Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 282: 114581, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34464697

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The diterpenoids extracted from Euphorbia kansui S.L. Liou ex S.B.Ho, Euphorbia fischeriana Steud. have good antitumor effects. Jolkinolide B has anti-breast cancer effect, but it is unclear whether it has different therapeutic effects between luminal A subtype and luminal B subtype breast cancer. AIM OF THE STUDY: This study investigated the Jolkinolide B has different therapeutic, important targets and pathways effects between luminal A subtype and luminal B subtype breast cancer. MATERIALS AND METHODS: We used bioinformatics to predict the biological process and molecular mechanism of Jolkinolide B in treating two types of breast cancer. Then, in vitro, cultured MCF-7 cells and BT-474 cells were divided into control group, PI3K inhibitor + control group, Jolkinolide B group and PI3K inhibitor + Jolkinolide B group. The CCK-8 assay, Flow cytometric analysis and Transwell cell migration assay was used to detect the cell proliferation, apoptosis, and migration in each group, respectively. ELISA was used to measure the content of Akt and phosphorylated Akt (p-Akt) in cell lysis buffer. RESULTS: Compared to luminal A breast cancer, Jolkinolide B had more targets, proliferation, migration processes and KEGG pathways when treating luminal B subtype breast cancer. Jolkinolide B significantly prolonged the survival time of luminal B subtype breast cancer patients. Compared to the control group, the cell proliferation absorbance value (A value) and migration number of the two kinds of breast cancer cells in the Jolkinolide B group were decreased (P < 0.01, n = 6), and the number of apoptotic cells was increased (P < 0.01, n = 6). Compared to the Jolkinolide B group, the A value and migration number of the two types of breast cancer cells were significantly decreased in the PI3K inhibitor + Jolkinolide B group (P < 0.01, n = 6), and the number of apoptotic cells was significantly increased (P < 0.01, n = 6). In addition, compared to MCF-7 cells, the A value and migration number of BT-474 cells stimulated with Jolkinolide B were significantly decreased (P < 0.01, n = 6), and the number of apoptotic cells was significantly increased (P < 0.01, n = 6). Akt and p-Akt protein levels in the two breast cancer cell lines in the Jolkinolide B group were all decreased (P < 0.01, n = 6), especially in BT-474 cells stimulated by Jolkinolide B. CONCLUSION: Jolkinolide B regulates the luminal A and luminal B subtypes of breast cancer through PI3K-Akt, EGFR and other pathways. Jolkinolide B has more significant therapeutic effect on luminal B subtype breast cancer. In vitro, experiments verified that Jolkinolide B significantly inhibited the proliferation and migration activity of BT-474 breast cancer cells by downregulating the PI3K-Akt pathway.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama , Proliferação de Células/efeitos dos fármacos , Diterpenos/farmacologia , Euphorbia , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Biologia Computacional , Regulação para Baixo , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Células MCF-7 , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Resultado do Tratamento
2.
Int Immunopharmacol ; 99: 107986, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34303280

RESUMO

Albiziae Cortex (AC) is a well-known traditional Chinese medicine with sedative-hypnotic effects and neuroprotective ability. However, the bioactive components of AC responsible for the neuro-protective actitivity remain unknown. Here, we investigated the anti-neuroinflammatory effects of (-)-syringaresinol (SYR) extracted from AC in microglia cells and wild-type mice. As a result, (-)-SYR significantly reduced lipopolysaccharide (LPS)-induced production of interleukin - 6 (IL-6), tumor necrosis factor α (TNF-α), interleukin -1 beta (IL-1ß), cycloxygenase-2 (COX-2), and nitric oxide (NO) in BV2 microglia cells. (-)-SYR also significantly reduced M1 marker CD40 expression and increased M2 marker CD206 expression. Moreover, we found that (-)-SYR inhibited LPS-induced NF-κB activation by suppressing the translocation of NF-κB p65 into the nucleus in a concentration-dependent manner. Meanwhile, estrogen receptor ß (ERß) was found to be implied in the anti-inflammatory activity of (-)-SYR in BV2 microglia. In vivo experiments revealed that administration of (-)-SYR in mice significantly reduced microglia/astrocytes activation and mRNA levels of proinflammatory mediators. Taken together, our data indicated that (-)-SYR exerted the anti-neuroinflammatory effects by inhibiting NF-κB activation and modulation of microglia polarization, and via interaction with ERß. The anti-neuroinflammatory activity of (-)-SYR may provide a new therapeutic avenue for the treatment of brain diseases associated with inflammation.


Assuntos
Receptor beta de Estrogênio/metabolismo , Furanos/farmacologia , Lignanas/farmacologia , Microglia/metabolismo , Albizzia/química , Animais , Anti-Inflamatórios/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Receptor beta de Estrogênio/antagonistas & inibidores , Furanos/química , Lignanas/química , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Doenças Neuroinflamatórias/tratamento farmacológico , Proteína Oncogênica v-akt/metabolismo , Fator de Transcrição RelA/metabolismo
3.
J Integr Neurosci ; 20(1): 55-65, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33834691

RESUMO

Synaptic dysfunction and neuronal loss are related to cognitive impairment of Alzheimer's disease. Recent evidence indicates that regulating the phosphatidylinositol 3-Kinase (PI3K)/AKT/GSK-3ß pathway is a therapeutic strategy for improving synaptic plasticity in Alzheimer's disease. Here, we investigated "olfactory three-needle" effects on synaptic function and the PI3K/AKT/GSK-3ß signaling pathway in ß-amyloid1-42 (Aß1-42)-induced Alzheimer's disease rats. A three-needle olfactory bulb insertion for 28 days alleviated Aß1-42-induced Alzheimer's disease rats' cognitive impairment as assessed by performance in the Morris water maze test. Furthermore, the three-needle electrode inhibited neuro-apoptosis and neuro-inflammation. It significantly upregulated the protein expression of postsynaptic density protein 95, synaptophysin, and GAP43, indicating a protective effect on hippocampal synaptic plasticity. Additionally, the activation level of PI3K/AKT signaling and the phosphorylation inactivation of GSK-3ß were significantly enhanced by the "olfactory three-needle". Our findings suggested that the three-needle acupuncture is a potential alternative to improve synaptic plasticity and neuronal survival of Alzheimer's disease brain in rodents.


Assuntos
Terapia por Acupuntura , Doença de Alzheimer/terapia , Apoptose/fisiologia , Disfunção Cognitiva/terapia , Inflamação/terapia , Plasticidade Neuronal/fisiologia , Bulbo Olfatório , Transdução de Sinais/fisiologia , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/complicações , Peptídeos beta-Amiloides/farmacologia , Animais , Comportamento Animal/fisiologia , Disfunção Cognitiva/etiologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Proteína Oncogênica v-akt/metabolismo , Fragmentos de Peptídeos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Ratos Sprague-Dawley
4.
Int Immunopharmacol ; 93: 107395, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33529916

RESUMO

Programmed death-ligand 1 (PD-L1) is an immune checkpoint molecule, that is overexpressed in non-small cell lung cancer (NSCLC) and has been associated with the response to anti-PD-1/PD-L1 immunotherapy. Z-guggulsterone (Z-GS), an active compound extracted from the gumresin of the Commiphora mukul tree, has been shown to have anti-tumor effects in NSCLC in our previous study. However, whether Z-GS could affect PD-L1 expression levels in tumor cells remains unknown. In this study, we verified the inhibitory effects of Z-GS on NSCLC cell viability and cell cycle progression in vitro, and mouse Lewis lung carcinoma (LLC) tumor growth in vivo. Notably, Z-GS treatment increased PD-L1 surface and mRNA expression levels, and gene transcription in NSCLC cells, in a dose- and time-dependent manner. Mechanistic experiments showed that the upregulation of PD-L1 was mediated, partly by farnesoid X receptor inhibition, and partly by the activation of the Akt and Erk1/2 signaling pathways in Z-GS-treated NSCLC cells. In vivo, Z-GS treatment dose-dependently increased PD-L1 expression levels in mouse LLC tumor models. Overall, our findings demonstrated a promoting role for Z-GS in PD-L1 expression in NSCLC and provided mechanistic insights, that may be used for further investigation into synergistic combined therapies.


Assuntos
Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Pregnenodionas/uso terapêutico , Receptores Citoplasmáticos e Nucleares/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Animais , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Commiphora , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais , Proteína Oncogênica v-akt/metabolismo , RNA Interferente Pequeno/genética , Receptores Citoplasmáticos e Nucleares/genética , Regulação para Cima
5.
Biomed Pharmacother ; 137: 111337, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33582453

RESUMO

BACKGROUND: Senna alata L. Roxb or candle bush is a traditional medicinal plant with a wide range of biological activities including anti-inflammatory, antimicrobial and antifungal. Leaf extract of S. alata showed the anti-tumor activity in various cancer cell lines. In this study, we focused on the inhibitory mechanism of S. alata extract (SAE) on cancer metastasis including cell migration, cell invasion and signaling pathways in chondrosarcoma SW1353 cells. PURPOSE: This study aimed to evaluate the anti-metastatic mechanisms of Senna alata extract on chondrosarcoma SW1353 cells. METHODS: Screening for phytochemicals in biologically active fraction of SAE was analysed by 1H NMR spectroscopy. Cell viability and cytoxicity were determined by using MTT assay. Cell migration was observed by scratch wound healing and transwell migration assay. Cell invasion and cell adhesion assay were examined by Matrigel coated transwell chambers or plates. The expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), MAPKs and PI3K/Akt signaling pathways and NF-κB were detected by Western blot analysis. RESULTS: The SAE treatment at the sub-cytoxic and non-cytotoxic concentrations significantly inhibited cell migration, cell invasion and cell adhesion of SW1353 cells in a dose-dependent manner. The results from Western blot analysis showed decreased MMP-2 and MMP-9 expression, while increased TIMP-1 and TIMP-2 expression in SAE treated cells. Moreover, SAE suppressed phosphorylation of ERK1/2, p38 and Akt but decreased NF-κB transcription factor expression in SW1353 cells. CONCLUSION: These results revealed that SAE could reduce MMP-2 and MMP-9 expression by downregulation of NF-κB which is downstream of MAPKs and PI3K/Akt signaling pathway in SW1353 cells resulting in reduced cancer cell migration and invasion. Therefore, SAE may have the potential use as an alternative treatment of chondrosarcoma metastasis.


Assuntos
Condrossarcoma/tratamento farmacológico , Metástase Neoplásica/tratamento farmacológico , Extrato de Senna/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Condrossarcoma/metabolismo , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Extrato de Senna/química , Transdução de Sinais/efeitos dos fármacos , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-2/efeitos dos fármacos , Inibidor Tecidual de Metaloproteinase-2/metabolismo
6.
J Ethnopharmacol ; 265: 113410, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32980487

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Tibetan turnip (Brassica rapa L.) has a wide array of medicine properties including heat-clearing, detoxifying and anti-hypoxia as listed in the famous centuries-old Tibetan medicine classic "The Four Medical Tantras". Evidence-based medicine also indicated the anti-hypoxic effect of turnips, suggesting a potential link to neuroprotective effect on ischemic stroke. This thereby enables turnips to serve as a novel nontoxic agent in related treatment. AIM OF THE STUDY: This study aimed to investigate the neuroprotective effect and elucidate the mechanism of aqueous extract of turnip (AET) on cerebral ischemia/reperfusion. MATERIALS AND METHODS: The experimental models of cerebral ischemia included transient middle cerebral artery occlusion/reperfusion (MCAO) in C57BL/6J mice and oxygen-glucose deprivation/reoxygenation (OGD/R) in HT-22 cells. Long-term effect of AET on infarct volume was evaluated by microtubule-associated protein 2 (MAP2) immunofluorescence 28 days after MCAO, and on neurofunctional outcomes determined by rotarod, grid walking, and cylinder tests in the meantime. Efficacy of AET was determined by the cell viability, the release of lactate dehydrogenase (LDH) and reactive oxygen species (ROS) in neurons. The underlying mechanism of AET rescued OGD/R cells were characterized by PI3K, Akt and mTOR expressions, which were further used to validate AET's role in the pathway. RESULTS: AET can reduce cerebral infarct volume and ameliorate behavioral deficits of MCAO/R mice dose-dependently. In vitro experiment further demonstrated that suitable concentrations of AET inhibited ROS, LDH production and restored mitochondrial expression induced by OGD/R. AET pretreatment can reverse the OGD/R-induced decreased level of phosphorylation of PI3K, Akt, mTOR, whereas this effect was blocked in the LY294002 (PI3K inhibitor) treatment group. CONCLUSIONS: AET improved the survival of OGD/R-injured HT-22 cells by activating the PI3K/Akt/mTOR pathway. Based on the results above, aqueous extract of turnip has a protective effect on focal cerebral ischemic injury.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Brassica rapa/química , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Animais , Isquemia Encefálica/patologia , Linhagem Celular , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/isolamento & purificação , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Serina-Treonina Quinases TOR/metabolismo , Tibet
7.
Pharm Biol ; 58(1): 1184-1191, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33253601

RESUMO

CONTEXT: Clinically, Pinellia ternata (Thunb.) Breit. (Araceae) (PT) has been widely used in the treatment of atherosclerosis and hyperlipidaemia, but the underlying mechanisms are still not clearly understood. OBJECTIVE: This research was conducted to confirm the mechanism by which PT affects carotid artery intimal hyperplasia. MATERIALS AND METHODS: An intestinal hyperplasia Sprague-Dawley rat model was established by carotid artery injury. The rats were randomly divided into five groups (n = 8): sham, model, PT (with daily intragastric administration of 10 g/mL/kg PT tubers water extract), PT+LY294002 (with intraperitoneal injection of 50 mg/kg LY294002 + 10 g/mL/kg PT) and endothelial progenitor cells (EPCs) (with injection of 5 × 105/cells), and treated for 4 or 8 weeks. RESULTS: HE staining showed that PT attenuated intimal hyperplasia. RT-PCR, Western blotting and immunohistochemistry showed that PT increased the expression of vascular endothelial growth factor (VEGF) and eNOS in the atherosclerotic carotid artery. PT increased the Dil-acLDL+/FITC-UEA-1+ population (from 0.41 ± 0.085% to 0.60 ± 0.092%) in the blood, decreased TCHO, TG, LDL-C, IL-6 and TNF-α levels, and increased HDL-C and IL-10 levels in the blood. However, these changes were reversed by the PI3K/Akt pathway inhibitor LY294002. DISCUSSION AND CONCLUSIONS: PT can be developed as an atherosclerosis and carotid intimal hyperplasia treatment drug. Therefore, further study will focus on the effects of PT on intimal hyperplasia in wire-injured atherosclerosis patients and explore in depth some other relevant molecular mechanisms.


Assuntos
Lesões das Artérias Carótidas/tratamento farmacológico , Lesões das Artérias Carótidas/patologia , Células Progenitoras Endoteliais/efeitos dos fármacos , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Pinellia/química , Extratos Vegetais/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Túnica Íntima/patologia , Animais , Aterosclerose/tratamento farmacológico , Citocinas/metabolismo , Hiperplasia , Hipolipemiantes/farmacologia , Masculino , Óxido Nítrico Sintase Tipo III/biossíntese , Proteína Oncogênica v-akt/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/biossíntese
8.
Oxid Med Cell Longev ; 2020: 3481758, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695254

RESUMO

Zanthoxylum bungeanum pericarp is a commonly used herbal medicine in China with effects of anti-inflammatory and analgesic, improving learning and memory ability, while hydroxy-α-sanshool (HAS) is the most important active ingredient of Z. bungeanum pericarps. The purpose of this study was to investigate the neuroprotective effect of HAS and its related possible mechanisms using a H2O2-stimulated PC12 cell model. CCK-8 assay results showed that HAS had a significant protective effect on H2O2-stimulated PC12 cells without obvious cytotoxicity on normal PC12 cells. Flow cytometry and fluorescence microscope (DAPI staining and DCFH-DA staining) indicated that HAS could reduce the H2O2-induced apoptosis in PC12 cells via reduction of intracellular ROS and increase of mitochondrial membrane potential (MMP). Subsequently, results of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) determination suggested that HAS could increase the enzyme activities of SOD, CAT, and GSH-Px whereas it could decrease the MDA contents in H2O2-stimulated PC12 cells. Furthermore, the western blotting assays showed that HAS could upregulate the expressions of p-PI3k, Akt, p-Akt, and Bcl-2, while it could downregulate the expressions of cleaved caspase-3 and Bax in H2O2-stimulated PC12 cells. Collectively, it could be concluded according to our results that HAS possesses protective potentials on H2O2-stimulated PC12 cells through suppression of oxidative stress-induced apoptosis via regulation of PI3K/Akt signal pathway.


Assuntos
Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Ácidos Graxos Insaturados/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Alcamidas Poli-Insaturadas/uso terapêutico , Bloqueadores dos Canais de Potássio/uso terapêutico , Animais , Humanos , Peróxido de Hidrogênio/metabolismo , Proteína Oncogênica v-akt/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Transdução de Sinais , Zanthoxylum
9.
J Integr Med ; 18(4): 334-343, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32532614

RESUMO

OBJECTIVE: To investigate the effects of Aurantii Fructus Immaturus (Zhishi, ZS) and Atractylodis Macrocephalae Rhizoma (Baizhu, BZ)-containing serum on glutamate-induced autophagy in rat colonic interstitial cells of Cajal (ICCs) and to analyze the underlying mechanism. METHODS: Rat colonic ICCs cultured in vitro were identified by fluorescence and then stimulated with glutamic acid (5 mmol/L) for 24 h to establish a cell model of autophagy. The cells were then treated with different concentrations of ZSBZ-containing serum or rat serum. The viability of the ICCs was detected with cell counting kit-8 assays, and cell apoptosis rates were examined with flow cytometry. The ultrastructure and autophagosomes in the ICCs were observed using transmission electron microscopy. The effects of ZSBZ-containing serum on apoptosis-associated mediators were assessed by Western blotting and real-time quantitative polymerase chain reaction. In addition, microtubule-associated protein light chain 3 (LC3), p-phosphoinositide 3-kinase (p-PI3K), p-Akt and p-mammalian target of rapamycin (p-mTOR) expression was detected via Western blotting analysis. RESULTS: Compared to those in the model group, ICC viability and apoptosis rates were significantly increased by ZSBZ-containing serum (P < 0.05). In addition, the expression levels of Beclin-1, LC3, p-PI3K, p-Akt and p-mTOR were significantly lower (P < 0.05) and Bcl-2 expression was higher in the ZSBZ-containing serum treatment groups than in the model group (P < 0.05). CONCLUSION: Our findings demonstrated that ZSBZ protects glutamic acid-stimulated ICCs, and this beneficial effect may be mediated by a reduction in autophagy via inhibition of the PI3K/Akt/mTOR pathway.


Assuntos
Atractylodes/química , Autofagia , Medicamentos de Ervas Chinesas/farmacologia , Células Intersticiais de Cajal , Animais , Apoptose , Ácido Glutâmico , Células Intersticiais de Cajal/efeitos dos fármacos , Células Intersticiais de Cajal/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Rizoma/química , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
10.
J Immunol ; 204(11): 2984-2994, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32284332

RESUMO

Vitamin A deficiency (VAD) is a major public health problem and is associated with increased host susceptibility to infection; however, how VAD influences viral infection remains unclear. Using a persistent lymphocytic choriomeningitis virus infection model, we showed in this study that although VAD did not alter innate type I IFN production, infected VAD mice had hyperactive, virus-specific T cell responses at both the acute and contraction stages, showing significantly decreased PD-1 but increased cytokine (IFN-γ, TNF-α, and IL-2) expression by T cells. Compared with control mice, VAD mice displayed excessive inflammation and more severe liver pathology, with increased death during persistent infection. Of note, supplements of all-trans retinoic acid (RA), one of the important metabolites of vitamin A, downregulated hyperactive T cell responses and rescued the persistently infected VAD mice. By using adoptive transfer of splenocytes, we found that the environmental vitamin A or its metabolites acted as rheostats modulating antiviral T cells. The analyses of T cell transcriptional factors and signaling pathways revealed the possible mechanisms of RA, as its supplements inhibited the abundance of NFATc1 (NFAT 1), a key regulator for T cell activation. Also, following CD3/CD28 cross-linking stimulation, RA negatively regulated the TCR-proximal signaling in T cells, via decreased phosphorylation of Zap70 and its downstream signals, including phosphorylated AKT, p38, ERK, and S6, respectively. Together, our data reveal VAD-mediated alterations in antiviral T cell responses and highlight the potential utility of RA for modulating excessive immune responses and tissue injury in infectious diseases.


Assuntos
Coriomeningite Linfocítica/imunologia , Linfócitos T/imunologia , Tretinoína/metabolismo , Deficiência de Vitamina A/imunologia , Transferência Adotiva , Animais , Células Cultivadas , Resistência à Doença , Ativação Linfocitária , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Oncogênica v-akt/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais
11.
Acta Histochem ; 122(4): 151538, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32183989

RESUMO

BACKGROUND: Esophageal cancer is a digestive tract malignancy, ranking sixth among the world's deadliest tumor incidence. However, the pathogenesis of esophageal cancer is complex and the prognosis remains poor. Therefore, in-depth study of the pathogenesis and developing effective treatments are of great value for esophageal cancer. ß-elemene is a natural monomeric compound derived from the Chinese herbal Curcuma wenyujin. ß-elemene has been reported to have anti-tumor effects and used as an adjunct to clinical therapy for multiple cancers. This study aims to explore the effects of ß-elemene on esophageal cancer and its related molecular mechanisms. METHODS: TE-1 and KYSE-150 cells were used to evaluate the activity of ß-elemene on esophageal cancerin vitro and in vivo. Western blot was performed for protein expression assessment. CCK8 assay and cell cycle analysis were used for proliferation testing. Flow cytometry was performed for apoptosis detection. Wound healing assay was subjected to assess the migration ability. Transwell chamber assay was applied to assess the invasion ability. HE staining, TUNEL staining and immunohistochemical staining were used to evaluate the changes in tumor tissues. RESULTS: We found that ß-elemene treatment suppressed proliferation, as well as induced apoptosis of esophageal cancer cells. In addition, ß-elemene inhibited the migration and invasion ability of esophageal cancer cells. Furthermore, ß-elemene exerted its effects against esophageal cancer by specifically regulating AKT signaling, thereby controlling the expression of PD-L1. CONCLUSION: ß-elemene inhibits proliferation and metastasis of esophageal cancer cells by regulating the phosphorylation of AKT.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Proteína Oncogênica v-akt/metabolismo , Sesquiterpenos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Antígeno B7-H1/biossíntese , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Curcuma/química , Humanos , Camundongos , Camundongos Nus , Invasividade Neoplásica , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Phytother Res ; 34(3): 591-600, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32011040

RESUMO

Icariin (ICA) is obtained from Epimedium brevicornu maxim and exploited to remedy miscellaneous cancers. But the role of ICA in medulloblastoma remains hazy. The research delved into the antitumor activity of ICA in medulloblastoma DAOY cells. ICA with diverse concentrations was utilized to stimulate DAOY cells, and the biological functions of ICA in medulloblastoma DAOY cells were examined. Then, the relative SPARC expression was determined in ICA-managed DAOY cells, and the pc-SPARC vector was transfected into DAOY cells to further probe the influence of SPARC and JAK1/STAT3 and PI3K/AKT pathways in ICA-managed DAOY cells. A xenograft model was established to investigate the function of ICA in vivo. ICA restrained cell viability, expedited apoptosis, prohibited cell migration and invasion, and meanwhile affected the associative factors expression in DAOY cells. Additionally, SPARC expression was declined in ICA-stimulated DAOY cells. Overexpressed SPARC reversed the functions of ICA in above-involved cell behaviors of DAYO cells and the correlative protein levels. Besides, ICA notably frustrated JAK1/STAT3 and PI3K/AKT activations in DAOY cells. Beyond that, ICA prohibited tumor formation in vivo. The results concluded that ICA exhibited the antitumor activity in DAOY cells via decreasing SPARC and inactivating JAK1/STAT3 and PI3K/AKT pathways.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Cerebelares/tratamento farmacológico , Flavonoides/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Meduloblastoma/tratamento farmacológico , Osteonectina/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Invasividade Neoplásica/prevenção & controle , Proteína Oncogênica v-akt/genética , Proteína Oncogênica v-akt/metabolismo , Osteonectina/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
13.
Phytother Res ; 34(3): 640-648, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31742778

RESUMO

Ganoderic Acid A (GAA) is often applied for healing cardiovascular and cerebrovascular ailments, but the influences in cerebral ischemia injury are still hazy. The research delved into the functions of GAA in hypoxia-triggered impairment in PC12 cells. PC12 cells received hypoxia management for 12 hr, and subsequently, cell viability, migration, apoptosis, and correlative protein levels were assessed. After preprocessing with GAA, above cell behaviors were monitored again. The vector of microRNA (miR)-153 inhibitor was utilized for PC12 cell transfection to further explore the functions of miR-153 in hypoxia-impaired cells. Pathways of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and mammalian target of rapamycin (mTOR) were investigated via executing western blot for uncovering the latent mechanism. Results revealed that hypoxia disposition triggered PC12 cells impairment via restraining cell viability and migration and accelerating apoptosis. However, GAA visibly mollified hypoxia-provoked impairment in PC12 cells. Interestingly, the enhancement of miR-153 triggered by GAA was observed in hypoxia-impaired PC12 cells. After miR-153 inhibitor transfection, the protective functions of GAA in hypoxia-impaired PC12 cells were dramatically inversed. Furthermore, GAA caused PI3K/AKT and mTOR activations via enhancement of miR-153 in hypoxia-impaired PC12 cells. The findings evinced that GAA exhibited the protective functions in PC12 cells against hypoxia-evoked impairment through activating PI3K/AKT and mTOR via elevating miR-153.


Assuntos
Citoproteção/efeitos dos fármacos , Ácidos Heptanoicos/farmacologia , Lanosterol/análogos & derivados , MicroRNAs/genética , Animais , Apoptose/efeitos dos fármacos , Hipóxia Celular , Sobrevivência Celular/efeitos dos fármacos , Lanosterol/farmacologia , Proteína Oncogênica v-akt/metabolismo , Células PC12 , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Serina-Treonina Quinases TOR/metabolismo
14.
Acta Pharmacol Sin ; 41(2): 260-269, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31515528

RESUMO

Timosaponin AIII (Timo AIII) is a natural steroidal saponin isolated from the traditional Chinese herb Anemarrhena asphodeloides Bge with proved effectiveness in the treatment of numerous cancers. However, whether Timo AIII suppresses tumor angiogenesis remains unclear. In the present study, we investigated the antiangiogenesis effects of Timo AIII and the underlying mechanisms in human umbilical vein endothelial cells (HUVECs) in vitro and zebrafish embryos in vivo. We showed that treatment with Timo AIII (0.5-2 µM) partially disrupted the intersegmental vessels (ISVs) and subintestinal vessels (SIVs) growth in transgenic zebrafish Tg(fli-1a: EGFP)y1. Timo AIII (0.5-4 µM) dose-dependently inhibited VEGF-induced proliferation, migration, invasion, and tube formation of HUVECs, but these inhibitory effects were not due to its cytotoxicity. We further demonstrated that Timo AIII treatment significantly suppressed the expression of VEGF receptor (VEGFR) and the phosphorylation of Akt, MEK1/2, and ERK1/2 in HUVECs. Timo AIII treatment also significantly inhibited VEGF-triggered phosphorylation of VEGFR2, Akt, and ERK1/2 in HUVECs. Moreover, we conducted RNA-Seq and analyzed the transcriptome changes in both HUVECs and zebrafish embryos following Timo AIII treatment. The coexpression network analysis results showed that various biological processes and signaling pathways were enriched including angiogenesis, cell motility, cell adhesion, protein serine/threonine kinase activity, transmembrane signaling receptor activity, growth factor activity, etc., which was consistent with the antiangiogenesis effects of Timo AIII in HUVECs and zebrafish embryos. We conclude that the antiangiogenesis effect of Timo AIII is mediated through VEGF/PI3K/Akt/MAPK signaling cascade; Timo AIII potentially exerts antiangiogenesis effect in cancer treatment.


Assuntos
Inibidores da Angiogênese/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Saponinas/farmacologia , Esteroides/farmacologia , Inibidores da Angiogênese/administração & dosagem , Animais , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Saponinas/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Esteroides/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra
15.
Neurochem Int ; 131: 104563, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31589911

RESUMO

Peripheral lipopolysaccharide (LPS) injection induces systemic inflammation through the activation of the inhibitor of nuclear factor kappa B (NF-κB) kinase (IKK)/NF-κB signaling pathway, which promotes brain dysfunction resulting in conditions including anorexia. LPS-mediated reduction of food intake is associated with activation of NF-κB signaling and phosphorylation of the transcription factor signal transducer and activator of transcription 3 (STAT3) in the hypothalamus. We recently reported phospholipase C-related catalytically inactive protein (PRIP) as a new negative regulator of phosphatidylinositol 3-kinase/AKT signaling. AKT regulates the IKK/NF-κB signaling pathway; therefore, this study aimed to investigate the role of PRIP/AKT signaling in LPS-mediated neuroinflammation-induced anorexia. PRIP gene (Prip1 and Prip2) knockout (Prip-KO) mice intraperitoneally (ip) administered with LPS exhibited increased anorexia responses compared with wild-type (WT) controls. Although few differences were observed between WT and Prip-KO mice in LPS-elicited plasma pro-inflammatory cytokine elevation, hypothalamic pro-inflammatory cytokines were significantly upregulated in Prip-KO rather than WT mice. Hypothalamic AKT and IKK phosphorylation and IκB degradation were significantly increased in Prip-KO rather than WT mice, indicating further promotion of AKT-mediated NF-κB signaling. Consistently, hypothalamic STAT3 was further phosphorylated in Prip-KO rather than WT mice. Furthermore, suppressor of cytokine signaling 3 (Socs3), a negative feedback regulator for STAT3 signaling, and cyclooxogenase-2 (Cox2), a candidate molecule in LPS-induced anorexigenic responses, were upregulated in the hypothalamus in Prip-KO rather than WT mice. Pro-inflammatory cytokines were upregulated in hypothalamic microglia isolated from Prip-KO rather than WT mice. Together, these findings indicate that PRIP negatively regulates LPS-induced anorexia caused by pro-inflammatory cytokine expression in the hypothalamus, which is mediated by AKT-activated NF-κB signaling. Importantly, hypothalamic microglia participate in this PRIP-mediated process. Elucidation of PRIP-mediated neuroinflammatory responses may provide novel insights into the pathophysiology of many brain dysfunctions.


Assuntos
Anorexia/enzimologia , Encefalite/enzimologia , Hipotálamo/enzimologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Anorexia/induzido quimicamente , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Ingestão de Alimentos , Encefalite/induzido quimicamente , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , NF-kappa B/metabolismo , Proteína Oncogênica v-akt/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/genética
16.
Int J Med Mushrooms ; 21(12): 1151-1165, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32464009

RESUMO

We previously reported that Amauroderma rude polysaccharides (AR) displayed strong immunomodulatory tumor-suppressive effects in mice. The current study was designed to explore the potential mechanism by which AR polysaccharides inhibit tumor growth. We found that AR could effectively induce cell death in 4T1 and MDA-MB-231 breast cancer cells. AR could also inhibit tumor cell migration and invasion, significantly promote apoptosis in 4T1 cells, and significantly increase CDK4, CDK6, cylinD1, and P27 mRNA expression in mice. Additionally, AR was able to significantly increase FOXO3a expression and decrease p-AKT expression both in vitro and in vivo, indicating that the AKT/FOXO3a signaling pathway had been activated during the inhibitory process.


Assuntos
Antineoplásicos/farmacologia , Basidiomycota/química , Neoplasias da Mama/tratamento farmacológico , Proteína Forkhead Box O3/metabolismo , Proteína Oncogênica v-akt/metabolismo , Polissacarídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/isolamento & purificação , Apoptose , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/isolamento & purificação , Fatores Imunológicos/farmacologia , Camundongos Endogâmicos BALB C , Modelos Biológicos , Polissacarídeos/administração & dosagem , Polissacarídeos/isolamento & purificação , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Int Immunopharmacol ; 65: 429-437, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30388517

RESUMO

The aim of this study was to evaluate the pharmacological effects of CPT on CT26 colon cancer cells in vivo and in vitro, and to reveal the potential mechanism. CPT suppressed the proliferation and growth of CT26 colon cancer in vitro and in vivo. CPT inhibited the invasion of CT26 cells in vitro, and decreased the protein expressions of matrix metalloproteinase-2 (MMP-2) and MMP-9 but increased those of tissue inhibitor of metallopeptidase-1 (TIMP-1) and TIMP-2 in vitro and in vivo. It also inhibited tumor cell-induced angiogenesis of endothelial cells in vitro and rat aortic ring angiogenesis ex vivo, and possibly by suppressing angiogenesis-associated factors. CPT suppressed the expressions of inflammatory factors in vivo and in vitro. Mechanism studies showed that CPT inhibited the PI3K/AKT/mTOR signaling pathway, as evidenced by decreased expressions of phospho-PI3K (p-PI3K), p-Akt and p-mTOR. Moreover, CPT significantly suppressed the nuclear expression but increased the cytosolic expression of hypoxia inducible factor-1α (HIF-1α). Collectively, CPT inhibited the growth, invasion, inflammation and angiogenesis in CT26 colon cancer, and at least partly, by regulating the PI3K/Akt/mTOR signaling and the nuclear translocation of HIF-1α.


Assuntos
Anti-Inflamatórios/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fenantrenos/uso terapêutico , Transporte Ativo do Núcleo Celular , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Imunomodulação , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Invasividade Neoplásica , Neovascularização Patológica , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Salvia miltiorrhiza/imunologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo
18.
Pharmacology ; 102(5-6): 316-323, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30296782

RESUMO

BACKGROUND: Trametes robiniophila Murr (Huaier) has been used as an adjuvant therapy of tumor in traditional Chinese medicine for many years, but the underlying mechanisms are largely unknown. In the present study, we tested the inhibitory effect of Huaier extract on renal cancer 786-O cells and explored the possible mechanisms. METHODS: 786-O cells were treated by gradient concentrations of Huaier extract, cell viability, invasion, migration and apoptosis were assessed by cell counting kit 8, cell scratch, transwell, and flow cytometry assay in vitro. The changes in protein level were detected by western blot analysis. Finally, the anticancer effect of Huaier was tested in vivo by nude mouse tumorigenicity assay. RESULTS: Viability of 786-O cells was suppressed by Huaier in a time- and dose-dependent manner; cell invasion and migration were also dramatically inhibited. Flow cytometry assays showed that Huaier could induce cell apoptosis. Western blotting analysis indicated that Huaier suppressed the activation of PI3K/AKT/mTOR/p70S6K/4E-BP1 signaling pathway. We also found that Huaier could partly reverse the epithelialmesenchymal transition (EMT) process. In vivo experiment indicated that tumor growth in the xenograft mouse model was suppressed by Huaier. CONCLUSION: Huaier plays an anticancer effect partially through the suppression of the PI3K/AKT/mTOR/p70S6K/4E-BP1 pathway and by reversing the EMT process. Huaier may act as an effective agent for treating renal cell carcinoma.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Misturas Complexas/farmacologia , Neoplasias Renais/tratamento farmacológico , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose/efeitos dos fármacos , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/metabolismo , Distribuição Aleatória , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Trametes
19.
Sci Rep ; 8(1): 8894, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29891841

RESUMO

Oxidative stress is known to be associated with various age-related diseases. D-galactose (D-gal) has been considered a senescent model which induces oxidative stress response resulting in memory dysfunction. Pyrroloquinoline quinone (PQQ) is a redox cofactor which is found in various foods. In our previous study, we found that PQQ may be converted into a derivative by binding with amino acid, which is beneficial to several pathological processes. In this study, we found a beneficial glutamate mixture which may diminish neurotoxicity by oxidative stress in D-gal induced mouse. Our results showed that PQQ may influence the generation of proinflammatory mediators, including cytokines and prostaglandins during aging process. D-gal-induced mouse showed increased MDA and ROS levels, and decreased T-AOC activities in the hippocampus, these changes were reversed by PQQ supplementation. Furthermore, PQQ statistically enhanced Superoxide Dismutase SOD2 mRNA expression. PQQ could ameliorate the memory deficits and neurotoxicity induced by D-gal via binding with excess glutamate, which provide a link between glutamate-mediated neurotoxicity, inflammation and oxidative stress. In addition, PQQ reduced the up-regulated expression of p-Akt by D-gal and maintained the activity of GSK-3ß, resulting in a down-regulation of p-Tau level in hippocampus. PQQ modulated memory ability partly via Akt/GSK-3ß pathway.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Galactose/toxicidade , Ácido Glutâmico/toxicidade , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteína Oncogênica v-akt/metabolismo , Cofator PQQ/administração & dosagem , Transdução de Sinais , Animais , Disfunção Cognitiva/induzido quimicamente , Citosol/química , Hipocampo/patologia , Fatores Imunológicos/administração & dosagem , Camundongos , Quinonas/análise , Espécies Reativas de Oxigênio/análise , Superóxido Dismutase/análise
20.
Mar Drugs ; 16(5)2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29772645

RESUMO

Cutaneous melanoma is the most serious type of skin cancer, so new cytotoxic weapons against novel targets in melanoma are of great interest. Euplotin C (EC), a cytotoxic secondary metabolite of the marine ciliate Euplotes crassus, was evaluated in the present study on human cutaneous melanoma cells to explore its anti-melanoma activity and to gain more insight into its mechanism of action. EC exerted a marked cytotoxic effect against three different human melanoma cell lines (A375, 501Mel and MeWo) with a potency about 30-fold higher than that observed in non-cancer cells (HDFa cells). A pro-apoptotic activity and a decrease in melanoma cell migration by EC were also observed. At the molecular level, the inhibition of the Erk and Akt pathways, which control many aspects of melanoma aggressiveness, was shown. EC cytotoxicity was antagonized by dantrolene, a ryanodine receptor (RyR) antagonist, in a concentration-dependent manner. A role of RyR as a direct target of EC was also suggested by molecular modelling studies. In conclusion, our data provide the first evidence of the anti-melanoma activity of EC, suggesting it may be a promising new scaffold for the development of selective activators of RyR to be used for the treatment of melanoma and other cancer types.


Assuntos
Organismos Aquáticos/metabolismo , Euplotes/metabolismo , Melanoma/tratamento farmacológico , Sesquiterpenos/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Agonistas dos Canais de Cálcio/isolamento & purificação , Agonistas dos Canais de Cálcio/farmacologia , Agonistas dos Canais de Cálcio/uso terapêutico , Linhagem Celular Tumoral , Dantroleno/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Oncogênica v-akt/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA