Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 44(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37952941

RESUMO

Peripheral sensitization is one of the primary mechanisms underlying the pathogenesis of chronic pain. However, candidate molecules involved in peripheral sensitization remain incompletely understood. We have shown that store-operated calcium channels (SOCs) are expressed in the dorsal root ganglion (DRG) neurons. Whether SOCs contribute to peripheral sensitization associated with chronic inflammatory pain is elusive. Here we report that global or conditional deletion of Orai1 attenuates Complete Freund's adjuvant (CFA)-induced pain hypersensitivity in both male and female mice. To further establish the role of Orai1 in inflammatory pain, we performed calcium imaging and patch-clamp recordings in wild-type (WT) and Orai1 knockout (KO) DRG neurons. We found that SOC function was significantly enhanced in WT but not in Orai1 KO DRG neurons from CFA- and carrageenan-injected mice. Interestingly, the Orai1 protein level in L3/4 DRGs was not altered under inflammatory conditions. To understand how Orai1 is modulated under inflammatory pain conditions, prostaglandin E2 (PGE2) was used to sensitize DRG neurons. PGE2-induced increase in neuronal excitability and pain hypersensitivity was significantly reduced in Orai1 KO mice. PGE2-induced potentiation of SOC entry (SOCE) was observed in WT, but not in Orai1 KO DRG neurons. This effect was attenuated by a PGE2 receptor 1 (EP1) antagonist and mimicked by an EP1 agonist. Inhibition of Gq/11, PKC, or ERK abolished PGE2-induced SOCE increase, indicating PGE2-induced SOCE enhancement is mediated by EP1-mediated downstream cascade. These findings demonstrate that Orai1 plays an important role in peripheral sensitization. Our study also provides new insight into molecular mechanisms underlying PGE2-induced modulation of inflammatory pain.Significance Statement Store-operated calcium channel (SOC) Orai1 is expressed and functional in dorsal root ganglion (DRG) neurons. Whether Orai1 contributes to peripheral sensitization is unclear. The present study demonstrates that Orai1-mediated SOC function is enhanced in DRG neurons under inflammatory conditions. Global and conditional deletion of Orai1 attenuates complete Freund's adjuvant (CFA)-induced pain hypersensitivity. We also demonstrate that prostaglandin E2 (PGE2) potentiates SOC function in DRG neurons through EP1-mediated signaling pathway. Importantly, we have found that Orai1 deficiency diminishes PGE2-induced SOC function increase and reduces PGE2-induced increase in neuronal excitability and pain hypersensitivity. These findings suggest that Orai1 plays an important role in peripheral sensitization associated with inflammatory pain. Our study reveals a novel mechanism underlying PGE2/EP1-induced peripheral sensitization. Orai1 may serve as a potential target for pathological pain.


Assuntos
Cálcio , Dinoprostona , Animais , Feminino , Masculino , Camundongos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Dinoprostona/farmacologia , Dinoprostona/metabolismo , Adjuvante de Freund/toxicidade , Adjuvante de Freund/metabolismo , Gânglios Espinais/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Dor
2.
J Mol Med (Berl) ; 99(3): 373-382, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33409552

RESUMO

Vascular calcification may result from stimulation of osteogenic signalling with upregulation of the transcription factors CBFA1, MSX2 and SOX9, as well as alkaline phosphatase (ALPL), which degrades and thus inactivates the calcification inhibitor pyrophosphate. Osteogenic signalling further involves upregulation of the Ca2+-channel ORAI1. The channel is activated by STIM1 and then accomplishes store-operated Ca2+ entry. ORAI1 and STIM1 are upregulated by the serum & glucocorticoid inducible kinase 1 (SGK1) which is critically important for osteogenic signalling. Stimulators of vascular calcification include vasopressin. The present study explored whether exposure of human aortic smooth muscle cells (HAoSMCs) to vasopressin upregulates ORAI1 and/or STIM1 expression, store-operated Ca2+ entry and osteogenic signalling. To this end, HAoSMCs were exposed to vasopressin (100 nM, 24 h) without or with additional exposure to ORAI1 blocker MRS1845 (10 µM) or SGK1 inhibitor GSK-650394 (1 µM). Transcript levels were measured using q-RT-PCR, cytosolic Ca2+-concentration ([Ca2+]i) by Fura-2-fluorescence, and store-operated Ca2+ entry from increase of [Ca2+]i following re-addition of extracellular Ca2+ after store depletion with thapsigargin (1 µM). As a result, vasopressin enhanced the transcript levels of ORAI1 and STIM1, store-operated Ca2+ entry, as well as the transcript levels of CBFA1, MSX2, SOX9 and ALPL. The effect of vasopressin on store-operated Ca2+ entry as well as on transcript levels of CBFA1, MSX2, SOX9 and ALPL was virtually abrogated by MRS1845 and GSK-650394. In conclusion, vasopressin stimulates expression of ORAI1/STIM1, thus augmenting store-operated Ca2+ entry and osteogenic signalling. In HAoSMCs, vasopressin (VP) upregulates Ca2+ channel ORAI1 and its activator STIM1. VP upregulates store-operated Ca2+ entry (SOCE) and osteogenic signalling (OS). VP-induced SOCE, OS and Ca2+-deposition are disrupted by ORAI1 inhibitor MRS1845. VP-induced SOCE, OS and Ca2+-deposition are disrupted by SGK1 blocker GSK-650394. KEY MESSAGES: • In HAoSMCs, vasopressin (VP) upregulates Ca2+ channel ORAI1 and its activator STIM1. • VP upregulates store-operated Ca2+ entry (SOCE) and osteogenic signalling (OS). • VP-induced SOCE, OS and Ca2+-deposition are disrupted by ORAI1 inhibitor MRS1845. • VP-induced SOCE, OS and Ca2+-deposition are disrupted by SGK1 blocker GSK-650394.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Proteína ORAI1/biossíntese , Calcificação Vascular/metabolismo , Vasopressinas/farmacologia , Aorta/citologia , Benzoatos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/fisiologia , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Humanos , Proteínas Imediatamente Precoces/antagonistas & inibidores , Proteínas Imediatamente Precoces/fisiologia , Miócitos de Músculo Liso/metabolismo , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiologia , Nitrendipino/análogos & derivados , Nitrendipino/farmacologia , Proteína ORAI1/antagonistas & inibidores , Proteína ORAI1/genética , Osteogênese/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/fisiologia , Molécula 1 de Interação Estromal/biossíntese , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/fisiologia , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Calcificação Vascular/prevenção & controle
3.
Cell Mol Neurobiol ; 41(3): 563-587, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32430779

RESUMO

Cisplatin (CDDP) is one of the most effective chemotherapeutic agents, used for the treatment of diverse tumors, including neuroblastoma and glioblastoma. CDDP induces cell death through different apoptotic pathways. Despite its clinical benefits, CDDP causes several side effects and drug resistance.[Pt(O,O'-acac)(γ-acac)(DMS)], namely PtAcacDMS, a new platinum(II) complex containing two acetylacetonate (acac) and a dimethylsulphide (DMS) in the coordination sphere of metal, has been recently synthesized and showed 100 times higher cytotoxicity than CDDP. Additionally, PtAcacDMS was associated to a decreased neurotoxicity in developing rat central nervous system, also displaying great antitumor and antiangiogenic activity both in vivo and in vitro. Thus, based on the knowledge that several chemotherapeutics induce cancer cell death through an aberrant increase in [Ca2+]i, in the present in vitro study we compared CDDP and PtAcacDMS effects on apoptosis and intracellular Ca2+ dynamics in human glioblastoma T98G cells, applying a battery of complementary techniques, i.e., flow cytometry, immunocytochemistry, electron microscopy, Western blotting, qRT-PCR, and epifluorescent Ca2+ imaging. The results confirmed that (i) platinum compounds may induce cell death through an aberrant increase in [Ca2+]i and (ii) PtAcacDMS exerted stronger cytotoxic effect than CDDP, associated to a larger increase in resting [Ca2+]i. These findings corroborate the use of PtAcacDMS as a promising approach to improve Pt-based chemotherapy against gliomas, either by inducing a chemosensitization or reducing chemoresistance in cell lineages resilient to CDDP treatment.


Assuntos
Neoplasias Encefálicas/patologia , Cisplatino/efeitos adversos , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Glioma/patologia , Compostos Organoplatínicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/ultraestrutura , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/genética , Glioma/ultraestrutura , Homeostase/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Am J Chin Med ; 47(7): 1627-1641, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31659911

RESUMO

Intracellular calcium signaling is crucial for type 2 helper T cell and mast cell activation, which is essential for allergic inflammation. It is initiated by antigen-mediated receptor stimulation that triggers store-operated calcium entry (SOCE) via ORAI1 calcium channel. Flos Magnoliae (FM) is widely used to treat allergic diseases such as allergic rhinitis and asthma. Although many studies have reported that FM regulates intracellular calcium signaling, research on the exact type of calcium channel modulated by FM is scarce. Therefore, we hypothesized that the anti-allergic effects of FM might result from ORAI1 inhibition in T cells. We investigated whether a 70% ethanolic extract of FM (FMEtOH) and its constituents inhibit ORAI1 channel activity and subsequent T cell activation. We performed conventional whole-cell patch clamp studies in hSTIM1 and hORAI1-overexpressing HEK293T cells (HEKORAI1). Intracellular calcium concentration was determined using Fura-2 dye and cytokine production measurement in Jurkat T lymphocytes. FMEtOH (0.03 mg/mL) and its fractions, especially hexane fraction (FMHex, 0.01 mg/mL), significantly inhibited SOCE and IL-2 cytokine production in Jurkat T lymphocytes. GC/MS analysis showed linoleic acid (LA) as the major component of FMHex. FMHex at 0.01 mg/mL (equivalent to 10 µM LA) inhibited not only SOCE but also IL-2 production, as well as CD3/CD28 receptor co-stimulation induced calcium signaling in Jurkat T lymphocytes. FMEtOH and LA suppressed CD4+ T lymphocyte activation, at least in part, by inhibiting ISOCE. Thus, ISOCE inhibition may be a potential strategy to inhibit immune responses in inflammation.


Assuntos
Cálcio/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Ácido Linoleico/farmacologia , Magnolia/química , Linfócitos T/efeitos dos fármacos , Medicamentos de Ervas Chinesas/análise , Flores/química , Humanos , Interleucina-2/genética , Interleucina-2/imunologia , Ácido Linoleico/análise , Ativação Linfocitária/efeitos dos fármacos , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
5.
J Anim Sci ; 97(8): 3326-3336, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31299068

RESUMO

Hypocalcemia in dairy cows is often associated with inflammation-related disorders such as metritis and mastitis. The protein encoded by the Ca2+ release-activated calcium modulator 1 (ORAI1) gene is a membrane Ca2+ channel subunit that is activated when Ca2+ stores are depleted. Polymorphonuclear neutrophils (PMNL) have a crucial role in the defense against infection through migration, adhesion, chemotaxis, phagocytosis, and reactive oxygen species (ROS) production in response to pathogens. Whether hypocalcemia affects the activity of PMNL and if ORAI1 is involved remains unknown. To address this, PMNL were isolated at 3 d of calving from dairy cows diagnosed as clinically healthy (n = 20, CONTROL) or with plasma concentration of calcium < 2.0 mmol/L as a criterion for diagnosis of subclinical hypocalcemia (n = 20, HYPOCAL). PMNL isolated from both groups of cows were treated with or without the sarcoendoplasmic Ca2+ ATPase inhibitor thapsigargin, Ca2+ ionophore Ionomycin, and ORAI1 blocker 2APB. The intracellular Ca2+ concentration, ORAI1 abundance, ROS, phagocytosis rate, migration, and adhering capacity of treated PMNL were evaluated. Some of the in vitro assays also included use of small interfering ORAI1 RNA (siORAI1), 100 nM 1,25(OH)2D3, or 100 nM parathyroid hormone (PTH). Intracellular Ca2+ concentration was markedly lower in HYPOCAL. In addition, ORAI1 was detected in PMNL plasma membrane via FACS and was markedly lower in cows with HYPOCAL. Migration, adhesion capacity, and phagocytosis rate of PMNL were lower in response to HYPOCAL. Furthermore, plasma and PMNL concentration of nucleosome assembly protein (NAP2) and pro-platelet basic protein (CXCL7) was markedly lower with HYPOCAL. All these changes were associated with lower ROS production by PMNL. Thapsigargin and ionomycin treatment in vitro increased ORAI1 expression, migration of PMNL, adhering capacity, phagocytosis rate, and ROS production; conversely, those effects were abrogated by siORAI1 and ORAI1 inhibitor 2APB treatment. Also cytosolic Ca2+ concentration and ORAI1 abundance were increased by 1,25(OH)2D3 and PTH supplementation. Overall, the data indicate that failure of PMNL to uptake Ca2+ due to downregulation of ORAI1 during subclinical hypocalcemia is a factor contributing to impaired PMNL function. In addition, plasma PTH or 1,25(OH)2D3 could regulate ORAI1 and also participate in the regulation of PMNL activity.


Assuntos
Cálcio/metabolismo , Bovinos/genética , Regulação da Expressão Gênica , Hipocalcemia/veterinária , Proteína ORAI1/metabolismo , Animais , Bovinos/imunologia , Bovinos/fisiologia , Indústria de Laticínios , Feminino , Hipocalcemia/imunologia , Inflamação/veterinária , Neutrófilos/imunologia , Proteína ORAI1/genética , Hormônio Paratireóideo/metabolismo , Fagocitose , Período Pós-Parto , RNA Interferente Pequeno , Espécies Reativas de Oxigênio/metabolismo
6.
FASEB J ; 32(1): 404-416, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28928244

RESUMO

Zinc, an essential micronutrient, has a cancer preventive role. Zinc deficiency has been shown to contribute to the progression of esophageal cancer. Orai1, a store-operated Ca2+ entry (SOCE) channel, was previously reported to be highly expressed in tumor tissues removed from patients with esophageal squamous cell carcinoma (ESCC) with poor prognosis, and elevation of its expression contributes to both hyperactive intracellular Ca2+ oscillations and fast cell proliferation in human ESCC cells. However, the molecular basis of cancer preventive functions of zinc and its association with Orai1-mediated cell proliferation remains unknown. The present study shows that zinc supplementation significantly inhibits proliferation of ESCC cell lines and that the effect of zinc is reversible with N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine, a specific Zn2+ chelator, whereas nontumorigenic esophageal epithelial cells are significantly less sensitive to zinc treatment. Fluorescence live cell imaging revealed that extracellular Zn2+ exerted rapid inhibitory effects on Orai1-mediated SOCE and on intracellular Ca2+ oscillations in the ESCC cells. Knockdown of Orai1 or expression of Orai1 mutants with compromised zinc binding significantly diminished sensitivity of the cancer cells to zinc treatment in both SOCE and cell proliferation analyses. These data suggest that zinc may inhibit cell proliferation of esophageal cancer cells through Orai1-mediated intracellular Ca2+ oscillations and reveal a possible molecular basis for zinc-induced cancer prevention and Orai1-SOCE signaling pathway in cancer cells.-Choi, S., Cui, C., Luo, Y., Kim, S.-H., Ko, J.-K., Huo, X., Ma, J., Fu, L.-W., Souza, R. F., Korichneva, I., Pan, Z. Selective inhibitory effects of zinc on cell proliferation in esophageal squamous cell carcinoma through Orai1.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Proteína ORAI1/metabolismo , Zinco/farmacologia , Substituição de Aminoácidos , Sinalização do Cálcio/efeitos dos fármacos , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quelantes/farmacologia , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago , Etilenodiaminas/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Modelos Biológicos , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteína ORAI1/antagonistas & inibidores , Proteína ORAI1/genética
7.
Am J Physiol Heart Circ Physiol ; 314(2): H359-H369, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29101179

RESUMO

Endothelial dysfunction in chronic hypoxia (CH)-induced pulmonary hypertension is characterized by reduced store-operated Ca2+ entry (SOCE) and diminished Ca2+-dependent production of endothelium-derived vasodilators. We recently reported that SOCE in pulmonary arterial endothelial cells (PAECs) is tightly regulated by membrane cholesterol and that decreased membrane cholesterol is responsible for impaired SOCE after CH. However, the ion channels involved in cholesterol-sensitive SOCE are unknown. We hypothesized that cholesterol facilitates SOCE in PAECs through the interaction of Orai1 and stromal interaction molecule 1 (STIM1). The role of cholesterol in Orai1-mediated SOCE was initially assessed using CH exposure in rats (4 wk, 380 mmHg) as a physiological stimulus to decrease PAEC cholesterol. The effects of Orai1 inhibition with AnCoA4 on SOCE were examined in isolated PAEC sheets from control and CH rats after cholesterol supplementation, substitution of endogenous cholesterol with epicholesterol (Epichol), or vehicle treatment. Whereas cholesterol restored endothelial SOCE in CH rats, both Epichol and AnCoA4 attenuated SOCE only in normoxic controls. The Orai1 inhibitor had no further effect in cells pretreated with Epichol. Using cultured pulmonary endothelial cells to allow better mechanistic analysis of the molecular components of cholesterol-regulated SOCE, we found that Epichol, AnCoA4, and Orai1 siRNA each inhibited SOCE compared with their respective controls. Epichol had no additional effect after knockdown of Orai1. Furthermore, Epichol substitution significantly reduced STIM1-Orai1 interactions as assessed by a proximity ligation assay. We conclude that membrane cholesterol is required for the STIM1-Orai1 interaction necessary to elicit endothelial SOCE. Furthermore, reduced PAEC membrane cholesterol after CH limits Orai1-mediated SOCE. NEW & NOTEWORTHY This research demonstrates a novel contribution of cholesterol to regulate the interaction of Orai1 and stromal interaction molecule 1 required for pulmonary endothelial store-operated Ca2+ entry. The results provide a mechanistic basis for impaired pulmonary endothelial Ca2+ influx after chronic hypoxia that may contribute to pulmonary hypertension.


Assuntos
Sinalização do Cálcio , Membrana Celular/metabolismo , Colesterol/metabolismo , Células Endoteliais/metabolismo , Hipóxia/metabolismo , Proteína ORAI1/metabolismo , Artéria Pulmonar/metabolismo , Animais , Pressão Arterial , Benzodioxóis/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Células Cultivadas , Cromonas/farmacologia , Doença Crônica , Modelos Animais de Doenças , Regulação para Baixo , Células Endoteliais/efeitos dos fármacos , Hipóxia/fisiopatologia , Masculino , Proteína ORAI1/antagonistas & inibidores , Proteína ORAI1/genética , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiopatologia , Ratos Sprague-Dawley , Molécula 1 de Interação Estromal/metabolismo
8.
J Pharmacol Sci ; 133(3): 130-138, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28258822

RESUMO

Abnormal store-operated calcium uptake has been observed in peripheral T lymphocytes of rheumatoid arthritis (RA) patients, and sustained intracellular calcium signalling is known to mediate the functions of many types of immune cells. Thus, it is hypothesized that regulating calcium entry through CRACM1 (the pore-forming subunit of calcium release-activated calcium (CRAC) channels; also known as ORAI1) may be beneficial for the management of RA. Localized CRACM1 knockdown in the joints and draining lymph nodes (DLNs) of mice with collagen-induced arthritis (CIA) was achieved via lentiviral-based delivery of shRNA targeting mouse CRACM1. Consistent with CRACM1 knockdown, calcium influx in synovial cells and the histopathological features of CIA were reduced. These effects were also associated with reduced levels of several notable inflammatory cytokines, such as IL-6, IL-17A, and IFN-γ, in the joints. Additionally, CRACM1-shRNA reduced the number of bone marrow-derived osteoclasts in vitro as well as osteoclasts in CIA joints, which was associated with reduced RANKL levels in the serum and joints. In summary, inhibiting calcium entry by CRACM1 knockdown suppressed arthritis development and may be therapeutically beneficial for RA patients.


Assuntos
Artrite Experimental/terapia , Artrite Reumatoide/terapia , Terapia Genética , Proteína ORAI1/genética , Animais , Artrite Experimental/sangue , Artrite Experimental/imunologia , Artrite Experimental/patologia , Artrite Reumatoide/sangue , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Citocinas/sangue , Citocinas/imunologia , Inativação Gênica , Articulações/imunologia , Articulações/patologia , Lentivirus/genética , Linfonodos , Masculino , Camundongos Endogâmicos DBA , Ligante RANK/sangue , Ligante RANK/imunologia , RNA Interferente Pequeno/genética , Baço/citologia , Membrana Sinovial/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA