Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Brain ; 146(6): 2298-2315, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508327

RESUMO

Huntingtin (HTT)-lowering therapies show great promise in treating Huntington's disease. We have developed a microRNA targeting human HTT that is delivered in an adeno-associated serotype 5 viral vector (AAV5-miHTT), and here use animal behaviour, MRI, non-invasive proton magnetic resonance spectroscopy and striatal RNA sequencing as outcome measures in preclinical mouse studies of AAV5-miHTT. The effects of AAV5-miHTT treatment were evaluated in homozygous Q175FDN mice, a mouse model of Huntington's disease with severe neuropathological and behavioural phenotypes. Homozygous mice were used instead of the more commonly used heterozygous strain, which exhibit milder phenotypes. Three-month-old homozygous Q175FDN mice, which had developed acute phenotypes by the time of treatment, were injected bilaterally into the striatum with either formulation buffer (phosphate-buffered saline + 5% sucrose), low dose (5.2 × 109 genome copies/mouse) or high dose (1.3 × 1011 genome copies/mouse) AAV5-miHTT. Wild-type mice injected with formulation buffer served as controls. Behavioural assessments of cognition, T1-weighted structural MRI and striatal proton magnetic resonance spectroscopy were performed 3 months after injection, and shortly afterwards the animals were sacrificed to collect brain tissue for protein and RNA analysis. Motor coordination was assessed at 1-month intervals beginning at 2 months of age until sacrifice. Dose-dependent changes in AAV5 vector DNA level, miHTT expression and mutant HTT were observed in striatum and cortex of AAV5-miHTT-treated Huntington's disease model mice. This pattern of microRNA expression and mutant HTT lowering rescued weight loss in homozygous Q175FDN mice but did not affect motor or cognitive phenotypes. MRI volumetric analysis detected atrophy in four brain regions in homozygous Q175FDN mice, and treatment with high dose AAV5-miHTT rescued this effect in the hippocampus. Like previous magnetic resonance spectroscopy studies in Huntington's disease patients, decreased total N-acetyl aspartate and increased myo-inositol levels were found in the striatum of homozygous Q175FDN mice. These neurochemical findings were partially reversed with AAV5-miHTT treatment. Striatal transcriptional analysis using RNA sequencing revealed mutant HTT-induced changes that were partially reversed by HTT lowering with AAV5-miHTT. Striatal proton magnetic resonance spectroscopy analysis suggests a restoration of neuronal function, and striatal RNA sequencing analysis shows a reversal of transcriptional dysregulation following AAV5-miHTT in a homozygous Huntington's disease mouse model with severe pathology. The results of this study support the use of magnetic resonance spectroscopy in HTT-lowering clinical trials and strengthen the therapeutic potential of AAV5-miHTT in reversing severe striatal dysfunction in Huntington's disease.


Assuntos
Doença de Huntington , MicroRNAs , Humanos , Animais , Camundongos , Lactente , Doença de Huntington/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Corpo Estriado/metabolismo , Encéfalo/patologia , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Modelos Animais de Doenças
2.
Neurobiol Dis ; 153: 105318, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33636386

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder characterized by accumulation of mutant huntingtin protein and significant loss of neurons in striatum and cortex. Along with motor difficulties, the HD patients also manifest anxiety and loss of cognition. Unfortunately, the clinically approved drugs only offer symptomatic relief and are not free from side effects. This study underlines the importance of glyceryl tribenzoate (GTB), an FDA-approved food flavoring ingredient, in alleviating HD pathology in transgenic N171-82Q mouse model. Oral administration of GTB significantly reduced mutant huntingtin level in striatum, motor cortex as well as hippocampus and increased the integrity of viable neurons. Furthermore, we found the presence of sodium benzoate (NaB), a FDA-approved drug for urea cycle disorders and glycine encephalopathy, in the brain of GTB-fed HD mice. Accordingly, NaB administration also markedly decreased huntingtin level in striatum and cortex. Glial activation is found to coincide with neuronal death in affected regions of HD brains. Interestingly, both GTB and NaB treatment suppressed activation of glial cells and inflammation in the brain. Finally, neuroprotective effect of GTB and NaB resulted in improved motor performance of HD mice. Collectively, these results suggest that GTB and NaB may be repurposed for HD.


Assuntos
Benzoatos/administração & dosagem , Aromatizantes/farmacologia , Conservantes de Alimentos/farmacologia , Proteína Huntingtina/efeitos dos fármacos , Doença de Huntington/metabolismo , Córtex Motor/efeitos dos fármacos , Neostriado/efeitos dos fármacos , Benzoato de Sódio/farmacologia , Administração Oral , Animais , Benzoatos/farmacologia , Ácido Benzoico/farmacologia , Análise da Marcha , Força da Mão , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/fisiopatologia , Camundongos , Camundongos Transgênicos , Córtex Motor/metabolismo , Neostriado/metabolismo , Teste de Campo Aberto , Teste de Desempenho do Rota-Rod , Benzoato de Sódio/metabolismo
3.
Nat Commun ; 11(1): 867, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054832

RESUMO

Alzheimer's disease (AD) is defined by progressive neurodegeneration, with oligomerization and aggregation of amyloid-ß peptides (Aß) playing a pivotal role in its pathogenesis. In recent years, the yeast Saccharomyces cerevisiae has been successfully used to clarify the roles of different human proteins involved in neurodegeneration. Here, we report a genome-wide synthetic genetic interaction array to identify toxicity modifiers of Aß42, using yeast as the model organism. We find that FMN1, the gene encoding riboflavin kinase, and its metabolic product flavin mononucleotide (FMN) reduce Aß42 toxicity. Classic experimental analyses combined with RNAseq show the effects of FMN supplementation to include reducing misfolded protein load, altering cellular metabolism, increasing NADH/(NADH + NAD+) and NADPH/(NADPH + NADP+) ratios and increasing resistance to oxidative stress. Additionally, FMN supplementation modifies Htt103QP toxicity and α-synuclein toxicity in the humanized yeast. Our findings offer insights for reducing cytotoxicity of Aß42, and potentially other misfolded proteins, via FMN-dependent cellular pathways.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Mononucleotídeo de Flavina/metabolismo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Genes Sintéticos , Genoma Fúngico , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Modelos Genéticos , Mutação , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Dobramento de Proteína , Proteólise , RNA-Seq , Riboflavina/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
4.
Nature ; 575(7781): 203-209, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31666698

RESUMO

Accumulation of mutant proteins is a major cause of many diseases (collectively called proteopathies), and lowering the level of these proteins can be useful for treatment of these diseases. We hypothesized that compounds that interact with both the autophagosome protein microtubule-associated protein 1A/1B light chain 3 (LC3)1 and the disease-causing protein may target the latter for autophagic clearance. Mutant huntingtin protein (mHTT) contains an expanded polyglutamine (polyQ) tract and causes Huntington's disease, an incurable neurodegenerative disorder2. Here, using small-molecule-microarray-based screening, we identified four compounds that interact with both LC3 and mHTT, but not with the wild-type HTT protein. Some of these compounds targeted mHTT to autophagosomes, reduced mHTT levels in an allele-selective manner, and rescued disease-relevant phenotypes in cells and in vivo in fly and mouse models of Huntington's disease. We further show that these compounds interact with the expanded polyQ stretch and could lower the level of mutant ataxin-3 (ATXN3), another disease-causing protein with an expanded polyQ tract3. This study presents candidate compounds for lowering mHTT and potentially other disease-causing proteins with polyQ expansions, demonstrating the concept of lowering levels of disease-causing proteins using autophagosome-tethering compounds.


Assuntos
Alelos , Avaliação Pré-Clínica de Medicamentos/métodos , Proteína Huntingtina/antagonistas & inibidores , Proteína Huntingtina/genética , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/genética , Mutação/genética , Animais , Ataxina-3/genética , Autofagossomos/metabolismo , Autofagia , Modelos Animais de Doenças , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Feminino , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/metabolismo , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/efeitos dos fármacos , Neurônios/citologia , Peptídeos/genética , Fenótipo , Reprodutibilidade dos Testes
5.
ACS Appl Mater Interfaces ; 11(38): 34725-34735, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31479233

RESUMO

Huntington's disease (HD) is an incurable disease with progressive loss of neural function, which is influenced by epigenetic, oxidative stress, metabolic, and nutritional factors. Targeting inhibition of huntingtin protein aggregation is a strategy for HD therapy, but the efficacy is unsatisfactory. Studies found that selenium (Se) levels in the brain are insufficient for HD disease individuals, while improvement in Se homeostasis in the brain may attenuate neuronal loss and dysfunction. In this study, we applied selenium nanoparticles (NPs) (Nano-Se) for the HD disease therapy by regulating HD-related neurodegeneration and cognitive decline based on transgenic HD models of Caenorhabditis elegans (C. elegans). At low dosages, Nano-Se NPs significantly reduced neuronal death, relieved behavioral dysfunction, and protected C. elegans from damages in stress conditions. The molecular mechanism further revealed that Nano-Se attenuated oxidative stress, inhibited the aggregation of huntingtin proteins, and downregulated the expression of histone deacetylase family members at mRNA levels. The results suggested that Nano-Se has great potential for Huntington's disease therapy. In conclusion, the mechanism about how Nano-Se NPs protect from damages in stress conditions and how they repair neural functions will benefit HD disease therapy. This study will also guide rational design of Nano-Se NPs or other selenium compounds to improve HD therapy in the future.


Assuntos
Caenorhabditis elegans , Doença de Huntington , Nanopartículas , Estresse Oxidativo/efeitos dos fármacos , Selênio , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Nanomedicina , Nanopartículas/química , Nanopartículas/uso terapêutico , Neurônios/metabolismo , Neurônios/patologia , Selênio/química , Selênio/farmacologia
6.
Phytomedicine ; 59: 152756, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31004885

RESUMO

BACKGROUND: According to Compendium of Materia Medica, Gastrodia elata (GE) Blume as a top grade and frequently prescribed herbal medicine has been used in treating dizziness, headaches, and epilepsy, indicating a neuroprotective effect. Because GE is capable of suppressing a hyperactive liver and thus calming endogenous wind, and because Huntington's disease (HD) can be classified as a phenomenon of disturbed liver wind, it is suggested that GE might be beneficial in treating HD. However, although current studies support GE for the prevention of diverse neurodegenerations such as HD, its detailed mechanisms remain elusive. PURPOSE: To investigate the molecular mechanism of GE in preventing HD by focusing on mitochondrial morphology, which is highly associated with HD etiology and thus proposed as a therapeutic target of neurodegenerations. STUDY DESIGN/METHODS: The overexpression of the mutant huntingtin (mHTT) gene in rat pheochromocytoma (PC12) cells was used as an in vitro cell model of HD. A filter retardation assay was applied to measure protein aggregations during HTT expression. Cotransfection with mitochondrial fusion and fission genes was used to test their relationships with HTT aggregates by monitoring with a confocal laser scanning microscope and filter retardation assay. Western blot analysis was used to estimate protein expression under different drug treatments or cotransfections with other related genes. RESULTS: The overexpression of mutant but not normal HTT genes significantly resulted in protein aggregations in PC12 cells. GE dose-dependently attenuated mHTT-induced protein aggregations and free radical formations. GE significantly reversed mHTT-induced mitochondrial fragmentation and dysregulation of mitochondrial fusion and fission molecules. The overexpression of mitochondrial fusion genes attenuated mHTT-induced protein aggregations. Further, Mdivi-1, a DRP1 fission molecule inhibitor, significantly reversed mHTT-induced protein aggregations and mitochondrial fragmentation. CONCLUSION: GE attenuated mHTT aggregations through the control of mitochondrial fusion and the fission pathway.


Assuntos
Gastrodia , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Mitocôndrias/efeitos dos fármacos , Extratos Vegetais/farmacologia , Agregados Proteicos/efeitos dos fármacos , Animais , Proteína Huntingtina/genética , Doença de Huntington/tratamento farmacológico , Mitocôndrias/metabolismo , Mutação , Células PC12 , Fitoterapia , Extratos Vegetais/uso terapêutico , Ratos
7.
Nat Rev Drug Discov ; 17(10): 729-750, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30237454

RESUMO

The 25 years since the identification of the gene responsible for Huntington disease (HD) have stood witness to profound discoveries about the nature of the disease and its pathogenesis. Despite this progress, however, the development of disease-modifying therapies has thus far been slow. Preclinical validation of the therapeutic potential of disrupted pathways in HD has led to the advancement of pharmacological agents, both novel and repurposed, for clinical evaluation. The most promising therapeutic approaches include huntingtin (HTT) lowering and modification as well as modulation of neuroinflammation and synaptic transmission. With clinical trials for many of these approaches imminent or currently ongoing, the coming years are promising not only for HD but also for more prevalent neurodegenerative disorders, such as Alzheimer and Parkinson disease, in which many of these pathways have been similarly implicated.


Assuntos
Doença de Huntington/tratamento farmacológico , Preparações Farmacêuticas/administração & dosagem , Animais , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Humanos , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Methods Mol Biol ; 1780: 497-523, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29856033

RESUMO

Advances in molecular biology and genetics have been used to elucidate the fundamental genetic mechanisms underlying central nervous system (CNS) diseases, yet disease-modifying therapies are currently unavailable for most CNS conditions. Antisense oligonucleotides (ASOs) are synthetic single stranded chains of nucleic acids that bind to a specific sequence on ribonucleic acid (RNA) and regulate posttranscriptional gene expression. Decreased gene expression with ASOs might be able to reduce production of the disease-causing protein underlying dominantly inherited neurodegenerative disorders. Huntington's disease (HD), which is caused by a CAG repeat expansion in exon 1 of the huntingtin (HTT) gene and leads to the pathogenic expansion of a polyglutamine (PolyQ ) tract in the N terminus of the huntingtin protein (Htt), is a prime candidate for ASO therapy.State-of-the art translational science techniques can be applied to the development of an ASO targeting HTT RNA, allowing for a data-driven, stepwise progression through the drug development process. A deep and wide-ranging understanding of the basic, preclinical, clinical, and epidemiologic components of drug development will improve the likelihood of success. This includes characterizing the natural history of the disease, including evolution of biomarkers indexing the underlying pathology; using predictive preclinical models to assess the putative gain-of-function of mutant Htt protein and any loss-of-function of the wild-type protein; characterizing toxicokinetic and pharmacodynamic effects of ASOs in predictive animal models; developing sensitive and reliable biomarkers to monitor target engagement and effects on pathology that translate from animal models to patients with HD; establishing a drug delivery method that ensures reliable distribution to relevant CNS tissue; and designing clinical trials that move expeditiously from proof of concept to proof of efficacy. This review focuses on the translational science techniques that allow for efficient and informed development of an ASO for the treatment of HD.


Assuntos
Proteína Huntingtina/genética , Doença de Huntington/terapia , Oligonucleotídeos Antissenso/uso terapêutico , Reparo Gênico Alvo-Dirigido/métodos , Pesquisa Translacional Biomédica/métodos , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Desenvolvimento de Medicamentos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/patologia , Macaca fascicularis , Camundongos , Mutação , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Precursores de RNA/genética , Ratos , Resultado do Tratamento
9.
Neuromolecular Med ; 20(1): 112-123, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29435951

RESUMO

Huntington's disease (HD) is a monogenic disorder, caused by mutations in the HTT gene which result in expansion of CAG triplets. The product of the mutated gene is misfolded huntingtin protein that forms aggregates leading to impairment of neuronal function, neurodegeneration, motor abnormalities and cognitive deficits. No effective cure is currently available for HD. Here we studied effects of genistein (trihydroxyisoflavone) on a HD cellular model consisting of HEK-293 cells transfected with a plasmid bearing mutated HTT gene. Both level of mutated huntingtin and number of aggregates were significantly decreased in genistein-treated HD cell model. This led to increased viability of the cells. Autophagy was up-regulated while inhibition of lysosomal functions by chloroquine impaired the genistein-mediated degradation of the mutated huntingtin aggregates. Hence, we conclude that through stimulating autophagy, genistein removes the major pathogenic factor of HD. Prolonged induction of autophagy was suspected previously to be risky for patients due to putative adverse effects; however, genistein has been demonstrated recently to be safe and suitable for long-term therapies even at doses as high as 150 mg/kg/day. Therefore, results presented in this report provide a basis for the use of genistein in further studies on development of the potential treatment of HD.


Assuntos
Autofagia/efeitos dos fármacos , Genisteína/farmacologia , Doença de Huntington/tratamento farmacológico , Autofagia/fisiologia , Cloroquina/toxicidade , Avaliação Pré-Clínica de Medicamentos , Genes Reporter , Células HEK293 , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/patologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Agregação Patológica de Proteínas/tratamento farmacológico , Agregação Patológica de Proteínas/prevenção & controle , Proteínas Recombinantes de Fusão/metabolismo
10.
Phytomedicine ; 39: 75-84, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29433686

RESUMO

BACKGROUND: According to the Compendium of Materia Medica, Gastrodia elata (GE) Blume is a top-grade herbal medicine frequently used to treat dizziness, headaches, tetanus, and epilepsy, suggesting that it affects neurological functions. Although studies have supported its effects in preventing diverse neurodegenerations such as Huntington's disease (HD), its mechanisms require further investigation. PURPOSE: To investigate the ability of the molecular mechanism of GE to prevent mutant huntingtin (mHTT) protein aggregation by focusing on mitochondrial function and biogenesis, which have been proposed as the therapeutic targets of HD. STUDY DESIGN/METHODS: mHtt overexpression in pheochromocytoma (PC12) cells was used as an in vitro cell model of HD. A retardation assay was applied to measure protein aggregation during Htt expression. Cotransfection with transcriptional genes was used to test their relationships with HTT aggregates by monitoring with a confocal laser scanning microscope. Western blot analysis was used to estimate protein expression under different drug treatments or when cotransfected with other related genes. RESULTS: Mutant, abnormal Htt overexpression resulted in significant protein aggregation in PC12 cells. GE dose-dependently attenuated mHTT aggregates and increased cyclic-AMP response element-binding protein (CREB) phosphorylation. Adenosine A2A-R receptor (A2A-R) antagonist counteracted these phenomena. CREB overexpression significantly attenuated mHTT aggregation. GE increased the promoter activity and expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Furthermore, wild-type PGC-1α but not mutant PGC-1α overexpression attenuated mHTT aggregates. CONCLUSION: GE attenuated mHtt aggregation by mediating mitochondrial function and biogenesis through the A2A-R/PKA/CREB/PGC-1α-dependent pathway.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Gastrodia/química , Proteína Huntingtina/genética , Mitocôndrias/efeitos dos fármacos , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Medicamentos de Ervas Chinesas/administração & dosagem , Humanos , Proteína Huntingtina/metabolismo , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/farmacologia , Células PC12 , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas , Ratos
11.
Adv Clin Exp Med ; 26(5): 751-760, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29068569

RESUMO

BACKGROUND: Oxidative stress accompanies neurodegeneration and also causes abnormalities in thiaminedependent processes. These processes have been reported to be diminished in the brains of patients with several neurodegenerative diseases. OBJECTIVES: The aim of this work was to conduct a comparative analysis of the impact of supplemented thiamine on the viability of human B lymphocytes with CAG abnormal expanded huntingtin gene (mHTT) (GM13509) and control, B lymphocytes without mHTT (GM14467) through the following studies: determination of the supplemented thiamine concentrations, which are effective for cell growth stimulation after incubation in thiamine deficit conditions; determination of cell capability to intake the exogenous thiamine; evaluation of exogenous thiamine influence on the profile of the genes related to thiamine and energy metabolism; determination of ATP synthesis and activities of thiamine-dependent enzymes, KGDHC and BCKDHC in the intact cells and upon the exogenous thiamine. MATERIAL AND METHODS: The following methods were used: EZ4U test for cell growth analysis; HPLC for determination of thiamine intake and ATP synthesis, qRT-PCR for evaluation of the gene profiles and spectrophotometric method for KGDHC and BCKDHC activities determination. RESULTS: Maximal cell growth stimulation was observed at 2.5 mM in GM14467 up to 135% of the control culture and at 5.0 mM in GM13509 cells up to 165% of the control culture. Native levels of total ATP and KGDHC and BCKDHC activities in both cell types were comparable and did not changed upon thiamine deficit or supplementation. GM13509 cells showed more of an increase in growth stimulation upon thiamine supplementation than GM14467 cells and this effect was reflected in the increase of intracellular thiamine concentration. CONCLUSIONS: The above results and reported changes in expression of GAPDH, IDH1 and SLC19A3 genes observed upon thiamine deficit conditions suggest that intracellular thiamine status and energy metabolism can have a role in HD pathogenesis.


Assuntos
Linfócitos B/efeitos dos fármacos , Doença de Huntington/tratamento farmacológico , Tiamina/farmacologia , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Trifosfato de Adenosina/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Estudos de Casos e Controles , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Metabolismo Energético/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/imunologia , Doença de Huntington/metabolismo , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Complexo Cetoglutarato Desidrogenase/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Tiamina/metabolismo , Fatores de Tempo
12.
PLoS Genet ; 13(1): e1006578, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28114340

RESUMO

The mammalian Y chromosome plays a critical role in spermatogenesis. However, the exact functions of each gene in the Y chromosome have not been completely elucidated, partly owing to difficulties in gene targeting analysis of the Y chromosome. Zfy was first proposed to be a sex determination factor, but its function in spermatogenesis has been recently elucidated. Nevertheless, Zfy gene targeting analysis has not been performed thus far. Here, we adopted the highly efficient CRISPR/Cas9 system to generate individual Zfy1 or Zfy2 knockout (KO) mice and Zfy1 and Zfy2 double knockout (Zfy1/2-DKO) mice. While individual Zfy1 or Zfy2-KO mice did not show any significant phenotypic alterations in fertility, Zfy1/2-DKO mice were infertile and displayed abnormal sperm morphology, fertilization failure, and early embryonic development failure. Mass spectrometric screening, followed by confirmation with western blot analysis, showed that PLCZ1, PLCD4, PRSS21, and HTT protein expression were significantly deceased in spermatozoa of Zfy1/2-DKO mice compared with those of wild-type mice. These results are consistent with the phenotypic changes seen in the double-mutant mice. Collectively, our strategy and findings revealed that Zfy1 and Zfy2 have redundant functions in spermatogenesis, facilitating a better understanding of fertilization failure and early embryonic development failure.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fertilização/genética , Espermatogênese/genética , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Deleção de Genes , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Masculino , Camundongos , Fosfoinositídeo Fosfolipase C/genética , Fosfoinositídeo Fosfolipase C/metabolismo , Fosfolipase C delta/genética , Fosfolipase C delta/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Fatores de Transcrição/genética , Cromossomo Y/genética
13.
Pharmacol Res ; 115: 25-44, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27838509

RESUMO

Pathogenesis of neurodegenerative diseases such as Parkinson's disease (PD) and Huntington's disease (HD) are closely related to the formation of protein aggregates and inclusion body. For instance, active autophagic components from Chinese herbal medicines (CHMs) are highlighted to modulate neurodegeneration via degradation of disease proteins. In this study, the neuroprotective effect of the purified Hedera helix (HH) fraction containing both hederagenin and α-hederin, is confirmed by the improvement of motor deficits in PD mice model. Furthermore, hederagenin and α-hederin derived from HH are confirmed as novel autophagic enhancers. Both compounds reduce the protein level of mutant huntingtin with 74 CAG repeats and A53T α-synuclein, and inhibit the oligomerization of α-synuclein and inclusion formation of huntingtin, via AMPK-mTOR dependent autophagy induction. Both hederagenin and α-hederin induce autophagy and promote the degradation of neurodegenerative mutant disease proteins in vitro, suggesting the therapeutic roles of HH in neurodegenerative disorders.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Ácido Oleanólico/análogos & derivados , Saponinas/farmacologia , Adenilato Quinase/metabolismo , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Hedera/química , Proteína Huntingtina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neurodegenerativas/metabolismo , Ácido Oleanólico/farmacologia , Células PC12 , Ratos , Serina-Treonina Quinases TOR/metabolismo , alfa-Sinucleína/metabolismo
14.
Zh Vyssh Nerv Deiat Im I P Pavlova ; 66(5): 515-540, 2016 09.
Artigo em Russo | MEDLINE | ID: mdl-30695399

RESUMO

The role of autophagy in cell survival and suppression of neurodegeneration was considered. We discussed its involvement in Alzheimer's, Parkinson's, and Huntington's diseases connected with accumulation of amy- loid-ß, α-synuclein, and huntingtin, respectively. Autophagy is reduced in these diseases and in aging as well to various extent. Elimination of accumulated toxic proteins and structures is performed by autophagy mech- anisms (chaperon-mediated autophagy, macroautophagy, selected autophagy) in an interaction with ubiqui- tin-proteasome system. In many cases activation of mTOR-dependent autophagy and mTOR-independent regulatory pathways lead to the therapeutic effect of inhibition of neurodegeneration in cell cultures and an- imal models. Some autophagy enhancers such as resveratrol, metformin, rilmenidine, lithium, and curcumin are tested now in clinical trials.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Autofagia/efeitos dos fármacos , Doença de Huntington/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Autofagia/genética , Ensaios Clínicos como Assunto , Regulação da Expressão Gênica , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Metformina/uso terapêutico , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA