet or a high-fat high-sucrose regimen, 2) human blood leukocytes and adipose tissue obtained from healthy or diabetic individuals and 3) primary mouse hypothalamic astrocytes exposed to either high glucose or palmitate. RNA-seq and cell metabolic parameters were performed on astrocytes treated or not with a siHMG20A. Astrocyte-mediated neuronal survival was evaluated using conditioned media from siHMG20A-treated astrocytes. The impact of ORY1001, an inhibitor of the LSD1-CoREST complex, on HMG20A expression, reactive astrogliosis and glucose metabolism was evaluated in vitro and in vivo in high-fat high-sucrose fed mice. Results: We show that Hmg20a is predominantly expressed in hypothalamic astrocytes, the main nutrient-sensing cell type of the brain. HMG20A expression was upregulated in diet-induced obesity and glucose intolerant mice, correlating with increased transcript levels of Gfap and Il1b indicative of inflammation and reactive astrogliosis. Hmg20a transcript levels were also increased in adipose tissue of obese non-diabetic individuals as compared to obese diabetic patients. HMG20A silencing in astrocytes resulted in repression of inflammatory, cholesterol biogenesis and epithelial-to-mesenchymal transition pathways which are hallmarks of reactive astrogliosis. Accordingly, HMG20A depleted astrocytes exhibited reduced mitochondrial bioenergetics and increased susceptibility to apoptosis. Neuron viability was also hindered in HMG20A-depleted astrocyte-derived conditioned media. ORY1001 treatment rescued expression of reactive astrogliosis-linked genes in HMG20A ablated astrocytes while enhancing cell surface area, GFAP intensity and STAT3 expression in healthy astrocytes, mimicking the effect of HMG20A. Furthermore, ORY1001 treatment protected against obesity-associated glucose intolerance in mice correlating with a regression of hypothalamic HMG20A expression, indicative of reactive astrogliosis attenuation with improved health status. Conclusion: HMG20A coordinates the astrocyte polarization state. Under physiological pressure such as obesity and insulin resistance that induces low grade inflammation, HMG20A expression is increased to induce reactive astrogliosis in an attempt to preserve the neuronal network and re-establish glucose homeostasis. Nonetheless, a chronic metabesity state or functional mutations will result in lower levels of HMG20A, failure to promote reactive astrogliosis and increase susceptibility of neurons to stress-induced apoptosis. Such effects could be reversed by ORY1001 treatment both in vitro and in vivo, paving the way for a new therapeutic approach for Type 2 Diabetes Mellitus.


Assuntos
Astrócitos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Gliose/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Adulto , Animais , Sobrevivência Celular/efeitos dos fármacos , Proteínas Correpressoras/antagonistas & inibidores , Dieta Hiperlipídica , Proteína Glial Fibrilar Ácida/metabolismo , Glucose/metabolismo , Proteínas de Grupo de Alta Mobilidade/antagonistas & inibidores , Proteínas de Grupo de Alta Mobilidade/genética , Histona Desmetilases/antagonistas & inibidores , Humanos , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , RNA Interferente Pequeno , RNA-Seq
15.
J Ethnopharmacol ; 275: 114099, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33831470

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ethnobotanical enquiries have revealed that Khaya anthotheca (Welw.) C.DC (Meliaceae) has anxiolytic properties and is used to alleviate vaginal dryness in postmenopausal women in Cameroon. The aim of this study was to evaluate the ameliorative effects of the aqueous extract of K. anthotheca in vanadium induced anxiety, memory loss and pathologies in the brain and ovary of mice. MATERIAL AND METHODS: Forty neonatal female mice were used in this study. All animals received vanadium (3 mg/kg BW/72 h, by lactation and i.p.) for 20 weeks except the Control group. At 16 weeks old, mice were divided into 5 groups (n = 8): Control group received distilled water; V-group received vanadium (V) (3 mg/kg BW every 72 h i.p.), V + Vit E group received vitamin E (500 mg/kg BW/72 h) and vanadium (V) (3 mg/kg BW/72 h i.p, simultaneously). V + KA 125 and V + KA 250 groups received K. anthotheca extract at the doses of 125 and 250 mg/kg BW/day respectively and vanadium (V) (3 mg/kg BW/72 h i.p, simultaneously).The treatment was done per os at 10 mL/kg of volume of administration for 4 weeks. To evalute anxiolytic effects and spatial working memory improved by the extract in mice, the elevated open space test and Y maze test were used respectively. After sacrifice, brains were harvested and pathologies were assessed using cresyl violet stainning and immunohistochemistry (GFAP, Iba-1 and MBP), while pathologies in the ovaries were assessed using immunohistochemistry (Collagen type 1) and H&E stainning. RESULTS: Results in the three sessions of elevated open space test showed that vanadium exposure resulted in a significant (p < 0.05; p < 0.01) increase of the latency of first entry in the slopes and a significant (p < 0.05; p < 0.01; p < 0.001) decrease of the time spent and number of entries in the slopes however, Khaya anthotheca treatment induced a significant (p < 0.05; p < 0.01) decrease of the latency of first entry in the slopes and a significant (p < 0.05; p < 0.01) increase of the time spent and number of entries in the slopes. In the Y maze test, vanadium exposure resulted in a significant decrease (p < 0.01) in the percentage of correct alternation, K. anthotheca extract at the dose of 250 mg/kg BW however induced a significant (p < 0.05) increase of this percentage of correct spontaneous alternation. In the brain, degeneration induced by vanadium exposure was marked by an increase of GFAP-immunoreactive cells, microgliosis and demyelination. The treatment with Khaya anthotheca extract at the dose of 250 mg/kg BW resulted in the preservation of cellular integrity in the same anatomical regions with reduced astroglial and microglial activation and prevented demyelination. In addition, vanadium exposure decreased Collagen type 1 expression in the ovaries and induced a deterioration of tertiary follicle. Khaya anthotheca treatment at the dose of 250 mg/kg BW induced an increase of expression of Collagen type 1 and alleviated deterioration of the microarchitecture of tertiary follicle induced by vanadium. CONCLUSION: These effects induced by K. anthotheca extract could justify the traditional use of this plant in Cameroonian traditional medicine to manage anxiety. Therefore, to minimise vanadium induced toxicity, the plant should be given more emphasis as a candidate in developing a modern phytodrug.


Assuntos
Ansiolíticos/farmacologia , Ansiedade/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Meliaceae/química , Transtornos da Memória/tratamento farmacológico , Ovário/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Animais Recém-Nascidos , Ansiolíticos/uso terapêutico , Ansiedade/induzido quimicamente , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Camarões , Colágeno Tipo I/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Medicina Tradicional , Transtornos da Memória/induzido quimicamente , Camundongos , Proteínas dos Microfilamentos/metabolismo , Proteína Básica da Mielina/metabolismo , Ovário/metabolismo , Ovário/patologia , Extratos Vegetais/uso terapêutico , Vanádio/toxicidade , Água/química
16.
Molecules ; 26(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918660

RESUMO

Angelica gigas Nakai root contains decursin which exerts beneficial properties such as anti-amnesic and anti-inflammatory activities. Until now, however, the neuroprotective effects of decursin against transient ischemic injury in the forebrain have been insufficiently investigated. Here, we revealed that post-treatment with decursin and the root extract saved pyramidal neurons in the hippocampus following transient ischemia for 5 min in gerbil forebrain. Through high-performance liquid chromatography, we defined that decursin was contained in the extract as 7.3 ± 0.2%. Based on this, we post-treated with 350 mg/kg of extract, which is the corresponding dosage of 25 mg/kg of decursin that exerted neuroprotection in gerbil hippocampus against the ischemia. In addition, behavioral tests were conducted to evaluate ischemia-induced dysfunctions via tests of spatial memory (by the 8-arm radial maze test) and learning memory (by the passive avoidance test), and post-treatment with the extract and decursin attenuated ischemia-induced memory impairments. Furthermore, we carried out histochemistry, immunohistochemistry, and double immunohistofluorescence. Pyramidal neurons located in the subfield cornu ammonis 1 (CA1) among the hippocampal subfields were dead at 5 days after the ischemia; however, treatment with the extract and decursin saved the pyramidal neurons after ischemia. Immunoglobulin G (IgG, an indicator of extravasation), which is not found in the parenchyma in normal brain tissue, was apparently shown in CA1 parenchyma from 2 days after the ischemia, but IgG leakage was dramatically attenuated in the CA1 parenchyma treated with the extract and decursin. Furthermore, astrocyte endfeet, which are a component of the blood-brain barrier (BBB), were severely damaged at 5 days after the ischemia; however, post-treatment with the extract and decursin dramatically attenuated the damage of the endfeet. In brief, therapeutic treatment of the extract of Angelica gigas Nakai root and decursin after 5 min transient forebrain ischemia protected hippocampal neurons from the ischemia, showing that ischemia-induced BBB leakage and damage of astrocyte endfeet was significantly attenuated by the extract and decursin. Based on these findings, we suggest that Angelica gigas Nakai root containing decursin can be employed as a pharmaceutical composition to develop a therapeutic strategy for brain ischemic injury.


Assuntos
Angelica/química , Astrócitos/patologia , Benzopiranos/uso terapêutico , Barreira Hematoencefálica/patologia , Butiratos/uso terapêutico , Ataque Isquêmico Transitório/patologia , Extratos Vegetais/uso terapêutico , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Benzopiranos/química , Benzopiranos/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Butiratos/química , Butiratos/farmacologia , Gerbillinae , Proteína Glial Fibrilar Ácida/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Imunoglobulina G/metabolismo , Masculino , Neuraminidase/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/farmacologia , Padrões de Referência , Memória Espacial/efeitos dos fármacos
17.
PLoS One ; 16(3): e0247573, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33684143

RESUMO

Kola nut (from Cola nitida) is popular in Nigeria and West Africa and is commonly consumed by pregnant women during the first trimester to alleviate morning sickness and dizziness. There is, however, a dearth of information on its effects on the developing brain. This study, therefore, investigated the potential effects of kola nut on the structure of the developing neonatal and juvenile cerebellum in the rat. Pregnant Wistar rats were administered water (as control) or crude (aqueous) kola nut extract at 400, 600, and 800 mg/kg body weight orally, from pregnancy to day 21 after birth. On postnatal days 1, 7, 14, 21 and 28, the pups were weighed, anaesthetised, sacrificed and perfused with neutral buffered formalin. Their brains were dissected out, weighed and the cerebellum preserved in 10% buffered formalin. Paraffin sections of the cerebellum were stained with haematoxylin and eosin for cerebellar cytoarchitecture, cresyl violet stain for Purkinje cell count, Glial Fibrillary Acidic Protein (GFAP) immunohistochemistry (IHC) for estimation of gliosis, and B-cell lymphoma 2 (Bcl-2) IHC for apoptosis induction. The kola nut-treated rats exhibited initial reduction in body and brain weights, persistent external granular layer, increased molecular layer thickness, and loss of Bergmann glia. Their Purkinje cells showed reduction in density, loss of dendrites and multiple layering, and their white matter showed neurodegeneration (spongiosis) and GFAP and Bcl-2 over-expression, with evidence of reactive astrogliosis. This study, therefore, demonstrates that kola nut, administered repeatedly at certain doses to pregnant dams, could disrupt normal postnatal cerebellar development in their pups. The findings suggest potential deleterious effects of excessive kola nut consumption on human brain and thus warrant further studies to understand the wider implications for human brain development.


Assuntos
Cerebelo/efeitos dos fármacos , Cerebelo/patologia , Cola/efeitos adversos , Extratos Vegetais/efeitos adversos , Administração Oral , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Cerebelo/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/análise , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Nigéria , Extratos Vegetais/administração & dosagem , Gravidez , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Ratos , Ratos Wistar
18.
Neurochem Res ; 46(5): 1092-1100, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33544325

RESUMO

Chronic opioid use changes brain chemistry in areas related to reward processes, memory, decision-making, and addiction. Both neurons and astrocytes are affected, ultimately leading to dependence. Passiflora incarnata L. (Passifloraceae) is the basis of frequently used herbals to manage anxiety and insomnia, with proven central nervous system depressant effects. Anti-addiction properties of P. incarnata have been reported. The aim of this study was to investigate the effect of a commercial extract of Passiflora incarnata (Sintocalmy®, Aché Laboratory) in the naloxone-induced jumping mice model of morphine withdrawal. In addition, glial fibrillary acidic protein (GFAP) and S100 calcium-binding protein B (S100B) levels were assessed in the frontal cortex and hippocampus, and DNA damage was verified on blood cells. In order to improve solubilization a Sintocalmy methanol extract (SME) was used. SME is mainly composed by flavonoids isovitexin and vitexin. The effects of SME 50, 100 and 200 mg/kg (i.p.) were evaluated in the naloxone-induced withdrawal syndrome in mice. SME 50 and SME 100 mg/kg decreased naloxone-induced jumping in morphine-dependent mice without reducing locomotor activity. No alterations were found in GFAP levels, however SME 50 mg/kg prevented the S100B increase in the frontal cortex and DNA damage. This study shows anti-addiction effects for a commercial standardized extract of P. incarnata and suggests the relevance of proper clinical assessment.


Assuntos
Ansiolíticos/uso terapêutico , Morfina/efeitos adversos , Extratos Vegetais/uso terapêutico , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Animais , Dano ao DNA/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Dependência de Morfina/tratamento farmacológico , Naloxona/uso terapêutico , Passiflora , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo
19.
J Mol Neurosci ; 71(8): 1598-1604, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33523385

RESUMO

The 2016 World Health Organization classification of central nervous system tumor firstly introduces molecular diagnosis to glioma, while the molecular features of adult thalamic gliomas (ATGs) in a relatively large sample have not been reported. We aimed at exploring molecular characteristics in ATGs. The data of 97 and 575 newly diagnosed ATGs and superficial gliomas (SGs) patients were collected, and we performed a comparative analysis of molecular characteristics between them. We analyzed expressions of molecules as follow: H3 K27M, isocitrate dehydrogenase1 (IDH1), Ki-67, O6-Methylguanine-DNA methyltransferase (MGMT) promoter, EGFR, p53, ATRX, GFAP, Oligo2, PTEN, MGMT, and MMP9 by immunohistochemistry. Direct gene sequencing was performed to test the H3 K27M, IDH1, and TERT promoter mutation. The median age at diagnosis of ATGs was 36.0 years, and majority of them were high-grade glioma. We found a significant difference in H3 K27M mutation (P = 0.003), IDH1 mutation (P < 0.001), MGMT promoter methylation (P = 0.005), and Ki67 > 0.1 (P < 0.001) between ATGs and SGs. The statuses of IDH1 (P < 0.001), MGMT promoter (P < 0.001), and Ki67 (P < 0.001) were significantly different between these two groups in lower-grade gliomas. And statuses of IDH1 (P < 0.001), Ki67 (P < 0.001), and EGFR (P = 0.032) were different between these two groups in high-grade gliomas. Only Ki67 > 0.1 was differentially expressed between lower- and high-grade gliomas in ATGs (P = 0.014). The high occurrence of H3 K27M mutation and Ki67 > 0.1, rare occurrence of IDH1 mutation, and MGMT promoter methylation in ATGs suggested that ATGs may be a distinct type of glioma entity.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Tálamo/metabolismo , Adulto , Idoso , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Metilação de DNA , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Glioma/genética , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Pessoa de Meia-Idade , Mutação , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteína Nuclear Ligada ao X/genética , Proteína Nuclear Ligada ao X/metabolismo
20.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35008772

RESUMO

We investigate glial cell activation and oxidative stress induced by taurine deficiency secondary to ß-alanine administration and light exposure. Two months old Sprague-Dawley rats were divided into a control group and three experimental groups that were treated with 3% ß-alanine in drinking water (taurine depleted) for two months, light exposed or both. Retinal and external thickness were measured in vivo at baseline and pre-processing with Spectral-Domain Optical Coherence Tomography (SD-OCT). Retinal cryostat cross sections were immunodetected with antibodies against various antigens to investigate microglial and macroglial cell reaction, photoreceptor outer segments, synaptic connections and oxidative stress. Taurine depletion caused a decrease in retinal thickness, shortening of photoreceptor outer segments, microglial cell activation, oxidative stress in the outer and inner nuclear layers and the ganglion cell layer and synaptic loss. These events were also observed in light exposed animals, which in addition showed photoreceptor death and macroglial cell reactivity. Light exposure under taurine depletion further increased glial cell reaction and oxidative stress. Finally, the retinal pigment epithelial cells were Fluorogold labeled and whole mounted, and we document that taurine depletion impairs their phagocytic capacity. We conclude that taurine depletion causes cell damage to various retinal layers including retinal pigment epithelial cells, photoreceptors and retinal ganglion cells, and increases the susceptibility of the photoreceptor outer segments to light damage. Thus, beta-alanine supplements should be used with caution.


Assuntos
Luz , Neuroglia/patologia , Neuroglia/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Degeneração Retiniana/patologia , Taurina/metabolismo , Animais , Contagem de Células , Sobrevivência Celular , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Microglia/patologia , Neuroglia/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Ratos Sprague-Dawley , Degeneração Retiniana/sangue , Degeneração Retiniana/diagnóstico por imagem , Epitélio Pigmentado da Retina/diagnóstico por imagem , Epitélio Pigmentado da Retina/patologia , Sinapses/metabolismo , Taurina/sangue , Tomografia de Coerência Óptica , beta-Alanina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA